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Design and Experiments of Anticipatory Learning
Control: Frequency-Domain Approach

Danwei Wang, Member, IEEE, and Yongqiang Ye

Abstract—A frequency-domain design is presented for the an-
ticipatory learning control. Convergence conditions are derived in
terms of two design parameters, the lead-time and the learning
gain. For minimum phase systems, the design of the anticipatory
learning control in the frequency domain is decoupled into a two-
step procedure. The design is robust against uncertainties in system
modeling. The effectiveness of the anticipatory learning control is
demonstrated by an example and experiments. Comparisons of the
anticipatory learning control with the conventional P-type, D-type,
and PD-type learning control highlight the differences between
these close yet distinctive approaches.

Index Terms—Anticipatory learning control, design, frequency-
domain, iterative learning control (ILC).

I. INTRODUCTION

THE FIRST academic paper to the idea of iterative learn-
ing control (ILC) is by Uchiyama [1] published in 1978.

Because it was published in a Japanese journal, this paper did
not arouse wide attentions. It was not until 1984 that a research
area of ILC was formed. In 1984, Arimoto et al. [2], Casalino
and Bartonili [3], and Craig [4] simultaneously and indepen-
dently published papers about a method that could iteratively
compensate for model errors and disturbances. One paper worth
mention is [5], which is also a very early work. Since then, a
large amount of research results have been published and many
sophisticated ILC laws have been proposed. However, ILC is
a relatively new area and it is yet to be fully understood. Re-
cent papers [6], [7] reexamine the basic approaches and propose
some new ILC laws that are simple in form but new in concept.
In [2], [8], the input update utilizes the derivative signals of the

previous error signal and the learning law is termed D-type ILC.
In D-type ILC, tracking error differentiation is needed, which
may bring in noise. Another class of learning control, P-type ILC
[9]–[12], requires only measurements of state variables, which
are normally available and less noisy but have no anticipatory
information of tracking error. Another, a scheme in between
P-type and D-type is a fractional order ILC law in which the
fractional order derivative (with transfer function sα) of tracking
error is employed—“Dα-type” where α ∈ (0, 1] [6]. In [6], the
necessity of phase lead to compromise or dilute the low pass
characteristics of the plant is highlighted through convergence
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analysis on P-type, D-type, andDα-type ILCs in the frequency-
domain. It is pointed out that D-type ILC fulfills the argument
of phase advancement (lead) whereas P-type does not.
Recently, an anticipatory learning scheme (A-type) was pro-

posed in [7] based on the fact that an input u(t) at time t to a
dynamic system is causally paired with its output y(t+∆) at
time t+∆. Its discrete-time counterpart is the linear phase lead
learning control [13]–[16]. It is a simple ILC that uses tracking
error with a lead-time � as follows:

uj(t) = uj−1(t) + L(ej−1(t+�)). (1)

A-type ILC has the anticipative nature and requires only posi-
tion measurements that have low noise levels. In [7], tracking
error convergence results are established in the time domain,
with convergence proofs, under the presence of uncertainties,
disturbances, and measurement noise. In this paper, we address
the frequency-domain analysis and design of A-type ILC. Con-
vergence conditions are derived in the frequency-domain and the
design procedure is explicitly outlined. Applications to robotic
manipulators are studied and experimental results are presented
to support the theory and illustrate the effectiveness of the pro-
posed scheme. Furthermore, P, D, PD, and A-type ILCs are
compared in the frequency-domain designs and in the experi-
mental results.

II. CONVERGENCE ANALYSIS

Consider a system modeled by a Single-input Single-output
continuous time invariant linear state space equation{

ẋ(t) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)
(2)

where x is a n-dimensional state vector, u is scalar input, and y
is scalar output;w and v represent deterministic state and output
disturbances, respectively, that appear every repetition. This dy-
namics can represent a plant with or without feedback control.
The Laplace transform of the output for the jth repetition is

Yj(s) = Gp(s)Uj(s) + C(sI −A)−1x(0)

+C(sI −A)−1W (s) + V (s) (3)

where Gp(s) = C(sI −A)−1B is the input–output transfer
function and x(0) is the initial state position that is assumed
to be the same for each repetition. The tracking error of the jth
repetition isEj(s) = Yd(s)− Yj(s), whereYd(s) is the Laplace
transform of a desired output yd(t) defined over a finite time in-
terval [0, T ]. Consider the A-type learning compensator in (1)
chosen in a simple linear form

uj(t) = uj−1(t) + kej−1(t+�) (4)
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where � > 0 is the lead time and k > 0 is the learning gain. A
Laplace transform of this linear A-type learning controller is

Uj(s) = Uj−1(s) + ke�sEj−1(s). (5)

Using (3) and (5), we get

Yj(s)− Yj−1(s) = Gp(s)[Uj(s)− Uj−1(s)]

= ke�sGp(s)Ej−1(s).

On the other hand

Yj(s)− Yj−1(s) = −[Ej(s)− Ej−1(s)].

Thus

Ej(s) = [1− ke�sGp(s)]Ej−1(s). (6)

Similar to [6], [13], [17]–[19], the condition for the tracking
error frequency components to converge is given by

|1− kej�ωGp(jω)| < 1. (7)

The frequency-domain convergence condition is a sufficient
condition for convergence though learning control is a finite
time problem [20].
The frequency response can be expressed as Gp(jω) =

Np(ω) exp(jθp(ω)) with Np(ω) and θp(ω) being its magni-
tude characteristics and phase characteristics, respectively. The
convergence condition (7) becomes∣∣∣1− kNp(ω)ej(θp (ω)+�ω)

∣∣∣ < 1. (8)

Or, equivalently

|1− kNp(ω) cos(θp(ω) +�ω)
− jkNp(ω) sin(θp(ω) +�ω)| < 1.

Using the norm definition and taking the square on both sides,
the above inequality is equivalent to

k2Np(ω) < 2k cos(θp(ω) +�ω). (9)

We summarize the above development into the following
theorem.
Theorem: Consider the ILC system with dynamics (2) and

an A-type learning controller (4). A sufficient condition for
tracking error convergence is that the lead time � > 0 and the
learning gain k > 0 are chosen so that the following inequality
holds, for all ω ∈ [0,+∞),

kNp(ω) < 2 cos(θp(ω) +�ω). (10)

Remark 1: For (10) to hold, it is necessary that, for all ω ∈
[0,+∞),

|θp(ω) +�ω| < 90◦. (11)

Formost systems, these two conditions cannot be guaranteed for
all frequencies ω ∈ [0,+∞). The frequency range within which
the convergence conditions hold is termed the learnable band.
We cut off the frequencies outside the learnable band to prevent
the bad learning transient [13]. Thus, the wider the learnable
bandwidth, the more precise the tracking of the actual output to
the desired output.

Remark 2: The convergence analysis for general ILC laws
can be found in [19] and [21], etc., whereas in our paper, the
analysis is on the specific A-type law and concrete design proce-
dures are outlined and parameter selection criteria are given. The
aim of our paper is to provide an engineering design procedure
or a guideline for self-tuning for A-type ILCs.

III. DESIGN OF A-TYPE ILCS

Note that (11) involves only one design parameter� and (10)
involves both parameters� and k. Thus the lead-time�will be
chosen first based on (11) and the learning gain k can be chosen
then based on (10). In the meantime, selections of these two
parameters should secure the best learnable bandwidth ωlbw as
much as possible.

A. Lead-Time Selection

Rewrite the system model as, n > m

Gp(s) =
bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0 .

If it is a minimum phase process, the phase characteristics
θp(ω) are bounded and approach−(n−m)× 90◦ asω → ∞. If
(n−m) ≥ 2 and as ω → ∞, condition (11) cannot be satisfied
for all frequencies and will be violated after the frequency ω̄ at
which |θp(ω̄) +�ω̄| = 90◦. This frequency ω̄ is a function of
the lead-time�. The lead-time� should be chosen tomaximize
the frequency ω̄ subject to |θp(ω) +�ω| < 90◦, i.e.,

max
�

{ω̄ : |θp(ω) +�ω| < 90◦,∀ω < ω̄}. (12)

B. Gain Selection

With the selected lead-time �, the learning gain k should be
chosen to satisfy condition (10) and to maximize the learnable
bandwidth ωlbw. The right side, 2 cos(θp(ω) +�ω), of condi-
tion (10) is fixed with a chosen � and approaches zero as ω
increases toward ω̄.

The left side, kNp(ω), also approaches zero as ω → ∞. The
learning gain k should be chosen such that the curve for kNp(ω)
is below the curve for 2 cos(θp(ω) +�ω) and the crossing
of these two curves is close to the frequency ω̄ as much as
possible.

C. Robustness in Design

In general, the systemmodelGp(s) contains uncertainties and
these uncertaintieswill introduce an uncertainty in the frequency
at which the plant phase crosses the −90◦ bound. The design
parameters∆ and k have to be chosen under this consideration.
One simple solution is to modify condition (11) as

|θp(ω) +�ω| ≤ 90◦ − ε (13)

for a positive constant ε > 0. The value of ε reflects themodeling
uncertainties. The other effects of this remedy are a smaller ω̄
and a larger k.
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Fig. 1. Robot control system.

Fig. 2. Lead-time selection for joint 3.

For these two design parameters, [14] and [16] develop self-
tuning laws to tune them empirically for convergence or better
convergence. The contribution of our design procedure is that
it decouples the design of the lead time and the learning gain.
Robustness is also explicitly considered. Moreover, the design
results can serve as a guideline for self-tuning.

IV. APPLICATION TO ROBOT MANIPULATORS

Joints 2 and 3 of an industrial robot, SeikoTT3000 (a selective
compliant assembly robot arm [SCARA] type) as in Fig. 1,
control two links moving in a horizontal plane. Joints 2 and 3
are first stabilized by decentralized feedback P controllers with
kp2 = kp3 = 0.1. Learning control is applied to the closed-loop
systems independently. The closed-loop transfer functions of

joints 2 and 3 can be approximated as{
Gp2(s) = 416

s2+17.6s+416 Joint 2

Gp3(s) = 948
s2+42s+948 Joint 3.

(14)

A. Learning Control Design

For conciseness, we only describe the design procedure for
joint 3. The design procedure for joint 2 is similar and is thus
omitted.
We choose the robustness threshold ε = 10◦ in (13).

Fig. 2 shows θp(ω) +�ω for various values of the lead time,
� = 0 ∼ 0.04 s. When� = 0 s (corresponding to P-type ILC),
θp(ω) is negative, crosses the lower limit−80◦ at the frequency
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Fig. 3. Learning gain selection for joint 3.

4.2 Hz, and approaches −180◦ at high frequency. When the
lead-time � > 0, θp(ω) +�ω first decreases and is negative
and then increases due to the increasing compensation effect
of �ω as ω increases. The curve corresponding to � = 0.01 s
has a dip below the lower limit −80◦, and thus (13) is violated
at a low frequency around 5.5 Hz. For the cases � = 0.02 s,
0.03 s, and 0.04 s, the dips are above the lower limit −80◦ and
all curves cross the upper limit+80◦. But� = 0.02 s offers the
highest crossing frequency. Thus lead-time � = 0.02 s is cho-
sen because it offers the highest frequency ω̄ among the tested
lead-time values.
Fig. 3 plots 2 cos(θp(ω) +�ω) with � = 0.02 s. Note it

has one local minimum at about ω1 = 7 Hz before the curve
decreases to zero for the first time at about 19 Hz. The learning
gain k is chosen as 0.5 such that kNp(ω) is well below the
local minimum. The learnable bandwidth frequency ωlbw is the
frequency at which 2 cos(θp(ω) +�ω) crosses kNp(ω), and it
is about 36 Hz. Similarly, � = 0.03 s is selected for joint 2.
Then the learning gain is set as k = 0.5 (Fig. 4).

B. Comparison of D-, P-, PD-, and A-Type ILCs

In this section, we will compare A-type with D-, P-, and
PD-type laws and this may help to reveal other advanced ILC
approaches based on these fundamental laws. D-type and P-
type ILCs have been studied extensively in the literature and a
comparison can be found in [7]. An A-type ILC is different from
a P-type ILC because an A-type ILC has additional features
offered by the lead-time �. However, a P-type ILC can be
viewed as a limiting case of an A-type ILC as � → 0

uj(t) = uj−1(t) + kej−1(t) (15)

and its convergence condition is

|1− kGp(jω)| < 1. (16)

A D-type ILC is known as

uj(t) = uj−1(t) + kėj−1(t) (17)

and its convergence condition can be shown as

|1− kjωGp(jω)| < 1. (18)

A PD-type ILC is

uj(t) = uj−1(t) + kdėj−1(t) + kpej−1(t). (19)

Its convergence condition is

|1− (kdjω + kp)Gp(jω)| < 1. (20)

We have

e�s = 1 +�s+ �2s2

2!
+ · · ·. (21)

If ignoring higher order terms starting from�2s2/2!, an A-type
ILC is similar to a PD-type ILC at low frequency. But an A-type
ILC needs no error differentiation.
We will examine the convergence conditions of joint 3 for

an A-type ILC [with � = 0.02 s and k = 0.5 in (4)], P-type
ILC [with k = 0.5 and � = 0 s in (4)], D-type ILC [with k =
0.5× 0.02 = 0.01 in (17)] and PD-type ILC [with kd = 0.01
and kp = 0.5 in (19), noting that e0.02s ≈ 1 + 0.02s]. Fig. 5
shows the convergence conditions for joints 3, i.e., the curves
of |1− kej�ωGp(jω)| [for A-type ILC (7)], |1− kjωGp(jω)|
[for D-type ILC (18)], |1− kGp(jω)| [for P-type ILC (7) with
� = 0] and |1− (kdjω + kp)Gp(jω)| [for PD-type ILC (20)],
respectively. The convergence conditions are satisfied for the
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Fig. 4. A-type learning control design for joint 2.

Fig. 5. Convergence conditions for A-, D-, P-, and PD-type ILCs, joint 3.

range in which the curves are between the limits of 0 and 1.
It can be seen that the estimated learnable bands of A-type,
D-type, P-type, and PD-type learning controllers are [0–36)
Hz, (0–50) Hz, [0–4.2) Hz, and [0–8.4) Hz, respectively (the
highest frequency being considered is 50 Hz). It seems that a
D-type ILC can learn the whole frequency band. For a second-

order plant, this may be true. But for a plant whose order is
more than two, even if the learning gain of a D-type ILC is
approaching 0, the highest learnable frequency cannot exceed
the limit at which the phase characteristics of the plant are
−180◦. Also note that a D-type ILC cannot learn dc components
and its convergence rate is poor at both low frequency and
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Fig. 6. Convergence conditions for A-, D-, P-, and PD-type ILCs, joint 2.

Fig. 7. Desired trajectories.

high frequency. Clearly, A-type offers a wide enough learning
bandwidth. Fig. 6 shows the convergence conditions for joints 2
(A-type is with learning gain k = 0.5 and lead-time� = 0.03 s.
P-type is with learning gain k = 0.5. D-type is with learning
gain k = 0.015. PD-type is with learning gains kp = 0.5 and
kd = 0.015).

C. Experimental Results

The desired trajectories for the two joints are shown in
Fig. 7. The desired trajectories both have sharp returns and
contain more frequency components than a smooth curve. The
sampling rate is 100 Hz. Cutoff is realized by discrete Fourier
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Fig. 8. RMS error histories of joint 2.

Fig. 9. RMS error histories of joint 3.

transform and inverse discrete Fourier transform (DFT/IDFT)
with no end-extension.
A-type, D-type, P-type, and PD-type ILCs are performed on

the two joints concurrently, using the learning gain and lead-time
designs associated with Figs. 5 and 6. But the cutoff frequencies
need to be tuned in the experiments until the behavior of first
convergence followed by slow divergence never happens. For

joint 2, the tuning results of cutoff frequency are 13 Hz for A-
type, 11 Hz for D-type, 3 Hz for P-type, and 6 Hz for PD-type.
For joint 3, the tuning results of cutoff frequency are 30 Hz for
A-type, 11 Hz for D-type, 4 Hz for P-type, and 1 Hz for PD-
type. Figs. 8 and 9 compare the root mean square error histories
of 200 repetitions of A-type, D-type, P-type, and PD-type ILCs
of two joints. A few different gains of other ILCs are used for
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Fig. 10. RMS error histories of joint 2, other learning gains.

Fig. 11. RMS error histories of joint 3, other learning gains.

comparison with the above-designed A-type approach, Figs. 10
and 11, with the learning gains and cutoff frequencies indicated.

V. CONCLUSION

In the frequency domain, the anticipatory learning control
features phase-lead characteristics and compensates phase-lag

characteristics of a process. A decoupled two-step design proce-
dure offers insight into the choice of the control parameters (the
lead time, the learning gain, and the cutoff frequency) and facil-
itates the tuning of these parameters in experiments. Compared
to a P-type, the lead time in an A-type ILC widens the learnable
band substantially. Though a PD-type ILC has a similar phase-
lead compensation effect as an A-type in low frequency range,



WANG AND YE: DESIGN AND EXPERIMENTS OF ANTICIPATORY LEARNING CONTROL: FREQUENCY-DOMAIN APPROACH 313

an A-type ILC needs no error differentiation. A robotic example
demonstrates the design procedure and the experimental results
successfully verify the theory.
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