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Abstract

Due to the difficulty of handling both hysteresis and interactions between subsystems, there is still no result available on decentralized
stabilization of unknown interconnected systems with hysteresis, even though the problem is practical and important. In this paper, we provide
solutions to this challenging problem by proposing two new schemes to design decentralized output feedback adaptive controllers using
backstepping approach. For each subsystem, a general transfer function with arbitrary relative degree is considered. The interactions between
subsystems are allowed to satisfy a nonlinear bound with certain structural conditions. In the first scheme, no knowledge is assumed on the
bounds of unknown system parameters. In case that the uncertain parameters are inside known compact sets, we propose an alternative scheme
where a projection operation is employed in the adaptive laws. In both schemes, the effects of the hysteresis and the effects due to interactions
are taken into consideration in devising local control laws. It is shown that the designed local adaptive controllers can ensure all the signals in
the closed-loop system bounded. A root mean square type of bound is obtained for the system states as a function of design parameters. This
implies that the transient system performance can be adjusted by choosing suitable design parameters. With Scheme II, the proposed control
laws allow arbitrarily strong interactions provided their upper bounds are available. In the absence of hysteresis, perfect stabilization is ensured
and the L2 norm of the system states is also shown to be bounded by a function of design parameters when the second scheme is applied.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the control of a large-scale system, one usually faces poor
knowledge on the plant parameters and interactions between
subsystems. Thus adaptive control technique in this case is an
appropriate strategy to be employed. If some subsystems are
distributed distantly, it is difficult for a centralized controller to
gather feedback signals from these subsystems. Also the design
and implementation of the centralized controller are compli-
cated. Therefore decentralized controllers, designed indepen-
dently for local subsystems and using local available signals
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for feedback, are proposed to overcome such problems. Such
decentralized controllers, however, should be robust against
the ignored interactions. In the context of decentralized adap-
tive control, only a limited number of results have been ob-
tained, see for examples Datta and Ioannou (1991), Datta and
Ioannou (1992), Gavel and Siljak (1989), Hill, Wen, and
Goodwin (1988), Huseyin, Sezer, and Siljak (1982), Ioannou
(1986), Shi and Singh (1992), Wen (1994), Wen and Hill
(1992), Wen and Soh (1997), and Zhang, Wen, and Soh
(2000).The scheme presented in Wen (1994) is the first result
using backstepping technique to relax the requirement on the
relative degree of subsystems. But the result is only applicable
to interactions satisfying a first-order type of bound and tran-
sient performance is not established. In the case that the input
of each loop is preceded by unknown backlash-like hysteresis,
there is still no result available.

Hysteresis can be represented by both dynamic input–output
and static constitutive relationships. It exists in a wide range
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of physical systems and materials, such as electro-magnetism
(Mittal & Menq, 2000), piezoelectric actuators (Stepanenko &
Su, 1998), brakes (Tao & Kokotovic, 1996), electronic circuits
(Lamba, Grinfeld, McKee, & Simpson, 1997), motors (Adly,
1995), smart materials (Hong, Kim, Kim, & Jung, 2000), and
so on (Brokate & Sprekels, 1996). When a plant is preceded by
the hysteresis nonlinearity, the system usually exhibits undesir-
able inaccuracies or oscillations and even instability due to the
combined effects of the non-differentiable and non-memoryless
character of the hysteresis and the plant. Hysteresis nonlinear-
ity is one of the key factors limiting both static and dynamic
performance of feedback control systems. The development of
control techniques to mitigate the effects of hysteresis is typ-
ically challenging and has recently attracted significant atten-
tion (Ahmad & Khorrami, 1999; Moheimani & Goodwin, 2001;
Pare & How, 1998; Su, Stepanenko, Svoboda, & Leung, 2000;
Sun, Zhang, & Jin, 1992; Tan & Baras, 2005; Tao & Kokotovic,
1995; Zhou, Wen, & Zhang, 2004). In Tan and Baras (2005), a
model derivation for smart materials using physical principles
leads to a hysteresis operator at the input end of a linear sys-
tem. Adaptive recursive identification and inverse control are
addressed. In Ahmad and Khorrami (1999), Sun et al. (1992),
and Tao and Kokotovic (1995) an inverse hysteresis nonlinear-
ity was constructed. An adaptive hysteresis inverse cascaded
with the plant was employed to cancel the effects of hystere-
sis. In Su et al. (2000), a dynamic hysteresis model is used to
pattern a backlash-like hysteresis rather than constructing an
inverse model to mitigate the bounded effects of the hystere-
sis. In the paper, an adaptive state feedback control scheme is
developed for a class of nonlinear systems. In the design, the
term multiplying the control and the uncertain parameters of
the system must be within a known compact set and a bound
for the effects from hysteresis must also be available, in or-
der to implement the projection operation in the estimator. If
the hysteresis effect is not bounded by the given bound, sys-
tem stability cannot be ensured. In Zhou et al. (2004), a state
feedback control for a special structure of nonlinear systems
with backlash-like hysteresis is developed using backstepping
methodology. System stability was established and the tracking
error was shown to converge to a residual.

Due to difficulties in considering the effects of interconnec-
tions, extension of single-loop results to multi-loop intercon-
necting systems is challenging, which is why the number of
available results is still limited, especially for the case when
the relative degree of each subsystem is greater than two. In
the presence of hysteresis in unknown interconnected systems,
there is no result available for decentralized stabilization so far.
In this paper, we develop two output feedback decentralized
backstepping adaptive stabilizers for a class of interconnected
systems with arbitrary subsystem relative degrees and with the
input of each subsystem preceded by unknown backlash-like
hysteresis modelled by a differential equation as in Brokate
and Sprekels (1996), Stepanenko and Su (1998), and Su et al.
(2000). The interactions between subsystems are allowed to sat-
isfy a nonlinear bound. The effects of both hysteresis and inter-
actions are taken into consideration in the development of local
control laws. For each subsystem, we consider a general trans-

fer function. In Scheme I, the term multiplying the control and
the system parameters are not assumed to be within known in-
tervals. Compared with conventional backstepping approaches,
two new terms are added in the parameter updating laws in
order to ensure boundedness of estimates. In Scheme II, we
assume uncertain parameters are inside some known bounded
intervals, which is a priori information available. Thus we use
projection operation in the adaptive laws. It is established that
the designed local controllers with both schemes can ensure all
the signals in the closed-loop system bounded. Besides stabil-
ity, a root mean square type of bound is also obtained for sys-
tem states as a function of design parameters. This implies that
the transient system performance can be adjusted by choosing
suitable design parameters. With Scheme II, arbitrarily strong
interactions can be accommodated provided their upper bounds
are available. In the absence of hysteresis, perfect stabilization
is ensured and the L2 norm of the system states is also shown to
be bounded by a function of design parameters when Scheme
II is used.

The paper is organized as follows: the problem of this paper
is formulated in Section 2. In Section 3, filters are designed
to estimate system states. In Section 4, two adaptive control
design schemes based on the backstepping technique are pro-
posed. In the derivation of the control law and the estimator,
only the details of those steps different from the standard back-
stepping design are presented. In Section 5, system stability is
established. Simulation results are presented to illustrate the ef-
fectiveness of our proposed schemes in Section 6. Finally, the
paper is concluded in Section 7.

2. Problem formulation

A system consisting of N interconnected subsystems of order
ni modelled below is considered as

ẋ0i = A0ix0i + b0iui +
N∑

j=1

f̄ij (t, yj ), (1)

yj = cT
0ix0i for i = 1, . . . , N , (2)

where x0i ∈ Rni , ui ∈ R1 and yi ∈ R1 are the states, input
and output of the ith subsystem, respectively, f̄ij (t, yj ) ∈ Rni

denotes the nonlinear interactions from the jth subsystem to the
ith subsystem for j �= i, or a nonlinear un-modelled part of the
ith subsystem for j = i. The matrices and vectors in (1) and (2)
have appropriate dimensions, and their elements are constant
but unknown.

Usually each loop has a backlash-like hysteresis nonlinearity
and ui is the output of such hysteresis described by

ui(t) = BHi (wi(t)), (3)

where wi(t) is the input of the hysteresis, BHi (·) is the backlash
hysteresis operator.

In this paper, we consider a hysteresis proposed in
Stepanenko and Su (1998), Su et al. (2000), and Zhou et al.
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Fig. 1. Hysteresis curves.

(2004) and described by a continuous-time dynamic model

dui

dt
= �′

i

∣∣∣∣dwi

dt

∣∣∣∣ (c′
iwi − ui) + hi

dwi

dt
, (4)

where �′
i , c′

i and hi are constants, c′
i > 0 is the slope of the lines

satisfying c′
i > hi .

Based on the analysis in Su et al. (2000), this equation can
be solved explicitly

ui(t) = c′
iwi(t) + ¯̄di(t), (5)

¯̄di(t) = [ui(0) − c′
iwi(0)]e−�′

i (wi−wi(0))sgn ẇi

+ e−�′
iwi sgn ẇi

∫ wi

wi(0)

[hi − c′
i]e�′

i�(sgn ẇi ) d�. (6)

The solution indicates that dynamic equation (4) can be used
to model a class of backlash-like hysteresis as shown in Fig. 1,
where �′

i = 1, c′
i = 3.1635, hi = 0.345, the input signal wi(t)=

6.5 sin(2.3t) and the initial condition ui(0) = 0. For ¯̄di(t), it is
bounded clearly from Fig. 1 and the bound is unknown.

Remark 1. A number of different methods of modelling hys-
teresis are available in literature (Brokate & Sprekels, 1996;
Hong et al., 2000; Macki, Nistri, & Zecca, 1993). The hystere-
sis model of this paper focuses on the fact that the output can
only change its characteristics when the input changes direc-
tion. This model uses a phenomenological approach, postulat-
ing an integral operator or differential equation to model the
relation. The works in Coleman and Hodgdon (1986), Hodgdon
(1988a, 1988b) show that such a model is useful in applied
electro-magnetics because the functions and parameters can
be fine-tuned to match experimental results in a given sit-
uation. This hysteresis nonlinearity is the key factor limit-
ing both static and dynamic performance of feedback control
systems.

Now substituting (5) to (1) gives

ẋ0i = A0ix0i + b̄0iwi +
N∑

j=1

f̄ij (t, yj ) + d̄i (t), (7)

yj = cT
0ix0i , (8)

where b̄0i = b0ic
′
i and d̄i (t) = b0i

¯̄di(t). For each local system,
we make the following assumptions.

Assumption 1. ni is known.

Assumption 2. The triple (A0i , b̄0i , c0i ) are completely con-
trollable and observable.

Assumption 3. Inthe transfer function

Gi(s) = cT
0i (sI − A0i )

−1b̄0i = Ni(s)

Di(s)

= b
mi

i smi + · · · + b1
i s + b0

i

sni + a
ni−1
i sni−1 + · · · + a1

i s + a0
i

, (9)

where Ni(s) is a Hurwitz polynomial. The sign of b
mi

i and the
relative degree �i (=ni − mi) of Gi(s) are known.

Assumption 4. The nonlinear interaction terms satisfy

‖f̄ij (t, yj )‖� �̄ij |yj�j (yj )|, (10)

where ‖·‖ denotes the Euclidean norm, �̄ij are constants denot-
ing the strength of the interaction, and �j (yj ), j = 1, 2, . . . , N

are known nonlinear functions and differentiable at least �i

times.

Remark 2. Assumption 4 means that the effects of the non-
linear interactions to a local subsystem from other subsystems
or its unmodelled part is bounded by a function of the output
of this subsystem. With this condition, it is possible for the
designed local controllers to stabilize the interconnected sys-
tems with strong interactions. In fact, this assumption is much
more relaxed version of the linear bounding conditions used
in Huseyin et al. (1982), Sezer and Siljak (1981a, 1981b), and
Wen (1994).

The control objective is to design totally decentralized
adaptive controllers for system (1) and (4) satisfying Assump-
tions 1–4 so that the closed-loop system is stable and the
system performance in certain sense is adjustable by design
parameters.

3. Local state estimation filters

In this section, a filter using only local input and output
will be designed to estimate the states of each unknown local
system in the presence of both interaction and hysteresis. To
achieve this, each local system model given in (1) is transformed
to a more suitable form. From Assumption 2, there exists a
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non-singular matrix Ti , such that under transformation x0i =
Tixi , (7) and (8) can be transformed to

ẋi = Aixi + aiyi +
[

0
bi

]
wi + fi + di , (11)

yi = (e1
ni

)Txi for i = 1, . . . , N , (12)

where

Ai =
⎡
⎣0

... Ini−1
0 · · · 0

⎤
⎦ , ai =

⎡
⎢⎣

−a
ni−1
i
...

−a0
i

⎤
⎥⎦ , bi =

⎡
⎢⎣

b
mi

i
...

b0
i

⎤
⎥⎦ ,

(13)

fi =
N∑

j=1

T −1
i f̄ij , di = T −1

i d̄i (t) (14)

and ek
j denotes the kth coordinate vector inRj . Similar transfor-

mations can be found in Marino and Tomei (1995) and Krstic,
Kanellakopoulos, and Kokotovic (1995). For state estimation,
by following the standard procedures as in Wen (1994), we can
obtain

v̇
j
i = A0

i v
j
i + eni

ni
wi, j = 0, . . . , mi , (15)

�̇i = A0
i �i + eni

ni
yi , (16)

�T
i = [vmi

i , . . . , v1
i , v

0
i , 	i], (17)

	i = −[(A0
i )

ni−1�i , . . . , A
0
i �i , �i], (18)

�ni

i = −(A0
i )

ni �i , (19)

where the vector ki =[k1
i , . . . , k

ni

i ]T is chosen so that the matrix
A0

i = Ai − ki(e
1
ni

)T is Hurwitz. Hence there exists a Pi such

that PiA
0
i +(A0

i )
TPi =−2I, Pi =P T

i > 0. With these designed
filters our state estimate is

x̂i = �ni

i + �T
i 
i , (20)


T
i = [bT

i , aT
i ] (21)

and the state estimation error �i = xi − x̂i satisfies

�̇i = A0
i �i + fi + di . (22)

Let V�i = �T
i Pi�i . It can be shown that

V̇�i = �T
i [PiA

0
i + (A0

i )
TPi]�i + 2�T

i Pi(fi + di)

� − �T
i �i + 2‖Pidi‖2 + 2‖Pifi‖2. (23)

Then system (11) can be expressed as

ẏi = b
mi

i v
mi,2
i + �ni ,2

i + �̄T
i 
i + �2

i + f 1
i + d1

i , (24)

v̇
mi ,q
i = v

mi,q+1
i − k

q
i v

mi,1
i , q = 2, . . . , �i − 1, (25)

v̇
mi ,�i

i = v
mi,�i+1
i − k

�i

i v
mi,1
i + wi , (26)

where

�i = [vmi,2
i , v

mi−1,2
i , . . . , v

0,2
i , 	(2)

i − yi(e
1
ni

)T]T, (27)

�̄i = [0, v
mi−1,2
i , . . . , v

0,2
i , 	(2)

i − yi(e
1
ni

)T]T (28)

and v
mi,2
i , �2

i , �
ni ,2
i , 	2

i denote the second entries of v
mi

i , �i , �
ni

i ,

	i , respectively, f 1
i and d1

i are the first elements of vectors
fi and di . All states of the local filters in (15) and (16) are
available for feedback.

4. Design of adaptive controllers

In this section, we develop two adaptive backstepping design
schemes. The system parameters bmi

, 
i are uncertain parame-
ters. In Scheme I, there is no a priori information required from
these parameters and thus they can be allowed totally uncer-
tain. To ensure the boundedness of parameter estimates, two
new terms are added in the adaptive law compared with con-
ventional backstepping approaches. In Scheme II, we assume
uncertain parameters are inside known compact sets, which is
a priori information available. A projection operation, which is
to replace the role of the newly added two terms in Scheme I, is
used in the adaptive laws in this case. To illustrate the backstep-
ping procedures, only the first scheme is elaborated in details.

4.1. Control Scheme I

As usual in backstepping approach, the following change of
coordinates is made:

z1
i = yi , (29)

z
q
i = v

mi,q
i − �q−1

i , q = 2, 3, . . . , �i , (30)

where �q−1
i is the virtual control at the qth step of the ith loop

and will be determined in later discussion. To illustrate the
controller design procedures, we now give a brief description
on the first step.

Step 1: We start with the equations for the stabilization error
z1
i obtained from (24), (29) and (30) to get

ż1
i = b

mi

i �1
i + �ni ,2

i + �̄T
i 
i + �2

i + f 1
i + d1

i + b
mi

i z2
i . (31)

The virtual control law �1
i is designed as

�1
i = p̂i �̄

1
i , (32)

�̄1
i = − 3

2 c1
i z

1
i − l1

i z1
i − l∗i z1

i (�i (z
1
i ))

2 − �ni ,2
i − �̄T

i 
̂i , (33)

where c1
i , l1

i and l∗i are positive design parameters, 
̂i is the
estimate of 
i , p̂i is the estimate of pi = 1/b

mi

i .

Remark 3. The term l∗i z1
i (�i (z

1
i ))

2 in (33) is designed to com-
pensate the effects of interactions from other subsystems or the
un-modelled part of its own subsystem. Note that the scheme
in Wen (1994) does not have such a term and thus the result of
Wen (1994) is not applicable to the systems considered here.
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From (31) and (32) we have

ż1
i = − 3

2 c1
i z

1
i − l1

i z1
i − l∗i z1

i (�i (z
1
i ))

2 + �2
i + �̄T

i 
̃i

− b
mi

i �̄1
i p̃i + b

mi

i z2
i + f 1

i + d1
i

= − 3
2 c1

i z
1
i − l1

i z1
i − l∗i z1

i (�i (z
1
i ))

2 + �2
i + f 1

i + d1
i

+ (�i − p̂i �̄
1
i e

1
ni+mi+1)

T
̃i − b
mi

i �̄1
i p̃i + b̂

mi

i z2
i , (34)

where 
̃i = 
i − 
̂i and e1
ni+mi+1 = [1, 0ni

, 0mi
]T ∈ Rni+mi+1.

Using p̃i = pi − p̂i , we obtain

b
mi

i �1
i = b

mi

i p̂i �̄
1
i = �̄1

i − b
mi

i p̃i �̄
1
i (35)

and

�̄T
i 
̃i + b

mi

i z2
i = �̄T

i 
̃i + b̃
mi

i z2
i + b̂

mi

i z2
i

= �̄T
i 
̃i + (v

mi,2
i − �1

i )(e
1
ni+mi+1)

T
̃i + b̂
mi

i z2
i

= (�i − p̂i �̄
1
i e

1
ni+mi+1)

T
̃i + b̂
mi

i z2
i . (36)

We consider the Lyapunov function

V 1
i = 1

2
(z1

i )
2 + 1

2

̃T
i 
−1

i 
̃i + |bmi

i |
2�′

i

(p̃i)
2 + 1

2l̄1
i

V�i , (37)

where 
i is a positive definite design matrix and �′
i is a positive

design parameter. We now examine the derivative of V 1
i

V̇ 1
i = z1

i ż
1
i − 
̃T

i 
−1
i

˙̂
i − |bmi

i |
�′
i

p̃i
˙̂pi + 1

2l̄1
i

V̇�i

� − 3

2
c1
i (z

1
i )

2 + b̂
mi

i z1
i z

2
i − l∗i (z1

i )
2(�i (z

1
i ))

2

+ 
̃T
i 
−1

i [
i (�i − p̂i �̄
1
i e

1
ni+mi+1)z

1
i − ˙̂
i]

− |bmi

i |p̃i

1

�′
i

[�′
i sgn(b

mi

i )�̄1
i z

1
i + ˙̂pi]

− 1

2l̄1
i

�T
i �i + 1

l̄1
i

(‖Pidi‖2 + ‖Pifi‖2)

− l1
i (z1

i )
2 + (f 1

i + d1
i + �2

i )z
1
i . (38)

Now we choose

˙̂pi = − �′
i sgn(b

mi

i )�̄1
i z

1
i − �′

i l
p
i (p̂i − p0

i ), (39)

�1
i = (�i − p̂i �̄

1
i e

1
ni+mi+1)z

1
i , (40)

where l
p
i and p0

i are two positive design constants.
From the choice, the following useful property can be ob-

tained:

l
p
i p̃i(p̂i − p0

i )

= −l
p
i (p̂i − pi)[ 1

2 (p̂i − pi) + 1
2 (p̂i + pi) − p0

i ]
= − 1

2 l
p
i (p̃i)

2 − 1
2 l

p
i (p̂i)

2 + 1
2 l

p
i (pi)

2 + l
p
i p̂ip

0
i − l

p
i pip

0
i

= − 1
2 l

p
i (p̃i)

2 − 1
2 l

p
i (p̂i)

2 + l
p
i p̂ip

0
i − 1

2 l
p
i (p0

i )
2

+ 1
2 l

p
i (p0

i )
2 − l

p
i pip

0
i + 1

2 l
p
i (pi)

2

= − 1
2 l

p
i (p̃i)

2 + 1
2 l

p
i (pi − p0

i )
2 − 1

2 l
p
i (p̂i − p0

i )
2

� − 1
2 l

p
i (p̃i)

2 + 1
2 l

p
i (pi − p0

i )
2. (41)

Let l1
i = 3l̄1

i . Note that

−l̄1
i (z

1
i )

2 + f 1
i z1

i � 1

4l̄1
i

‖f 1
i ‖2, (42)

−l̄1
i (z

1
i )

2 + d1
i z1

i � 1

4l̄1
i

‖d1
i ‖2, (43)

−l̄1
i (z

1
i )

2 + �2
i z

1
i − 1

4l̄1
i

�T
i �i � − l̄1

i (z
1
i )

2 + �2
i z

1
i − 1

4l̄1
i

(�2
i )

2

= − l̄1
i

(
z1
i − 1

2l̄1
i

�2
i

)2

�0. (44)

Then the following derivation for the derivative of V 1
i can be

carried out by using (39)–(44):

V̇ 1
i � − 3

2
c1
i (z

1
i )

2 + b̂
mi

i z1
i z

2
i − |bmi

i |
2

l
p
i (p̃i)

2 − 1

4l̄1
i

�T
i �i

+ |bmi

i |
2

l
p
i (pi − p0

i )
2 + 
̃T

i (�1
i − 
−1

i

˙̂
i )

− l∗i (z1
i �i (z

1
i ))

2 + 1

l̄1
i

‖Pidi‖2 + 1

4l̄1
i

‖d1
i ‖2

+ 1

l̄1
i

‖Pifi‖2 + 1

4l̄1
i

‖f 1
i ‖2. (45)

Step q (q = 2, . . . , �i , i = 1, . . . , N): Choose virtual control
laws

�2
i = − b̂

mi

i z1
i −

⎡
⎣c2

i + l2
i

(
��1

i

�yi

)2
⎤
⎦ z2

i + B̄2
i + ��1

i

�
̂i


i�
2
i

+ ��1
i

�
̂i


i l


i (
̂i − 
0

i ), (46)

�q
i = − z

q−1
i −

⎡
⎣c

q
i + l

q
i

(
��q−1

i

�yi

)2
⎤
⎦ z

q
i + B̄

q
i

+ ��q−1
i

�
̂i


i�
q
i + ��q−1

i

�
̂i


i l


i (
̂i − 
0

i )

−
⎛
⎝q−1∑

k=2

zk
i

��k−1
i

�
̂i

⎞
⎠
i

��q−1
i

�yi

�i , (47)

�q
i = �q−1

i − ��q−1
i

�yi

�iz
q
i , (48)

where c
q
i , l

q
i , q = 3, . . . , �i are positive design parameters, and

B̄
q
i , q = 2, . . . , �i denotes some known terms and its detailed

structure can be found in Krstic et al. (1995). Then the adaptive
controller and parameter update laws are finally given by

wi = �
�i

i − v
mi,�i+1
i , (49)

˙̂
i = 
i�
�i

i + 
i l


i (
̂i − 
0

i ), (50)

where l
i and 
0
i are positive design constants.

Note that if �i is �i th order differentiable, then �
�i

i will be
differentiable. So wi is differentiable. Thus ui is well defined
and continuous from (4).
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Table 1
Adaptive backstepping control Scheme I

Adaptive control laws:

�1
i = p̂i �̄1

i (T.1)

�̄1
i = − 3

2 c1
i z

1
i − l1

i z1
i − l∗i z1

i (�i (z
1
i ))

2 − �ni ,2
i − �̄T

i 
̂i (T.2)

�2
i = − b̂

mi

i z1
i −

⎡
⎣c2

i + l2
i

(
��1

i

�yi

)2
⎤
⎦ z2

i + B̄2
i + ��1

i

�
̂i


i�2
i

+ ��1
i

�
̂i


i l


i (
̂i − 
0

i ) (T.3)

�q
i = − z

q−1
i −

⎡
⎣c

q
i + l

q
i

(
��q−1

i

�yi

)2
⎤
⎦ z

q
i + B̄

q
i + ��q−1

i

�
̂i


i�
q
i

+ ��q−1
i

�
̂i


i l


i (
̂i − 
0

i ) −
⎛
⎝q−1∑

k=2

zk
i

��k−1
i

�
̂i

⎞
⎠
i

��q−1
i

�yi

�i

q = 2, . . . ,�i , i = 1, . . . , N (T.4)

wi = ��i

i − v
mi ,�i+1
i (T.5)

Parameter update laws:

˙̂pi = − �′
i sgn(b

mi

i )�̄1
i z

1
i − �′

i l
p
i (p̂i − p0

i ) (T.6)

˙̂
i = 
i�
�i

i + 
i l


i (
̂i − 
0

i ) (T.7)

�q
i = �q−1

i − ��q−1
i

�yi

�i z
q
i (T.8)

�1
i = (�i − p̂i �̄1

i e
1
ni+mi+1)z

1
i (T.9)

The designed adaptive controllers are summarized in
Table 1.

Remark 4. From the analysis above, terms �′
i l

p
i (p̂i − p0

i ) and


i l


i (
̂i − 
0

i ) in the adaptive controllers are used to handle
the effects of hysteresis in order to ensure the boundedness of
the parameter estimates. If projection operation is used as in
Scheme II, such terms are not needed.

Remark 5. When going through the details of the design pro-
cedures, we note that in the equations concerning ż

q
i , q =

1, 2, . . . , �i , just functions f 1
i from the interactions and d1

i due
to the hysteresis effect appear, and they are always together
with �2

i . This is because only ẏi from the plant model (11) was
used in the calculation of �̇q

i for steps q = 2, . . . , �i .

Remark 6. From our analysis, it can be noted that the design
method can also be applied to system with perturbations satis-
fying similar boundedness properties to (10).

4.2. Control Scheme II

In this section, we assume uncertain parameters pi and 
i are
inside known compact sets, which is the a priori information
available as follows.

Assumption 5. Parameters pi and 
i are inside known compact
sets �pi

and �
i
.

Table 2
Adaptive backstepping control Scheme II

Adaptive control laws:

�1
i = p̂i �̄1

i (T.10)

�̄1
i = − 3

2 c1
i z

1
i − l1

i z1
i − l∗i z1

i (�i (z
1
i ))

2 − �ni ,2
i − �̄T

i 
̂i (T.11)

�2
i = − b̂

mi

i z1
i −

⎡
⎣c2

i + l2
i

(
��1

i

�yi

)2
⎤
⎦ z2

i + B̄2
i + ��1

i

�
̂i


i�2
i (T.12)

�q
i = − z

q−1
i −

⎡
⎣c

q
i + l

q
i

(
��q−1

i

�yi

)2
⎤
⎦ z

q
i + B̄

q
i + ��q−1

i

�
̂i


i�
q
i

−
⎛
⎝q−1∑

k=2

zk
i

��k−1
i

�
̂i

⎞
⎠
i

��q−1
i

�yi

�i

q = 2, . . . ,�i , i = 1, . . . , N (T.13)

wi = ��i

i − v
mi ,�i+1
i (T.14)

Parameter update laws:

˙̂pi = Proj{−�′
i sgn(b

mi

i )�̄1
i z

1
i } (T.15)

˙̂
i = Proj{
i�
�i

i } (T.16)

�q
i = �q−1

i − ��q−1
i

�yi

�i z
q
i (T.17)

�1
i = (�i − p̂i �̄1

i e
1
ni+mi+1)z

1
i (T.18)

Thus we can use a smooth projection operation in the adap-
tive laws to ensure the estimates belonging to the compact sets
for all the time. Such an operation can be found in Krstic et al.
(1995). As shown in Krstic et al. (1995), the projection oper-
ation can ensure that the estimated parameter p̂i(t) ∈ �pi

for

all t, if p̂i(0) ∈ �pi
and the estimated parameter vector 
̂i (t) ∈

�
i
for all t, if 
̂i (0) ∈ �
i

.Thus, the boundedness of 
̂i and p̂i

are guaranteed for all t. Therefore, in this case, we do not need
terms �′

i l
p
i (p̂i − p0

i ) and 
i l


i (
̂i − 
0

i ) in the controller design
as in Scheme I.

As the controller design is similar to Scheme I, we only
present the resulting control laws as summarized in Table 2.

5. Stability analysis

In this section, the stability of the overall closed-loop sys-
tem consisting of the interconnected plants and decentralized
controllers will be established.

5.1. Control Scheme I

Firstly, define zi(t) = [z1
i , z

2
i , . . . , z

�i

i ]T. A mathematical
model for each local closed-loop control system is derived
from (34) and the rest of the design steps 2, . . . , �i .

żi = Azi
zi + W�i (�

2
i + f 1

i + d1
i ) + WT


i

̃i − b

mi

i �̄1
i p̃ie

1
�i

− l∗i z1
i (�i (z

1
i ))

2e1
�i

, (51)



Aut
ho

r's
   

pe
rs

on
al

   
co

py

432 C. Wen, J. Zhou / Automatica 43 (2007) 426–440

where Azi
is a matrix having the similar structure as in the

scalar systems given in Krstic et al. (1995):

Azi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1
i −l1

i · · · · · · 0

−b̂
mi

i · · · · · · �
2,�i

i

0 · · · · · · �
3,�i

i
...

. . .
. . .

...

0 . . . . . . −c
�i

i −l
�i

i

(
��

�i−1
i

�yi

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (52)

W�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

−��1
i

�yi

...

−��
�i−1
i

�yi

⎤
⎥⎥⎥⎥⎥⎥⎦

, WT

i

= W�i�
T
i − p̂i �̄

1
i e

1
�i

e1
�i

T
, (53)

where the terms �k,q
i are due to the terms (��k−1

i /�
̂i )
i (�
q
i −

�q−1
i ) in the z

q
i equation.

To show the system stability, the variables of the filters in
(16) and the zero dynamics of subsystems should be included
in the Lyapunov function. Under a similar transformation as in
Wen (1994), the variables �i associated with the zero dynamics
of the ith subsystem can be shown to satisfy

�̇i = A
bi

i �i + b̄iz
1
i + f̄i , (54)

where the eigenvalues of the mi × mi matrix A
bi

i are the zeros
of the Hurwitz polynomial Ni(s), b̄i ∈ Rmi and f̄i ∈ Rmi

denoting the effects of the transformed interactions.
Now we define a Lyapunov function of the overall decen-

tralized adaptive control system as

V =
N∑

i=1

Vi , (55)

where

Vi =
�i∑

q=1

(
1

2
(z

q
i )2 + 1

2l̄
q
i

�T
i Pi�i

)
+ 1

2

̃T
i 
−1

i 
̃i + |bmi

i |
2�′

i

p̃2
i

+ 1

2l
�i

i

�T
i Pi�i + 1

2l
�i

i

�T
i P

bi

i �i , (56)

where P
bi

i satisfies P
bi

i (A
bi

i ) + (A
bi

i )TP
bi

i = −2I , l
�i

i and l
�i

i

are constants satisfying

l
�i

i � 2‖Pie
ni
ni

‖2

c1
i

, (57)

l
�i

i �
2‖P bi

i b̄i‖2

c1
i

. (58)

Note that


i�
q−1
i − ˙̂
i = 
i�

q−1
i − 
i�

q
i + 
i�

q
i − ˙̂
i

= 
i

��q−1
i

�yi

�z
q
i + (
i�

q
i − ˙̂
i ) (59)

and

l
i 
̃T
i (
̂i−
0

i )=−l
i (
̂i−
i )
T( 1

2 (
̂i−
i )+ 1
2 (
̂i+
i )−
0

i )

=− 1
2 l
i ‖
̃i‖2− 1

2 l
i ‖
̂i‖2+ 1
2 l
i ‖
i‖2

+l
i 
̂T
i 
0

i − l
i 
T
i 
0

i

= − 1
2 l
i ‖
̃i‖2 − 1

2 l
i ‖
̂i‖2 + l
i 
̂T
i 
0

i − 1
2 l
i ‖
0

i ‖2

+ 1
2 l
i ‖
0

i ‖2 − l
i 
T
i 
0

i + 1
2 l
i ‖
i‖2

= − 1
2 l
i ‖
̃i‖2 + 1

2 l
i ‖
i − 
0
i ‖2 − 1

2 l
i ‖
̂i − 
0
i ‖2

� − 1
2 l
i ‖
̃i‖2 + 1

2 l
i ‖
i − 
0
i ‖2. (60)

From (23), (45), (T.10)–(T.16), (54), (59) and (60), the deriva-
tive of Vi in (56) is given by

V̇i � −
�i∑

q=1

c
q
i (z

q
i )2 − 1

2
l
i ‖
̃i‖2 + 1

2
l
i ‖
i − 
0

i ‖2

+
�i∑

q=1

1

l̄
q
i

(‖Pidi‖2 + ‖Pifi‖2) − |bmi

i |
2

l
p
i (p̃i)

2

+ |bmi

i |
2

l
p
i (pi − p0

i )
2 − l∗i (z1

i )
2�2

i (z
1
i ) − 1

4l̄1
i

�T
i �i

+ 1

4l̄1
i

(‖f 1
i ‖2 + ‖d1

i ‖2) +
�i∑

q=2

(
− 1

2l̄
q
i

�T
i �i

−l
q
i

(
��q−1

i

�yi

)2

(z
q
i )2 + ��q−1

i

�yi

(f 1
i + d1

i + �2
i )z

q
i

⎞
⎠

− 1

2
c1
i (z

1
i )

2 − 1

l
�i

i

‖�i‖2 + 1

l
�i

i

�T
i Pie

ni
ni

yi

− 1

l
�i

i

‖�i‖2 + 1

l
�i

i

�T
i P

bi

i b̄iz
1
i + 1

l
�i

i

�T
i P

bi

i f̄i . (61)

Using the inequality ab�(a2 + b2)/2, we have

−l̄
q
i

(
��q−1

i

�yi

)2

(z
q
i )2 + ��q−1

i

�yi

f 1
i z

q
i � 1

4l̄
q
i

‖f 1
i ‖2, (62)

−l̄
q
i

(
��q−1

i

�yi

)2

(z
q
i )2 + ��q−1

i

�yi

d1
i z

q
i � 1

4l̄
q
i

‖d1
i ‖2, (63)

−l̄
q
i

(
��q−1

i

�yi

)2

(z
q
i )2 + ��q−1

i

�yi

�2
i z

q
i − 1

4l̄
q
i

�T
i �i �0 (64)

and

− 1

2l
�i

i

‖�i‖2 + 1

l
�i

i

�T
i Pie

ni
ni

z1
i − 1

4
c1
i (z

1
i )

2

� − ‖�i‖2

2(l
�i

i )2

(
l
�i

i − 2‖Pie
ni
ni

‖2

c1
i

)
�0, (65)
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− 1

2l
�i

i

‖�i‖2 + 1

l
�i

i

�T
i P

bi

i b̄iz
1
i − 1

4
c1
i (z

1
i )

2

� − ‖�i‖2

2(l
�i

i )2

(
l
�i

i − 2‖P bi

i b̄i‖2

c1
i

)
�0, (66)

− 1

4l
�i

i

‖�i‖2 + 1

l
�i

i

‖�i‖‖P bi

i f̄i‖� 1

l
�i

i

‖P bi

i f̄i‖2. (67)

Then, the derivative of the Vi satisfies

V̇i � −
�i∑

q=1

c
q
i (z

q
i )2 − 1

2
l
i ‖
̃i‖2 − |bmi

i |
2

l
p
i (p̃i)

2

−
�i∑

q=1

1

4l̄
q
i

�T
i �i − 1

2l
�i

i

‖�i‖2 − 1

4l
�i

i

‖�i‖2

− l∗i (z1
i )

2(�i (z
1
i ))

2 +
�i∑

q=1

1

l̄
q
i

(
‖Pifi‖2 + 1

4
‖fi‖2

)

+ 1

l
�i

i

‖P bi

i f̄i‖2 + M∗
i , (68)

where Di,max denotes the bound of di(t), and

M∗
i = Mi +

�i∑
q=1

1

4l̄
q
i

(4‖Pi‖2 + 1)D2
i,max, (69)

Mi = |bmi

i |
2

l
p
i (pi − p0

i )
2 + 1

2
l
i ‖
i − 
0

i ‖2. (70)

Remark 7. Due to the presence of hysteresis, an extra term
M∗

i appears in (68) compared to the analysis in Wen (1994).
The handling of M∗

i is elaborated after (75).

From Assumption 4, we can show that

�i∑
q=1

1

l̄
q
i

(
‖Pifi‖2 + 1

4
‖fi‖2

)
+ 1

l
�i

i

‖P bi

i f̄i‖2

�
N∑

j=1

�ij |z1
j�j (z

1
j )|2, (71)

where �ij = O(�̄2
ij ) indicating the coupling strength from

the jth subsystem to the ith subsystem depending on

l̄
q
i , l

�i

i , ‖Pi‖, ‖P bi

i ‖ and ‖T −1
j ‖, j = 1, 2, . . . , N . O(�̄2

ij ) de-

notes that �ij and O(�̄2
ij ) are in the same order mathematically.

Clearly there exist a constant �∗
ij such that for each constant

�ij satisfying �ij ��∗
ij ,

l∗i �
N∑

j=1

�ji (72)

if

l∗i �
N∑

j=1

�∗
ji . (73)

Constant �∗
ij stands for a upper bound of �ij . Now taking the

summation of the first term in (68) into account and using (71)
and (72), we get

N∑
i=1

−
[
l∗i (z1

i )
2(�i (z

1
i ))

2 − 1

l
�i

i

‖P bi

i f̄i‖2

−
�i∑

k=1

1

l̄ki

(
‖Pifi‖2 + 1

4
‖fi‖2

)]

�
N∑

i=1

−
⎡
⎣l∗i −

N∑
j=1

�ji

⎤
⎦ |z1

i �i (z
1
i )|2 �0. (74)

Then

V̇ �
N∑

i=1

⎡
⎣−

�i∑
q=1

c
q
i (z

q
i )2 − 1

2
l
i ‖
̃i‖2 − |bmi

i |
2

l
p
i (p̃i)

2

−
�i∑

q=1

1

4l̄
q
i

�T
i �i − 1

2l
�i

i

‖�i‖2 − 1

4l
�i

i

‖�i‖2 + M∗
i

⎤
⎦ . (75)

Remark 8. The summation in (74) is one of the key steps in
the stability analysis. Note that this results in the cancellation
of the interaction effects from other subsystems. The approach
in Wen (1994) cannot be applied here due to non-Lipschitz type
nonlinear interactions.

Notice that

−
�i∑

q=1

c
q
i (z

q
i )2 − 1

2
l
i ‖
̃i‖2 − |bmi

i |
2

l
p
i (p̃i)

2

−
�i∑

q=1

1

4l̄
q
i

�T
i �i − 1

2l
�i

i

‖�i‖2 − 1

4l
�i

i

‖�i‖2

� − f −
i V̄i (76)

and

Vi =
�i∑

q=1

1

2
(z

q
i )2 + 1

2

̃T
i 
−1

i 
̃i + |bmi

i |
2�′

i

(p̃i)
2

+
�i∑

q=1

1

2l̄
q
i

�T
i Pi�i + 1

2l
�i

i

�T
i Pi�i + 1

2l
�i

i

�T
i P

bi

i �i

�f +
i V̄i , (77)

where

V̄i=
�i∑

q=1

(z
q
i )2+
̃T

i 
̃i+(p̃i)
2+

�i∑
q=1

�T
i �i+�T

i �i+�T
i �i , (78)
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f −
i = min

{
c
q
i ,

1

2
l
i ,

|bmi

i |
2

l
p
i ,

1

4l̄
q
i

,
1

2l
�i

i

,
1

4l
�i

i

}
, (79)

f +
i = max

{
1

2
,

1

2
�q,max
i (
i ),

|bmi

i |
2�′

i

,
1

2l
�i

i

�q,max
i (P

bi

i ),

1

2 min(l̄
q
i , l

�i

i )
�q,max
i (Pi)

}
, q=1, . . . , �i ,

(80)

where �q,max
i (Pi), �q,max

i (P
bi

i ) and �q,max
i (
i ) are the maxi-

mum eigenvalues of Pi, P
bi

i and 
i , respectively. Therefore,
from (75) we obtain

V̇ � − f ∗V + M∗, (81)

where f ∗ =∑N
i=1 f −

i /
∑N

i=1 f +
i , M∗ =∑N

i=1 M∗
i is a bounded

term. By direct integrations of the differential inequality (81),
we have

V �V (0)e−f ∗t + M∗

f ∗ (1 − e−f ∗t )�V (0) + M∗

f ∗ . (82)

This shows that V is uniformly bounded. Thus z1
i , z

2
i , . . . , p̂i , 
̂i ,

�i , �i , v
j
i , �i and xi are bounded as in Wen (1994) and Krstic

et al. (1995). Therefore boundedness of all signals in the
system is ensured as formally stated in the following theorem.

Theorem 1. Consider the closed-loop adaptive system
consisting of the plant (1) under Assumptions 1–4, the con-
troller (49), the estimator (39), (50), and the filters (15) and
(16). There exist a constant �∗

ij such that for each constant
�ij satisfying �ij ��∗

ij , i, j = 1, . . . , N , all the signals in the
system are globally uniformly bounded.

Remark 9. Parameter l∗i can be chosen as any positive value
and the condition that �ij ��∗

ij has the implication that the de-
signed local controllers are able to stabilize any interconnected
system with coupling strength satisfying (73). This implica-
tion is similar to the interpretations of the results in Datta and
Ioannou (1992), Ioannou (1986), Wen (1994), Wen and Hill
(1992), and Wen and Soh (1997), where sufficiently weak in-
teractions are allowed. Thus the result is qualitative in na-
ture, which shows the robustness of designed local controllers
against interactions.

We now derive a bound for the vector zi(t) where zi(t) =
[z1

i , z
2
i , . . . , z

�i

i ]T. Firstly, the following definitions are made:

c0
i = min

1�q ��i

c
q
i , d0 =

N∑
i=1

�i∑
q=1

1

4l̄
q
i

, (83)

‖zi‖[0,T ] =
√

1

T

∫ T

0
‖zi(t)‖2 dt . (84)

Note that definition (84) is similar to the root mean square value
used in electric circuit.

Define

V� =
N∑

i=1

�i∑
q=1

(
1

2
(z

q
i )2 + 1

2l̄
q
i

�T
i Pi�i

)

+ 1

2

̃T
i 
−1

i 
̃i + |bmi

i |
2�′

i

(p̃i)
2. (85)

Following similar analysis to (68), the derivative of V� can be
given as

V̇� � − f ∗V� + M∗ �c0
i ‖zi‖2 + M∗. (86)

Integrating both sides, we obtain

‖zi‖[0,T ] �
1

c0
i

[
|V�(0) − V�(T )|

T
+

N∑
i=1

Mi

+d0
1

T

N∑
i=1

�i (4‖Pi‖2 + 1)

∫ T

0
(di(t))

2 dt

]
. (87)

On the other hand, from (56), we have

|V�(0) − V�(T )|
T

� 1 − e−f ∗T

T

(
M

f ∗ + V�(0)

)

+ d0

T

N∑
i=1

�i (4‖Pi‖2 + 1)

∫ T

0
e−f ∗(T −t)(di(t))

2 dt

�M + f ∗V�(0) + 1

T
d0

N∑
i=1

�i (4‖Pi‖2 + 1)

×
∫ T

0
e−f ∗(T −t)(di(t))

2 dt for all T �0, (88)

where we have used the fact that e−f ∗(T −t) �1 and (1 −
e−f ∗T )/T �f ∗, and M=∑N

i=1 Mi . Then a bound for ‖zi‖[0,T ]
is established

‖zi‖[0,T ] �2V�(0)+ 1

c0
i

N∑
i=1

(|bmi

i |lpi (pi−p0
i )

2+l
i ‖
i−
0
i ‖2)

+ 1

c0
i

d0

N∑
i=1

2�i (4‖Pi‖2 + 1)D2
i,max (89)

using the fact that f ∗/c0
i �2. The initial value of the Lyapunov

function is

V�(0) =
N∑

i=1

1

2

[
‖zi(0)‖2 + ‖
̃i (0)‖2


−1
i

+ |bmi

i |
�′
i

|p̃i(0)|2

+ d0
i ‖�i (0)‖2

Pi

]
, (90)

where d0
i = ∑�i

q=11/l̄
q
i , ‖
̃i (0)‖2


−1
i

= 
̃i (0)T
−1
i 
̃i (0) and

‖�i (0)‖2
Pi

= �i (0)TPi�i (0).
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Following similar ideas to Krstic et al. (1995, p. 455), where
z(0) is set to zero by appropriately initializing the reference
trajectory for single-loop case, we can set z

q
i , q = 2, . . . , �i to

zero by suitably initializing our designed filters (15) and (16)
as follows:

v
mi,q
i (0) = �q−1

i (yi(0), 
̂i (0), p̂i(0), �i (0), v
mi,q−1
i (0),

v̄
mi−1,2
i (0)), q = 1, 2, . . . , �i . (91)

Thus, by setting z
q
i (0)=0, q =2, . . . , �i , a bound for ‖zi‖[0,T ]

is established and stated in the following theorem.

Theorem 2. Consider the initial values z
q
i (0) = 0 (q = 2,

. . . , �i , i = 1, . . . , N), the bound ‖zi‖[0,T ] satisfies

‖zi‖[0,T ] �
N∑

i=1

yi(0) + ‖
̃i (0)‖2

−1

i

+ |bmi

i |
�′
i

|p̃i(0)|2

+ 1

c0
i

N∑
i=1

(|bmi

i |lpi (pi − p0
i )

2 + l
i ‖
i − 
0
i ‖2)

+ 1

c0
i

d0

N∑
i=1

2�i (4‖Pi‖2 + 1)D2
i,max

+ d0
i ‖�i (0)‖2

Pi
. (92)

Proof. Using (79), (80) and (87)–(90), the fact that f ∗/c0
i �2,

(92) can be obtained. �

Remark 10. Regarding the above bound, the following con-
clusions can be drawn by noting that 
̃i (0), p̃i(0), �i (0) and
yi(0) are independent of c0

i , 
i , �′
i , l



i , l

p
i .

• The transient performance in the sense of truncated norm
given in (92) depends on the initial estimation errors

̃i (0), p̃i(0) and �i (0). The closer the initial estimates to the
true values, the better the transient performance.

• This bound can also be systematically reduced down to a
lower bound depending yi(0) by increasing 
i , �′

i , c
0
i and

decreasing l
p
i , l
i .

• This bound is depending on the effect of hysteresis.

5.2. Control Scheme II

Now we define a Lyapunov function of the overall decen-
tralized adaptive control system as

V =
N∑

i=1

Vi , (93)

where

Vi =
�i∑

q=1

(
1

2
(z

q
i )2 + 1

2l̄
q
i

V�i

)
+ 1

2

̃T
i 
−1

i 
̃i + |bmi

i |
2�′

i

(p̃i)
2

+ 1

2l
�i

i

�T
i Pi�i + 1

2l
�i

i

�T
i P

bi

i �i . (94)

Similar to the procedure of Scheme I, by using the properties
that −
̃T
−1Proj(�)� − 
̃T
−1�, the derivative of the Vi sat-
isfies

V̇i � −
�i∑

q=1

[
c
q
i (z

q
i )2 − 1

4l̄
q
i

�T
i �i

]
− 1

2l
�i

i

�T
i �i − 1

4l
�i

i

�T
i �i

− |bmi

i |p̃i

1

�′
i

[�′
i sgn(b

mi

i )�̄1
i z

1
i + ˙̂pi] + 1

l
�i

i

‖P bi

i f̄i‖2

+ 
̃T
i (�

�i

i − 
−1
i

˙̂
i ) − l∗i (z1
i )

2(�i (z
1
i ))

2 + M∗
i

+
�i∑

q=1

1

l̄
q
i

(
‖Pifi‖2 + 1

4
‖fi‖2

)

� −
�i∑

q=1

[
c
q
i (z

q
i )2 − 1

4l̄
q
i

�T
i �i

]
− 1

2l
�i

i

�T
i �i − 1

4l
�i

i

�T
i �i

− l∗i (z1
i )

2(�i (z
1
i ))

2 +
�i∑

q=1

1

l̄
q
i

(
‖Pifi‖2 + 1

4
‖fi‖2

)

+ 1

l
�i

i

‖P bi

i f̄i‖2 + M∗
i , (95)

where

M∗
i =

�i∑
q=1

1

4l̄
q
i

(4‖Pi‖2 + 1)D2
i,max. (96)

From (71)–(74), the derivative of the V satisfies

V̇ �
N∑

i=1

⎡
⎣−

�i∑
q=1

(
c
q
i (z

q
i )2 − 1

4l̄
q
i

�T
i �i

)
− 1

2l
�i

i

�T
i �i

− 1

4l
�i

i

�T
i �i + M∗

i

]
. (97)

This shows that z1
i , z

2
i , . . . , z

�i

i , �i , �i ,�i , �i and xi are bounded.

With the projection operation, 
̃i and p̃i are bounded. Therefore
boundedness of all signals in the system is ensured as formally
stated in the following theorem.

Theorem 3. Consider the closed-loop adaptive system con-
sisting of the plant (1) under Assumptions 1–5, the controller
(T.14), the estimator (T.15), (T.16), and the filters (15) and
(16). There exist �∗

ij such that for all �ij ��∗
ij , i, j = 1, . . . , N ,

all the signals in the system are uniformly bounded. A bound
for ‖zi‖[0,T ] is established as

‖zi‖[0,T ] �
N∑

i=1

[
yi(0)+‖
̃i (0)‖2


−1
i

+|bmi

i |
�′
i

|p̃i(0)|2

+d0
i ‖�i (0)‖2

Pi
+ 1

c0
i

d0

N∑
i=1

2�i (4‖Pi‖2+1)D2
i,max

]

(98)

by setting z
q
i (0) = 0, q = 2, . . . , �i , i = 1, . . . , N .
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Remark 11. The condition that �ij ��∗
ij now has the following

two implications:

(1) If we know �̄ij , then we can get an estimate of its bound

�∗
ij which depends on l̄

q
i , l

�i

i , ‖Pi‖, ‖P bi

i ‖ and the bound of

‖T −1
j ‖, j = 1, 2, . . . , N and design l∗i according to (72).

This means that the coupling strength of the interconnec-
tion between subsystems can be allowed arbitrarily strong.

(2) If �̄ij is unknown, we have similar implication to
Remark 9.

If the system has no hysteresis, then di(t) = 0 and we have
the following corollary.

Corollary 1. Consider the closed-loop decentralized adaptive
control system consisting of the plant (1) without input hystere-
sis under Assumptions 1–5 and the controller (T.14), the esti-
mator (T.15) and (T.16), and the filters (15) and (16). All the
states of the system asymptotically approach to zero and the
bound ‖zi‖2 is given by

‖zi‖2 � 1

2
√

c0
i

(
N∑

i=1

yi(0) + ‖
̃i (0)‖2

−1

i

+ |bmi

i |
�′
i

|p̃i(0)|2

+ d0
i |�i (0)|2Pi

)1/2

(99)

by setting z
q
i (0) = 0, q = 1, 2, . . . , �i , i = 1, . . . , N .

Proof. In the absence of hysteresis the term di(t)=0, so M∗
i =0

in (97). We have

V̇ �
N∑

i=1

⎡
⎣− �i∑

q=1

c
q
i (z

q
i )2−

�i∑
q=1

1

4l̄
q
i

�T
i �i− 1

2l
�i

i

�T
i �i−

1

4l
�i

i

�T
i �i

⎤
⎦

� − c0
i ‖zi‖2

2 �0, (100)

where ‖zi‖2
2 =∫∞

0 ‖zi‖2 d�. This proves that the uniform stabil-

ity and the uniform boundedness of z
q
i , p̂i , 
̂i , �i , �i , �i , v

j
i , xi

and ui . Following the similar argument as in Wen (1994) and
Krstic et al. (1995), it can be shown that both V̇ and V̈ are
bounded as well as V̇ is integrable over [0, ∞]. Therefore, V̇

tends to zero and thus the system states xi converge to zero
from (100). Also (99) can be obtained clearly.

Remark 12. In the absence of hysteresis, the L2 norm of the
system states is shown to be bounded by a function of design
parameters. This implies that the transient system performance
in terms of L2 bounds can be adjusted by choosing suitable
design parameters. This result further extends that presented in
Wen (1994), where only first order interactions considered and
no transient performance like (99) is available.
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Fig. 2. Output y1 with considering hysteresis using Scheme I.
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Fig. 3. Output y1 without considering hysteresis.

Remark 13. Following similar analysis for the L2 bound and
the approaches in Krstic et al. (1995), a bound on ‖zi‖∞ can
also be established and this bound can be adjusted by choosing
suitable design parameters.

6. An illustrative example

We consider the following interconnected system with three
subsystems:

ẋ1 = a1x1 + b1u1 + f1, y1 = x1, (101)

ẋ2 = a2x2 + b2u2 + f2, y2 = x2, (102)

ẋ3 = a3x3 + b3u3 + f3, y3 = x3, (103)

u1 = BH1(w1), u2 = BH2(w2), u3 = BH3(w3), (104)
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Fig. 4. Output y2 with considering hysteresis using Scheme I.
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Fig. 5. Output y2 without considering hysteresis.
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Fig. 6. Output y3 with considering hysteresis using Scheme I.
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Fig. 7. Output y3 without considering hysteresis.
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Fig. 8. Output y1 in the presence of hysteresis using Scheme II.
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Fig. 9. Output y1 in the absence of hysteresis using Scheme II.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

438 C. Wen, J. Zhou / Automatica 43 (2007) 426–440

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t(sec)

y
2

Fig. 10. Output y2 in the presence of hysteresis using Scheme II.
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Fig. 11. Output y2 in the absence of hysteresis using Scheme II.
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Fig. 12. Output y3 in the presence of hysteresis using Scheme II.
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Fig. 13. Output y3 in the absence of hysteresis using Scheme II.

where a1 = 1, b1 = 1, a2 = 0.5, b2 = 1, a3 = 2, b3 = 1, the
nonlinear interaction terms f1 = y2 + sin(y2) + 0.2y3,f2 =
0.2y2

1 + y3, f3 = y1 + 0.5y2
2 , BH1(w1), BH2(w2) and BH3(w3)

are the backlash hysteresis described by (4) with parameters
�′

1 = 1, c′
1 = 2, h1 = 0.2, �′

2 = 1, c′
2 = 1, h2 = 0.2,�′

3 = 1.2, c′
3 =

1, h3 = 0.3. These parameters are not needed to be known
in the controller design. The objective is to stabilize system
(101)–(103). The controller (49) and the estimator (39), (50)
are implemented, where p̂i and 
̂i are estimates of pi = 1/bic

′
i

and 
i = ai, i = 1, 2, respectively. The design parameters are
chosen as c1

1 = c1
2 = c1

3 = 10, l1
1 = l2

1 = l3
1 = 5, l∗1 = l∗2 = l∗3 = 5,

�1 = 2, �2 = 2, �3 = 2, 
1 = 
2 = 
3 = 1. The initials are set as
y1(0)=0.3, y2(0)=0.5, y3(0)=1.0. Clearly, the result in Adly
(1995) is not applicable here due to the presence of hysteresis
and the fact that f2 and f3 do not satisfy the first-order bounding
condition.

In order to illustrate the effects of hysteresis, we observe
system performances by applying controllers designed without
considering hysteresis and with our proposed Scheme I, re-
spectively. The simulation results presented in Figs. 2,4,6 and
3,5,7 show the system outputs y1, y2 and y3 with Scheme I
and without considering hysteresis, respectively. Clearly, poor
performance is observed if hysteresis is not taken into account
in controller design. In fact, system stability is not even en-
sured theoretically in this case (Figs. 3,5,7). When Scheme II
is applied, we study the cases in the presence or absence of
hysteresis. Figs. 8–13 show the system outputs, which show
that |yi | → 0 in the absence of hysteresis. All the simula-
tion results verify that our proposed two schemes are effective
to cope with hysteresis nonlinearity and high-order nonlinear
interactions.

7. Conclusion

In this paper, decentralized adaptive output feedback stabi-
lization of a class of interconnected subsystems with the input
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of each loop preceded by unknown backlash-like hysteresis
nonlinearity is considered. Each local adaptive controller is
designed based on a general transfer function of the local sub-
system with arbitrary relative degree by developing two adap-
tive control schemes. The effects of hysteresis and interactions
are considered in the design. The nonlinear interactions be-
tween subsystems are allowed to satisfy higher-order nonlinear
bounds. In Scheme I, the term multiplying the control and the
system parameters are not assumed to be within known inter-
vals. Two new terms are added in the parameter updating law,
compared to the standard backstepping approach. In Scheme
II, uncertain parameters are assumed inside known compact
sets. Thus we use projection operation in the adaptive laws. It
is shown that the designed local adaptive controllers with both
schemes stabilize the overall interconnected systems. We also
derive an explicit bound on the root mean square performance
of the system states in terms of design parameters. This im-
plies that the transient system performance can be adjusted by
choosing suitable design parameters. With Scheme II in the ab-
sence of hysteresis, perfect stabilization is ensured and the L2
norm of the system states is also shown to be bounded by a
function of design parameters. The strengths can be allowed
arbitrary strong if their upper bounds are available in this case.
Simulation results illustrate the effectiveness of our schemes
by comparing the cases with and without considering hystere-
sis in controller design, as well as examining the outputs in
the presence and absence of hysteresis when Scheme II is em-
ployed. To further improve system performance, it is worthy
to take the detailed structural information of the hysteresis into
account in the controller design, instead of only considering its
effects. It will be also of interest to extend our results to the
cases where the interconnections satisfy more general bounding
conditions.
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