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A b s t r a c t  

Output  tracking control and internal stability are an- 
alyzed for restricted mobile robots. ~ 'acking error dy- 
namics offers insights into the properties and stability of 
tile input-output subsystem as well as the internal dy- 
namics. Sufficient conditions for the flill state tracldng 
are developed. A type (1,1) mobile robot is studied in 
details and simulation results are presented to confirm 
the theory. 
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1 I n t r o d u c t i o n  F igure  1: A mobile robot with steerable wheels 

In the last decade, feedback control tbr tile trajectory 
tracking problem of nonholonomic wheeled mobile ro- 
bots has been extensively studied based on the input- 
output dynamics [1, 2, 3, zl]. Especially, (static or dy- 
namic) input-output  feedback linearization is consid- 
exed as a standard technique. However, few efforts were 
spent to analyze the nonlinear internal dynamic behav- 
iors of those control schemes. One interesting observa- 
tion was made in [5] on the internal s:.,~bility of a 2-wheel 
differentially steered mobile robot. [ts internal dynam- 
ics exhibits unstable properties when tile mobile robot 
tracks a trajectory for backwards motion. 

In this paper, we study tile tracking error internal 
dynamics for general configl~rations of nonholonomic 
wheeled mobile robots. Our results provide the suffi- 
cient condition for the fifil state tracking stability by 
using the tracking control schemes based on the input- 
output dynamics. A special car-like robot is studied in 
details to enhance and visualize the results. The analy- 
sis to the car-like robot shows that the proposed suffi- 
cient condition is practical applicable by adjusting tile 
parameters in the output  fimction depending on the be- 
havior of the desired trajectory. 

2 D y n a m i c s  a nd  F o r m , , l a t i o n  

We consider wheeled mobile robots moving on a hor- 
izontal plane, as shown in Figure 1. Tile robots are 

classified according to tile mobility 1 < rn _< 3 and the 
steeribility 0 < s < 2 as type (m, s) mobile robot [3]. If 
the robot is equipped with fixed and/or  steering wheels, 
its mobility is restricted (m ~ 2) and the system is non- 
holonomic. Suppose there is no skidding between tile 
wheels and the ground. Tile robot dynamics can be 
described as follows (an extension fi'om [3]). 

= c ( q ) / z  (1)  

with 

q -- ~ = C(q)  = ~Y((7) 

w[lere~ ~ z [x y]T represent tile coordinates  of a reference 
point, P on the robot ill the inertial frame X O Y .  0 is the 
heading angle as defined in Figure 1. 3' = 171 "'" 7~] T 
represents the steering coordinates of independent steer- 
ing wheels. Both vectors v E R m and w E R '~ are ho- 
mogeneous to velocities. Both vectors u~. E R ~' and 
us E R" are control inputs homogeneous to torques. 
R(O) is the standard rotation matrix. The matrix Q(7) 
and vector b(7) for each type of nonholonomic wheeled 
mobile robots are listed in Table 1. For tile restricted 
mobile robot, tile steering coordinate vector 7 can be 
further partitioned as 

7 .... 171 72]T V~I  E R ~+" 2 72E R2 
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Type  (rn, s) 

Q (~)  e R 2×m 

b ~' (~)  e n m 
71 E [5~rn, ts-2 

72 E R 2-m 

d (~)  ~ n2  

Reglflar 
conditions 

T a b l e  1 :  

(2,0)  

1-1  l l / a  
null 
mill 

1 ¢ 0  

(2,1)  

[0 1] 

null 

I oL 
i ¢ 0  

717 

171 < 

(1,1) 

sin 7/a 
null 

(1,2) 
cosffl cos T2 ] 

sin (71 + 7 2 ) / 2 /  
sm (71 - 7 2 ) / 2 .  

Yl 

7 72 
la+lcos(PT) l a + /cos(T2) 

l sin (P'Y) Isin (Z~) 
l p¢  o 

_ ~ l ¢ 0  
7r 

171 < 7max < 

Since 0 < m + s - 2  <~ 1 amt 0 < 2 - m  < 1 must be 
valid, both  3 A and ~2 are either a scalar or a null. Then, 
we define the output  function as follows. 

v~ (3) 

where, vector @, 72 and d(7 ) for each type of robot 
are given by Table 1. Note that,  the first two entries 
of z represents a vir tual  reference point in the XOY 
plane. This output  fimction is such defined that  it may 
be decoupled to input u, i.e., the following decoupling 
matrix 

Oh(q) [/i~T(0) 0 I E ( 7  ) (4) 
E(q) -  ;~q c(q)= o 1,.+,~_2 

with 

0 

is nonsingular if the regular conditions in Table 1 are 
satisfied. Note that,  parameters  I and p in (3) have 
explicit physical meanings and (:an be selected at will. 
Moreover, the steering angles ~l and y2 are always re- 
stricted by the robot mechanism such that  their maxi- 
mums are smaller than 90 degree. Therefore, the regu- 
lar conditions in Table 1 can always be satisfied for real 
restricted mobile robots. 

The control task is to track a feasible desired t rajectory 
(qd(t), #a(t)),  which is pre-specified by an open-loop mo- 
tion planner such tha t  the dynamics (1)(2) are satisfied 
for a uniformly bounded input ud(t) and corresponding 
uniformly bounded velocity #d(t) , i.e., 

0~ = c(o ,~ ,  ~d)t' ,:  (5) 

t~d -- ~d (6) 

Clearly, the desired t rajectory can also be expressed in 

Since the same s t ructure  between system (1)(2) and the 
trajectory (5)(6), one may establish the full order dy- 
namics in terms of the state tracking error/~ = q--qd and 
fi = t~ -  >a. We say that  the system (1)(2) achieves sta- 
ble full state tracking to t rajectory (5)(6) if a control law 
u makes the full order dynamics of (q, ,5) uniformly sta- 
ble. Similarly, since the system (1)-(a) is input-output  
decoupled, one may establish the input -output  dynam- 
ics in terms of the output  tracking error ~ = z - za- 
We say that  the system (1)-(3) achieves stable output 
tracking to t ra jectory (7) if a control law u makes the 
input-output  dynamics of ~ uniformly stable. 

We should note that  the output  fimction h(q) in (3) is 
an epimorphism, So, the stable full s ta te  tracking im- 
plies the stable output  tracking. However, the reverse 
might not he true. [t is understood that ,  for a given 
trajectory za(t), the generalized states qd(t) might not 
be unique, e.g., a straight line motion of za(t) may be 
caused by forward or backward motion of a mobile ro- 
bot and corresponds to different solutions of generalized 
states q~t(t) and Iza(t). [n the extreme case, the output  
tracking of zd(t) may require the solution of qd(t) get- 
ting out of its admissible range. For instance, steering 
angle 7 is required to have a vahm out of its physical 
limitation, such that  the output  tracking control design 
is not implementable.  Next, we shall show that  con- 
trollers, which stabilize the input-output  dynamics of ~, 
may achieve the stable full s ta te  tracking under certain 
condition. 

3 F u l l  s t a t e  t r a c k i n g  

Since tile decoupling matr ix  E(q) is nonsingular, one 
may check that,  by defining a function 

~21r (s) ~, = k(q)  = I0 

tile following maps 
the form of output  (3) as 

(9) 
z d =  h(q,,) (r) j L ~ ( q ) j  

3 2 7 5  



and 

e,1 F-h(')] F l 
Lk(q) L (q) J 

(lO) 

are bo th  di f feomorphisms.  Clearly, ~(-)  and ~( .)  also 
map  the desired t r a j e c t o r y  (1)(2) to the one in the new 
coordinates  (~d ,  ~2d, ~d). 

Define t rac ldng errors g = ~i - ~id (i = 1: 2), ~ = r~ -- r~d, 
and # - z -  Zd. One may  find a feedback u sud~ tha t  the 
dynamics  of t rack ing  errors can be ob ta ined  as follows 

~1 : g2 (i1) 

~ = g( i , ,&)  (12) 

= i t  (141) 

where, 

P(~I, ~2, ~, t) = F(~ 1 + ~ld(t), ~ + 'ld(t))(~ + @d(t)) 
--F(~ld(t), ~d(t) )~2d(t) (15) 

and 

a/c(q) E-1 (q)q=4, ' r ( . ) -  ~Jq c(q) (16) 
(.) 

This  set of t racking  error  dynamic  equat ions (1 1)-(141) 
consists of two par ts .  The  first pa r t  is the &subsys t em 
(1 1)(12), wlfich character izes  tire i n p u t - o u t p u t  d y n a m -  
ics. T h e  second pa r t  is the  r l -subsystem (la), which 
is not  control lable  and character izes  the  internal  dy- 
namics.  In the  case tha t  the i npu t -ou tpu t  dynamics  
& s u b s y s t e m  is stabil ized,  the s tabi l i ty  of internal  dy- 
namics  r / -subsystem de te rmines  whe the r  the s table  flfll 
s ta te  t rack ing  and even the s table  ou tpu t  t racking  can 
be achieved. In par t icular ,  the zero dynamics ,  equat ion 
(13)(15) when the  sys t em ou tpu t  is set to zero (~ = 0), 
is given as 

;~ = ~,,(~, t) ( i t)  
- IF(Girl(t), ~ + ~l~t(t)) - F(~,~( t ) ,  rld(t))l ~Ud(t) 

and its s tabi l i ty  is critical to the internal  stabili ty.  To 
gain more  insights to the  t rack ing  error  zero dynamics ,  
t,y using (16) and (4), (17) can be expressed in te rms  of 
the original mobi le  robo t  general ized coordinates  as 

~i J',, (~, 7d, #d) (18) 

(1 I , ,+ ,  ~ 0 I2-,-~, t td 

Here, we may  give a main  result  by the following theo- 
reIll. 
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T h e o r e m  1 Consider" the tracking problem, of robot 
(I)(2)  to a moving desired trqjectory (qd, #d) satisfying 
(5)(6) with 7d(t) #d(t), and ud(t) uniformly bounded. 

(a) Suppose that control input u is specified such that, 
by using th.e tran.sformation (I0), the closed-loop 
t-subsystem (11)(12) is stable. 

(b) Furthermore, by denoting 

A(q/d,~d) = D.fo(~, Td,#d)8~ ~=(, (19) 

suppose the linear system 

= A(~d, .e )~  (20) 

for o,,ery f , 'o~n (~'e(t), #e( t ) )  = (Ire, ~e) is expo- 
nentially stable in a neighborhood of :/2 = O. 

Then, the robot system. (1)(2) locally achieves stable full 
state tracking to desired trajectory (5)(6'). 

O u t l i n e  of  proof:  Because of the d i f feomorphism (10), 
the proof  can be comple ted  by showing tha t  supposi -  
t ions (a)(b) iml)ly tire uni form s tabi l i ty  of the t rack ing  
error  dynanfics (11)-(13). The  proof  consists of flowing 
two steps. 

(i) fo in (18) and hence ~)fo/9~ is Lipschitz  in ~ in a 
ne ighborhood  of ~ = 0, uni formly  in t. So, (20) is 
the l inear app rox ima t ion  of (18). lq l r thermore ,  since 
~yd(t) = wd(t) E ~d and lid(t) = ud(t) are un i formly  
bounded,  l inear sys tem (20) is a slowly t ime  vary ing  
sys tem by L e m m a  2.414 in [6]. Therefore ,  suppos i t ion  
(b) locally implies the uni form a s y m p t o t i c  s tabi l i ty  of 
the t racking error  zero dynamics  (18) and hence (17). 

(it) Noticing the  s t ruc tu re  of mat r ices  E(q), G(q) and 
Table  l, F( . )  is Lipschitz,  un i formly  in t. lqu' ther-  
more, ~2d = E (qd)#d is mfi formly bounded .  Then ,  
~#((1, ~2, ~, t) is Lipschitz in (~1, ~2,/j), un i formly  in t. 
Final ly the  claims follow Corol lary  in page  445 of 17] 
and the result  (i). [] 

In the  case tha t  ou tpu t  t rack ing  control  law is used, 
T h e o r e m  1 offers sufficient condi t ions  for the  s table  lull 
s ta te  t racking and thus the  s table  ou tpu t  t r ack ing  in a 
ne ighborhood  of ~ = 0. 

4 Tracking s tabi l i ty  o f  a car-l ike r o b o t  

T h e  s tabi l i ty  analysis  m e t h o d  proposed  in T h e o r e m  1 is 
general ly sui table  for analyz ing  the t r a j ec to ry  t rack ing  
s tabi l i ty  of any wheeled mobi le  robo t  under  an ou tpu t  
t racking control  scheme. W i t h o u t  loss of generali ty,  we 



i n v e s t i g a t e  t h e  ca r - l ike  r o b o t  in F i g u r e  2, w h o s e  d y n a m -  
ics is g iven  by (1)(2) w i t h  e l e m e n t s  of  t y p e  (1,1) in T a b l e  

1. In lh i s  spec i a l  c a s e , . ,  is t he  l o n g i t u d i n a l  ve loc i ty ;  co 

is t he  s t e e r i n g  r a t e ;  a is a p o s i t i v e  c o n s t a n t  of  t h e  whee l -  

base.  P a r a m e t e r s  (1, p) def ines  a v i r t u a l  r e f e rence  po in t  

P~. 
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F i g u r e  2: A ear-like robot configuration 

After some derivations, the linear approximation (20) of 
t he  ea r - l ike  r o b o t  is o b t a i n e d  as 

;~ = V a l l (Td 'vd ' cod)  al2(Td, Ud, cod)] 
L a m ( ~ d ,  Vd,  cod) a22(Td,, ,d:Wd) 

w i t h  

a l l  

4 1 2  

(I,21 =:  

a 2 2  

(21) 

2l s in  2 74 - a cos  (P74 - 2 7 4 )  + a cos  (PTd) 
',~4 a~ (cos  (PT~ - 27~) + ~os~'~) 

plcva sin (274) 
4 

a (cos (pV4 - 2Z~) + cos ~4) 

2vapl sin 2 7d + 2vda COS (PTd) + p21awa sin (27d) 

o.; (c,,s (p74 - 2~4) + c,,s w )  

2 r ' d  l a  c o s  ( p ~ ' d  - -  2 7 d )  - -  l 2 s i n  2 7 d  - -  a 2  - -  l a  c o s  ( P 7 4 )  

pZa2 (~,,s (p~'4 - 2~4) + c , , s ~ 4 )  

as in  (pya) + a sin (p~d - 2%~) - I sin (274) 
~4 a (cos (P~d - 2 ~ )  + cos,d) 

a cos (Pfd -- 27d) -- 21 sin 2 7d 

"'~ a~ (cos (p~4 - 2~'~) + cns w )  

2a + / ( 2  + p) cos (PTd) 
- , , 4  pla (cos (m'4 -- 2~4) + cos ~4) 

~dPasin  (p~d) + pas in  (pTd -- 27d) -- pl sin (274) 
a (c,)s (pT~ - 2 ~ )  ~ cos 7d) 

This  l inear approx imat ion  has 5 paramete rs  (Td, "d, ~d, l, p). 
It is so complex tha t  its eigenvalues analyt ic  studies are, in 
general,  difficult, if not  impossible.  However, in some special 
cases, eigenvalues analysis can offer more  insights. One  such 
case is given by se t t ing  p = l as [0 1] 

A(74, Vd) = v d  _ 1 1 ~ i 
l cos "7,./ l cos "Yd a 

+ ~  sin 74 ('va t an  7d + awd) _11 

3 2 7 7  

its eigenvalues at  every fiozen (~d, 04) are 

7)d "04 
A1 -- A2 - (22) 

a 1 cos 5'a 

and bo th  of them are negat ive if vd, 1 > 0 and 1741 < 7r/2. 
Applying  Theorem l ,  we conclude tha t  the s table lull s ta te  
trackhag of a car-like robot  to a feasible t r a j ec to ry  (17d] < 
7r/2, Vd, Wd, 'Ud are uniformly bounded)  tha t  moves fbrwards 
(vd > 0) can be achieved by choosing ou tpu t  funct ion such 
tha t  the vir tual  reference point  P ,  is in fi'ont of the  fi'ont 
wheel axle (l > 0) in the s teer ing direct ion (p - l ) .  

va = -15 m/s 90 
%= .20~20/s 1 2 ~ 0  
~0= ~/3 / \ I / \ 

0 

240 ~ _ , _ _ q - ~ @ o  
270 

(a) High speed 

vd = -1 m/s 90 

yo.= z /3  
z /3  

1 8 ~ 0 0  

24o "----_Lq. ~2o0 
27O 

(b) Low speed 

F i g u r e  3: B a c k w a r d  m o v i n g  s t a b l e  se ts  

To flarther invest igate  ttle s table thll s ta te  t racking prob lem 
of a car-like robot  to a feasible t r a j ec to ry  t h a t  moves back- 
wards (va < 0), eigenvalues analysis faces l imita t ion.  Here, 
we use numerical  search to explore the  sets of  five design pa- 
rameters  (Vd, wa, 7d, l, p) tha t  ensure the  full s ta te  t racking 
stability'. In Figure 3, the shaded areas are the  sets of loca- 
tions of the vi r tual  reference points  (l < - a  and p < 0) tha t  
are able to ensure the stable tull s ta te  t racking  at  different 
set t ing of (~d,&d, '/)d)- Figm'e 3 shows tha t  lower velocities 
or higher s teering rates come with  smaller  pa ramete r  val- 
ues of p. Note tha t  such sets of v i r tual  referem:e points  are 
open sets and the boumtar ies  do not  guaran tee  the lull s ta te  
t racking stability. 

The  above analyses offer appl icable  sufficient condi t ions  for 
the full s ta te  t racking of the car-like robot:  (a) se t t ing  1 > 0 
and p = 1 when Vd > 0; (b) se t t ing  I < - a  and Pv. < P < 0 
with p ,  de te rmined  by the  behavior  of the desired t ra jec tory ,  



i .e . ,  wi th  des i red  s t ee r ing  r a t e  inc reas ing  and  des i red  veloci ty  
decreasing,  Pu t e n d s  to zero. 

5 S i m u l a t i o n  r e s u l t s  

In the  s imu la t i on  s tudy,  the  des i red  t r a j e c t o r y  consis ts  of 
th ree  s t r a igh t  l ines a n d  two curves.  T h e  first  curve  is de- 
s igned w i th  a m a x i m u m  c u r v a t u r e  k , , , ,  = 0.5238 a n d  a 
m a x i n m m  c u r v a t u r e  change  r a t e  ]kma.x = 0.6864. T h e  second 
curve  has  a h igher  m a x i m u m  c u r v a t u r e  k~.a,~ = 0.8479 and  
a m u c h  h igher  c u r v a t u r e  change  r a t e  k . . . .  = 1.7599. [n the  
fl)llowing, we use a s imple  i n p u t - o u t p u t  feedback l inear iza-  
t ion  cont ro l  law to veri(y t he  analyses  in the  las t  sect ion.  

In the  first  case, the  car-l ike r o b o t  is expec t ed  to move  for- 
ward  wi th  the  des i red  veloci ty  of va = 2m/sec .  T h e  v i r tua l  
reference point is chosen  at  P0 = (l,p) = (0.5a, 1). Based  
on T h e o r e m  1, the  l inear  a p p r o x i m a t i o n  (21) of the  t r ack ing  
er ror  zero d y n a m i c s  is a sympto t i ca l l y  s tab le  a n d  so is the  
r o b o t  t racking.  T h e  s imu la t i on  resul t ,  as s h o w n  in F igure  
4, conf i rms t h a t  t he  vehicle follows the  des i red  t r a j e c t o r y  

t h r o u g h  out .  

I l I 
l = O..~a 

10 - -  v = 2  

8 - -  

IF 

- ~_~ 

i 

T ,  
6 8 1'0 1'2 14 1'6 1'8 

t I 
- -  1 = - I . . ~  

v = . Z  
p = -o .2  

I 

0 2 4 6 8 10 12 14 16 

(a)  p = - o . 2  

][Y ~ = . 1 .2a  

2 v = .  

8 P = -0,1 

• s s i0 i2 14 1C 

(b) p = - 0 . 1  

F i g u r e  5:  L 0 o k - b e h i n d  t r a c k i n g  

offer a general  app roach  for analys is  us ing  l inear  a p p r o x i m a -  
t ions.  T h e  de ta i l  i nves t iga t ion  of a ear- l ike  mobi l e  r o b o t  
ind ica tes  t h a t  sufficient cond i t ion  for s t ab l e  t r a ck ing  can  be  
i m p l e m e n t e d  by a d j u s t i n g  p a r a m e t e r s  in the  o u t p u t  func- 

t ion.  

F i g u r e  4 :  L o o k - a h e a d  t r a c k i n g  

In t h e  second  case, t he  car-l ike r o b o t  is t u r n e d  a r o u n d  
a n d  e x p e c t e d  to move  b a c k w a r d s  to t rack  the  same  t r a -  
j ec to ry  w i th  t he  des i red  veloci ty of Vd = - -2m/see .  T h e  
v i r tua l  reference po in t  is chosen  at, two different  loca t ions  
/'1 = ( l ,p)  = ( - 1 . 2 < - 0 . 2 )  and  P~ = (1,p) = ( - 1 . 2 a , - 0 . 1 ) .  
Based  on Figure  3, [a2 is ch)ser to the  vet!icle s y m m e t r i c  axis 
l ine a n d  ab le  to  h a n d l e  more  difficult  maneuve r s ,  such ms 
the  se(:ond cmve ,  which  ha s  a h igher  m a x i m u m  c u r v a t u r e  
change  rate.  T h e  s i m u l a t i o n  resul ts ,  as shown  in F igure  5, 
show t h a t ,  w i th  p = - 0 . 2 ,  the  robo t  fails to t rack  the  desired 
t r a j e c t o r y  at  t he  second  curve,  a n d  t h a t ,  w i th  p = - 0 . 1 ,  the  
r o b o t  succeeds  in t r a c k i n g  t he  comple t e  desi red t ra jec tory .  
Ore" i n tu i t i on  a n d  exper i ence  verify" t h a t  d r iv ing  a car  back-  
wards  w i th  h ighe r  s t ee r ing  ra t e s  will cause  difficulties and  
even ins tabi l i ty .  

6 C o n c l u s i o n  

Thi s  p a p e r  ana lyze  t he  s t ab l e  full s t a t e  t r ack ing  p rob lem 
of n o n h o l o n o m i c  wheeled  mobi le  robo t s  u n d e r  cont ro l  laws 
based  on  t he  i n p u t - o u t p u t  dynamics .  It  is shown  t h a t  t he  
t r ack ing  er ror  i n t e rna l  d y n a m i c s  and  zero d y n a m i c s  play a 
cr i t ical  role of t he  full s t a t e  t r ack ing  s tab i l i ty  of such  mobi le  
robots .  Sufficient  cond i t ions  for t he  s t ab l e  flfll s t a t e  t r ack ing  

3 2 7 8  
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