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Initial Shift Issues on Discrete-Time Iterative Learning
Control With System Relative Degree

Mingxuan Sun and Danwei Wang

Abstract—This note deals with the initial shift problem that arises from
discrete-time iterative learning control. A unified learning scheme is con-
sidered for a class of nonlinear systems with well-defined relative degree,
which adopts the error data with anticipation in time and provides wider
freedom for the updating law formation. The sufficient convergence con-
dition is derived to enable the system to possess asymptotic tracking ca-
pability and the converged output trajectory can be assessed by the initial
condition. The tracking performance is improved further by the introduc-
tion of initial rectifying action and the complete tracking is achieved over a
specified interval.

Index Terms—Discrete-time, initial condition problem, learning control,
nonlinear systems, relative degree.

I. INTRODUCTION

Iterative learning control overcomes imperfect knowledge about the
dynamics structure and/or parameters to achieve the complete tracking
through repetition [1]. For execution, the system is moved to an ini-
tial position. Then it starts, runs, stops, and resets to the same initial
position. In the published literature, the developed learning schemes
for nonlinear discrete-time systems use measurable state variables [2],
two-step successive error difference [3] or multi-step error data [4].
In [5]–[7], only the output error is required. Analyses for the conver-
gence and robustness have been presented with the aid of discrete-time
�-norm [3]–[6] and by the analysis technique without applying such a
norm [2], [7]. These theoretical results are restricted to the requirement
for convergence that the initial condition at each cycle should be reset to
the initial condition corresponding to the desired trajectory. In the prac-
tical implementation, perturbed initial conditions would degrade the
tracking performance which motivates researchers to consider the case
where the system does not reset the initial condition at each cycle to the
desired one. Instead, there exist initial shifts. This study is inherent to
improve the tracking performance and is, thus, meaningful in itself [8].
Several researchers addressed themselves to the initial shift problem for
linear time-invariant (LTI) systems [9] and nonlinear continuous-time
systems [10]–[12]. Very recently, there is certain interest in the same
problem for discrete-time systems. In [13], one adjustment scheme of
initial state was proposed where the repositioning mechanism is needed
to reset the initial state at each cycle to the resultant one by the scheme.
The technique of suitably reducing sampling rate, presented in [14],
was shown effective to achieve better tracking. The result, however, is
restricted to LTI systems. In [15], the complete tracking was achieved
over a specified interval by the learning scheme using only output error
at each cycle.

In this note, the initial shift problem arisen from the iterative learning
control for a class of nonlinear discrete-time systems with well-defined
relative degree is addressed. The learning scheme adopts the output er-
rors with anticipation in time and provides wider freedom for the up-
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dating law formation in a unified manner, which was primarily studied
in [4] and its higher order version was considered in [16]. The learning
scheme undertaken will be shown robust with respect to initial shifts by
the developed analysis approach, which enables the systems to possess
asymptotic tracking capability and the converged output trajectory can
be assessed by the initial condition. The tracking performance is shown
to be improved by the introduction of initial rectifying action so that the
complete tracking with specified transient is achieved.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the class of nonlinear discrete-time systems described by

x(t+ 1) =f(x(t); u(t)) (1)

y(t) =g(x(t)) (2)

wheret is the discrete-time index,x 2 Rn, u 2 R1, andy 2 R1

denote the state, the scalar control input, and the scalar output of the
system, respectively. The nonlinear functionsf(�; �) 2 Rn andg(�) 2
R1 are smooth in their domain of definition, which are known about
certain properties only. The iterative learning control problem will be
handled in terms of system relative degree. Thus, the following nota-
tions and definition for relative degree are introduced. Similar concepts
of the relative degree of nonlinear discrete-time systems can be found
in [17] and [18]. Let �f(x) be the undriven state dynamicsf(x; 0) and
�f j thej-times recursive compositions of�f in the sense that�f j(x) =
f( �f j�1(x)) with �f0(x) = x.

Definition 2.1: Systems (1) and (2) are said to have relative degree
� at (x0; u0), if

i) (@=@u) g � �f j(f(x; u)) = 0, 0 � j � ��2 and for all(x; u)
in a neighborhood of(x0; u0);

ii) (@=@u) g � �f��1(f(x0; u0)) 6= 0.

Remark 2.1: The system output at the instantt + j, j � 1 is, in
general, written as

y(t+ j) = g(f(. . . ; f(f(x(t); u(t)); u(t+ 1)); . . .); u(t+ j � 1)):
(3)

If (1) and (2) have relative degree�, the output can be evaluated in the
following simple form:

y(t+ j) =g � �f j(x(t)); 1 � j � �� 1 (4)

y(t+ �) =g � �f��1(f(x(t); u(t))) (5)

which implies that� is exactly the steps of delay in the outputy(t) in
order to have the control inputu(t) appearing. Equation (4) still holds
for j = 0. The outputy(t+ j), 0 � j � �� 1, is thus independent of
the input variables at the instantt, uk(t).

Given a desired trajectoryyd(t), 0 � t � N +�, for system (1) and
(2) with relative degree�, the control objective is to find an input profile
u(t), 0 � t � N , so that the resultant output trajectoryy(t), 0 �
t � N + �, follows the desired trajectory as closely as possible in the
presence of initial shifts. Throughout this note, by the terminitial shift
we mean the initial condition which may be reset to some finite point in
the state space, shifting from the initial condition corresponding to the
desired trajectory. LetS denote the mapping from(x(0); u(t); 0 � t �
N) tox(t), 0 � t � N +1, andO the mapping from(x(0); u(t);0 �
t � N) to y(t), 0 � t � N + �. We denote byjaj the absolute
value ofa if a is a scalar or the normjaj = max1�i�n jaij if a is
ann-dimensional vector,a = [a1; . . . ; an]

T . The following properties
for (1) and (2) are assumed.

A1) The mappingsS andO are one to one.
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A2) The system has relative degree� for x(t) andu(t), 0 � t �
N .

A3) The functionsf(�; �) and g(�) are Lipschitz in their argu-
ments, i.e., there exist positive constantslf and lg such that
jf(x0; u0) � f(x00; u00)j � lf(jx

0 � x00j + ju0 � u00j) and
jg(x0)� g(x00)j � lgjx

0 � x00j for all x0(t), x00(t), u0(t) and
u00(t), 0 � t � N .

A4) The function(@=@u) g � �f��1(f(�; �)) is bounded for all
x(t) andu(t), 0 � t � N .

A5) Initial shifts exist at each cycle in the sense thatjx0�xk(0)j �
cx for any fixedx0 and some positive constantcx .

Remark 2.2: Note the fact thata � b(�) is Lipschitz ifa(�) andb(�)
are Lipschitz in their arguments. Assumption A3) implies thatg� �f j(�),
0 � j � � � 1, is Lipschitz inx. That is, there exists some positive
constantlgf such thatjg � �f j(x0)� g � �f j(x00)j � lgf jx

0 � x00j.

III. M AIN RESULTS

A. Asymptotic Tracking

The updating law undertaken is

uk+1(t) = uk(t) + 
k(t)

�

j=0

aj(yd(t+ j)� yk(t+ j)) (6)

where0 � t � N , k indicates the number of operation cycle,
k(t) 2
R1 represents the learning gain chosen to be bounded andaj , 0 �
j � �, are the design parameters. Here, we assume thata� = 1. This
learning scheme is in a unified form, which provides wider freedom for
the updating law formation by the choice ofaj , 0 � j � � � 1. The
robust designs for numerical differentiation could be used to calculate
the term �

j=0
aj(yd(t+ j)� yk(t+ j)). Other available designs are

those for predictive filters. We shall show that the learning scheme leads
to the trajectory specified by the initial condition, which can follow the
desired trajectory asymptotically as time increases.

Theorem 3.1:Let (1) and (2) satisfy assumptions A1)–A5) and up-
dating law (6) be applied. If the learning gain is chosen such that for
all k and0 � t � N , for all xk(t) 2 Rn, for all �uk(t) 2 R

1� 
k(t)
@

@u
g � �f��1(f(xk(t); �uk(t)) � � < 1 (7)

and the trajectoryy�(t) is realizable, wherey�(t) is given by

y�(t) = yd(t)� e�(t) (8)

ande�(t) satisfies the following difference equation:

�

j=0

aje
�(t+ j) = 0 (9)

with e�(0) = g(xd(0))�g(x0),e�(1) = g� �f(xd(0))�g� �f(x0); . . .,
ande�(�� 1) = g � �f��1(xd(0))� g � �f��1(x0), then asymptotic
bound of the errory�(t) � yk(t) is proportional tocx for � � t �
N + � ask ! 1. Furthermore, the error converges to zero for� �
t � N + � whenevercx tends to zero.

Remark 3.1: Clearly, for an appropriatex0 and a realizable trajec-
tory y�(t), assumption A1) guarantees that there exists a unique con-
trol input u�(t) that will generate the trajectory. Namely,y�(t) =
g(x�(t)), wherex�(t) is the corresponding state satisfyingx�(t+1) =
f(x�(t); u�(t)) andx�(0) = x0.

Proof of Theorem 3.1:In view of y�(t) defined in (8) and (9),
updating law (6) can be written as

uk+1(t) = uk(t) + 
k(t)

�

j=0

aj(y
�(t+ j)� yk(t+ j))

which leads to, denoting�u�k(t) = u�(t)� uk(t)

�u�k+1(t) =�u�k(t)� 
k(t)

�

��1

j=0

aj g � �f j(x�(t))� g � �f j(xk(t))

� 
k(t) g � �f��1(f(x�(t); u�(t)))

�g � �f��1(f(xk(t); uk(t))) :

By the mean value theorem, there exists�uk(t) = �u�(t)+(1��)uk(t),
� 2 [0; 1], such that

g � �f��1(f(xk(t); u
�(t)))� g � �f��1(f(xk(t); uk(t)))

=
@

@u
g � �f��1(f(xk(t); �uk(t))) �u�k(t)

which results in

�u�k+1(t) = 1� 
k(t)
@

@u
g � �f��1(f(xk(t); �uk(t)))

��u�k(t)� 
k(t)

�

��1

j=0

aj g � �f j(x�(t))� g � �f(xk(t))

� 
k(t) g � �f��1(f(x�(t); u�(t)))

�g � �f��1(f(xk(t); u
�(t))) :

Taking norms on both sides and using assumption A3) yields

j�u�k+1(t)j ��j�u�k(t)j+ c


�

��1

j=0

jaj jlgf j�x�k(t)j+ c
 lgf lf j�x�k(t)j

��j�u�k(t)j+ c1j�x�k(t)j (10)

where�x�k(t) = x�(t) � xk(t), c
 is the norm bound for
k(t) and
c1 = maxflf ;

��1
j=0

jaj jgc
 lgf .
To proceed,�x�k(t) in (10) is written as, for1 � t � N + 1

�x�k(t) = f(x�(t� 1); u�(t� 1))� f(xk(t� 1); uk(t� 1)):

Taking norms on both sides gives

j�x�k(t)j � lf(j�x�k(t� 1)j+ j�u�k(t� 1)j); 1 � t � N + 1

which leads to

j�x�k(t)j �

t�1

j=0

lt�1�jf j�u�k(j)j+ ltf j�x�k(0)j: (11)

Substituting (11) into (10) and using A5) gives rise to, for1 � t �
N + 1

j�u�k+1(t)j � �j�u�k(t)j+ c2

t�1

j=0

j�u�k(j)j+ c2cx (12)

wherec2 = c1$, and$ = max 1; lf ; . . . ; l
N
f . The control input

errors can be evaluated based on induction under the condition� < 1.
Define# = max0�t�N fj�u�0(t)jg, � = (c2=1� �)cx and� =
(c2=1� �)+1. For the first instantt = 0, substitutingt = 0 into (10)
produces

j�u�k(0)j �j�u�0(0)j+
c2

1� �
cx � #+ �; k � 1

lim sup
k!1

j�u�k(0)j �
c2

1� �
cx = �:



146 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 1, JANUARY 2003

For the second instantt = 1, substitutingt = 1 into (12) produces

j�u
�

k(1)j �j�u
�

0(1)j+
c2

1� �
(#+ �)

+
c2

1� �
cx � (#+ �)�; k � 1

lim sup
k!1

j�u
�

k(1)j �
c2

1� �
�+

c2

1� �
cx = ��:

Now, assume the validity for the instantt = i � 1

j�u
�

k(i� 1)j �(#+ �)�i�1
; k � 1

lim sup
k!1

j�u
�

k(i� 1)j ���
i�1

:

We wish to show that the result is true for the instantt = i. From (12)
and the aforementioned inductive hypothesis, we obtain

j�u
�

k(i)j �j�u
�

0(i)j+
c2

1� �

� #+ �+ � � �+ (#+ �)�i�1

+
c2

1� �
cx

�(#+ �)

� 1 + (� � 1)(1 + � + � � �+ �
i�1)

=(#+ �)�i
; k � 1

lim sup
k!1

j�u
�

k(i)j �
c2

1� �
�+ � � �+ ��

i�1 +
c2

1� �
cx

=� 1 + (� � 1)(1 + � + � � �+ �
i�1)

=��
i
:

Therefore, for0 � t � N , we have

j�u
�

k(t)j �(#+ �)�t
; k � 1 (13)

lim sup
k!1

j�u
�

k(t)j ���
t
: (14)

The error�x�k(t), 1 � t � N + 1, can be evaluated from (11). The
result for the errory�(t) � yk(t), � � t � N + �, follows from (5)
and assumption A4). This completes the proof.

Remark 3.2: Control inputuk(t) has no effect on outputsyk(t+j),
0 � j � �� 1. The boundedness ofyk(t), 0 � t � �� 1, is ensured
by the resetting requirement. Namely,jy�(t)�yk(t)j � jg � �f t(x0)�
g � �f t(xk(0))j � lgfcx , 0 � t � � � 1.

Remark 3.3: From (8) and (9), the converged output trajectory de-
pends on the choice of parametersaj , 0 � j � � � 1. Obviously, the
suitable choice of these parameters leads to that the converged output
trajectory to track the desired one asymptotically as time increases.

B. Initial Rectifying Action

Introducing initial rectifying action into (6), the following updating
law is achieved:

uk+1(t) = uk(t) + 
k(t)

�

j=0

aj(yd(t+ j)� yk(t+ j))

�
k(t)

��1

j=0

��1

s=0

�(t+ j � s)aj(yd(s)� yk(s)) (15)

where�(t) is a scalar function defined as

�(t) =
1 t = 0

0 t 6= 0:
(16)

The added term will ensure the convergence of the system output to
the desired trajectory in the sense thatyk(t)! yd(t),� � t � N+�,

ask ! 1. The merging occurs at the momentt = �. The following
theorem presents such a converged output trajectory.

Theorem 3.2:Let system (1) and (2) satisfy assumptions A1)–A5)
and updating law (15) be applied. If the learning gain is chosen such
that (7) holds and the trajectoryy�(t) is realizable, wherey�(t) is given
by

y
�(t) = yd(t)�

��1

j=0

�(t� j)(yd(j)� g � �f j(x0)) (17)

then asymptotic bound of the errory�(t)�yk(t) is proportional tocx
for � � t � N + � ask ! 1. Furthermore, the error converges to
zero for� � t � N + � whenevercx tends to zero.

Remark 3.4: From (17), the converged output trajectory satisfies

y
�(t) =g � �f t(x0); 0 � t � �� 1 (18)

y
�(t) =yd(t); t � �: (19)

Proof of Theorem 3.2:By (16), (18), and (19), the following
equality is satisfied:

�

j=0

aj(yd(t+ j)� y
�(t+ j))

�

��1

j=0

��1

s=0

�(t+ j � s)aj(yd(s)� y
�(s)) = 0:

Thus

uk+1(t) = uk(t) + 
k(t)

�

j=0

aj(y
�(t+ j)� yk(t+ j))

�
k(t)

��1

j=0

��1

s=0

�(t+ j � s)aj(y
�(s)� yk(s))

which implies that

�u
�

k+1(t) =�u
�

k(t)� 
k(t)

� g � �f��1(f(x�(t); u�(t)))

�g � �f��1(f(xk(t); uk(t)))

� 
k(t)

��1

j=0

aj g � �f j(x�(t))� g � �f j(xk(t))

+ 
k(t)

��1

j=0

��1

s=0

�(t+ j � s)aj

� g � �fs(x0)� g � �fs(xk(0)) :

From the mean value theorem, there exists�uk(t) = �u�(t) + (1 �
�)uk(t), � 2 [0; 1], such that

�u
�

k+1(t) = 1� 
k(t)
@

@u
g � �f��1(f(xk(t); �uk(t)))

��u
�

k(t)� 
k(t)

� g � �f��1(f(x�(t); u�(t)))

�g � �f��1(f(xk(t); u
�(t)))

� 
k(t)

��1

j=0

aj g � �f j(x�(t))� g � �f(xk(t))

+ 
k(t)

��1

j=0

��1

s=0

�(t+ j � s)aj

� g � �fs(x0)� g � �fs(xk(0)) :
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Performing the norm operation for both sides of the previous equation
gives rise to

j�u�k+1(t)j �� j�u�k(t)j+ c
 lgf lf j�x�k(t)j

+ c


��1

j=0

jaj jlgf j�x�k(t)j

+ c


��1

j=0

��1

s=0

�(t+ j � s)jaj j j�x�k(0)j

�� j�u�k(t)j+ c1 (j�x�k(t)j+ j�x�k(0)j) (20)

where c
 is the norm bound for 
k(t) and

c1 = max lf ;
��1
j=0 jaj j;

��1
j=0 �jaj j c
 lgf .

Through the same derivation to arrive at (11) leads to, for1 � t �
N + 1

j�x�k(t)j �

t�1

j=0

lt�1�jf j�u�k(j)j+ ltf j�x�k(0)j : (21)

Substituting (21) into (20) and using A5) result in, for1 � t � N

j�u�k+1(t)j � � j�u�k(t)j+ c2

t�1

j=0

j�u�k(j)j+ c2cx (22)

wherec2 = c1(1 +$), and$ = max 1; lf ; . . . ; l
N
f .

We can see that (22) corresponds to (12) in the proof of Theorem
3.1. The rest of the proof is exactly the same as that of Theorem 3.1
after (12).

C. Design Issue

Denotedk(t) = (@=@u) g � �f��1(f(xk(t); �uk(t)) and note that
dk(t) includes uncertain variable�uk(t). However, the design issue can
be argued whend1 < dk(t) < d2. According to (7), one convergence
range of
k(t) is 
k(t) 2 (0; 2=d2) if d1 > 0 or 
k(t) 2 (2=d1; 0) if
d2 < 0: Thus, the learning gain is chosen as follows:


k(t) =
� 2
d
; if d1 > 0

� 2
d
; if d2 < 0

(23)

where� 2 (0; 1) is an adjustable parameter. When the system dy-
namics described by (1) is affine inu(t), i.e.,x(t + 1) = f(x(t)) +
b(x(t))u(t), and has relative degree�, the system output expressed
by (4) and (5) can be rewritten asy(t + j) = g � f j(x(t)), 1 �
j � � � 1, and y(t + �) = g � f��1(f(x(t) + b(x(t))u(t)).
Furthermore, provided(@2=@u2) g � f��1(f(x) + b(x)u) = 0, the
term (@=@u)g � f��1(f(x) + b(x)u) will be independent ofu and
can be denoted asd(x). For this case, the output can be evaluated as
y(t + �) = g � f��1(f(x(t)) + b(x(t))u)ju=0+

u(t)

0
(@=@u)g �

f��1(f(x(t)) + b(x(t))u)du= g � f�(x(t)) + d(x(t))u(t) and (7)
reduces toj1� 
k(t)d(xk(t))j � � < 1. The learning control design
becomes straightforward and one alternative is


k(t) = �sgn(d(xk(t))) (24)

and� 2 (0; 2=jd(xk(t))j). In the case ofd1 < d(xk(t)) < d2, the
design of (23) is still applicable.

Fig. 1. Resultant output trajectory by (26).

IV. A N ILLUSTRATIVE EXAMPLE

In this section, we are going to illustrate the theoretical results with
a pendulum. The Euler’s approximation of the dynamics takes the fol-
lowing state-space representation:

q(t+ 1)

_q(t+ 1)
=

q(t)

_q(t)
+ h

_q(t)

� _q(t)� sin(q(t)) + u(t)
(25)

whereq(t) = q(th), _q(t) = _q(th), u(t) = u(th) andh is the sam-
pling period. The system has relative degree two if only the angle dis-
placement is available. Let the desired trajectory be given asqd(t) =
�=2(6(th)5� 15(th)4+10(th)3) rad,0 � t � N +2,N = 18, and
the sampling period beh = 0:05 s. The initial conditions at each cycle
are set toqk(0) = 0:05 and _qk(0) = 0:01. The proposed learning
schemes are used in the presence of the initial shift. The first applied is
the following updating law:

uk+1(t) = uk(t) +
�

h2
(ek(t+ 2)� 1:2ek(t+ 1) + 0:36ek(t))

(26)
whereek(t) = yd(t) � yk(t); yd(t) = qd(t); yk(t) = qk(t), � is
an adjustable parameter and chosen as� = 0:2. Fig. 1 depicts the
resultant trajectory of the 49th cycle versus the discrete-time variable
ht, being a solution of (8). The converged trajectory is observed to
follow the desired one asymptotically as time increases. In order to
achieve the convergence over the specified interval, initial rectifying
action is introduced in the updating law (26) as follows:

uk+1(t) =uk(t) +
�

h2

� (ek(t+ 2)� 1:2ek(t+ 1) + 0:36ek(t))

�
�

h2
[0:36�(t)ek(0)

+(0:36�(t� 1)� 1:2�(t))ek(1)] : (27)

Define the performance indexJk = max2�t�N+2 jek(t)j. The itera-
tion stops after the 46th cycle asJk < 0:001and the resultant trajectory
is shown in Fig. 2, where the trajectory tracks the desired one after two
steps delay only. In our simulation, the robustness in the presence of
random initial shifts shown in Theorems 3.1 and 3.2 are examined.

V. CONCLUSION

The unified learning scheme for the class of nonlinear discrete-time
systems with well-defined relative degree has been characterized to ad-
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Fig. 2. Resultant output trajectory by (27).

dress the initial shift problem. The convergence and robustness proper-
ties of the scheme with respect to initial shifts have been presented by
the developed analysis technique. Under certain conditions, the system
output is ensured to converge to a neighborhood of the predefined tra-
jectory and the error bound is proportional to the bound on initial shifts.
The system undertaken has been shown to possess asymptotic tracking
capability and the converged output trajectory can be assessed by the
initial condition. The initial rectifying action has been shown effective
to improve the tracking performance further, by which the complete
tracking with specified transient is guaranteed.
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Joint Optimization of Communication Rates
and Linear Systems

Lin Xiao, Mikael Johansson, Haitham Hindi, Stephen Boyd, and
Andrea Goldsmith

Abstract—We consider a linear control system in which several signals
are transmitted over communication channels with bit rate limitations.
With the coding and medium access schemes of the communication
system fixed, the achievable bit rates are determined by the allocation of
communications resources such as transmit powers and bandwidths, to
different communication channels. We model the effect of bit rate limited
communication channels by uniform quantization and the quantization
errors are modeled by additive white noises whose variances depend on
the achievable bit rates. We optimize the stationary performance of the
linear system by jointly allocating resources in the communication system
and tuning parameters of the controller.

Index Terms—Communication systems, control over networks, convex
optimization, quantization noise, resource allocation.

I. INTRODUCTION

We consider a linear system in which several signals are transmitted
over wireless communication channels, as illustrated in Fig. 1. All sig-
nals are vector-valued:w is a vector of exogenous signals (such as
disturbances or noises acting on the system);z is a vector of perfor-
mance signals (including error signals and actuator signals); andy and
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