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Abstract

This paper addresses the initial shift problem in iterative learning control with system relative degree. The tracking error caused by
nonzero initial shift is detected when applying a conventional learning algorithm. Finite initial rectifying action is introduced in the
learning algorithm and is shown e3ective in the improvement of tracking performance, in particular robustness with respect to variable
initial shifts. The uniform convergence of the output trajectory to a desired one jointed smoothly with a speci5ed transient trajectory from
the starting position is ensured in the presence of 5xed initial shift. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The research on iterative learning control (ILC) started
from the midst of the 1980s and most of early work focused
on the convergence analysis of learning algorithms. The
fundamental characteristics were examined for systems with
direct transmission term (Sugie & Ono, 1991) and relative
degree (Ahn, Choi, & Kim, 1993), respectively. ILC im-
plementations involve perturbed initial conditions, as well
as state disturbances and measurement noises. A number
of e3orts are also observed toward the robustness analysis.
A common assumption in these analyses is that the initial
condition at each cycle is reset to the desired one (Ahn et
al., 1993; Arimoto, Kawamura, & Miyazaki, 1984; Hauser,
1987; Sugie & Ono, 1991), or within its neighborhood
(Arimoto, Naniwa, & Suzuki, 1991; Bondi, Casalino, &
Gambardella, 1988; Heinzinger, Fenwick, Paden, &
Miyazaki, 1992; Saab, 1994). In case of perturbed initial
conditions, boundedness of the tracking error is established
and the error bound is shown to be proportional to the
bound on initial condition errors.
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Up to now, increasing attention has been devoted to
relax the requirement (Lee & Bien, 1996; Park & Bien,
2000; Park, Bien, & Hwang, 1999; Porter & Mohamed,
1991; Wang & Cheah, 1998; Xu & Qu, 1998). In Lee
and Bien (1996), for a PD-type ILC, the initial condi-
tion is required to keep the same for all cycles but dif-
ferent from the desired one or inside a neighborhood of
any 5xed point. The extended result to PID-type ILC
and a general treatment can be found in Park and Bien
(2000) and Park, Bien, and Hwang (1999). Bene5t-
ing from the relaxation, better tracking performance can
be achieved in the face of perturbed initial conditions,
where di3erent input updates based on distinguishing the
regions of the measured initial conditions result in smaller
error bound. Learning algorithms in Lee and Bien (1996),
Park and Bien (2000) and Park et al. (1999), however,
are only applicable to systems with relative degree one. In
Porter and Mohamed (1991), the problem was addressed for
partially irregular LTI systems with rank-defective Markov
parameters. Initial impulsive action is shown e3ective to
totally eliminate the e3ect caused by 5xed initial shift and
enables zero-error trajectory tracking over entire tracking
interval. However, the use of an impulsive action may be
not practical. In Sun and Wang (1999), initial rectifying ac-
tion was introduced as an alternative to avoid the impulsive
action, also for partially irregular LTI systems. The initial
rectifying action is 5nite and implementable and ensures
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uniform convergence of the system output to the desired
trajectory, jointed smoothly with a transient trajectory from
starting position. This paper is motivated by the work (Ahn
et al., 1993) on ILC with system relative degree. An initial
rectifying action is utilized to address the same problem
based on the properties of well-de5ned relative degree non-
linear systems. The tracking error caused by 5xed initial
shift is detected when the conventional learning algorithm
(Ahn et al., 1993) is applied. Initial rectifying action is
introduced in the learning algorithm and is shown e3ec-
tive to guarantee the converged system output to achieve a
desired trajectory with a smooth transient. The robustness
with respect to variable initial shifts is addressed simultane-
ously. A numerical example is given to illustrate the defect
of the conventional algorithm and the e3ectiveness of the
proposed method.

2. Preliminaries

Consider the class of nonlinear continuous-time systems
described by

ẋ(t) = f(x(t)) + B(x(t))u(t); (1)

y(t) = g(x(t)); (2)

where

x∈Rn; u= [u1; : : : ; um]T ∈Rm;

and

y = [y1; : : : ; ym]T ∈Rm

denote the state, the control input, and the output of the sys-
tem, respectively,f(·)∈Rn; B(·)=[b1(·); : : : ; bm(·)]∈Rn×m,
and g(·) = [g1(·); : : : ; gm(·)]T ∈Rm are smooth in their
domains of de5nition. According to Isidori (1995) and
Nijmeijer and van der Schaft (1990), system (1) and (2) is
said to have (vector) relative degree �(={�1; : : : ; �m}) at a
point x0, if (16 q6m)

(i) LbpL
i
fgq(x)=0; 06 i6 �q−2, 16p6m and for all

x in a neighborhood of x0,
(ii) LbpL

�q−1
f gq(x0) �=0; for some 16p6m.

Here �q is the minimum order of time derivative of the qth
output to which a directly transmission is established from
at least one component of the control input u, as follows:

y( j)
q = Ljfgq(x); 06 j6 �q − 1; (3)

y(�q)
q = L�qf gq(x)

+[Lb1L
�q−1
f gq(x); : : : ; LbmL

�q−1
f gq(x)]u: (4)

Throughout this paper, the vector norm is de5ned
as ‖a‖ = max16i6n |ai| for an n-dimensional vector
a=[a1; : : : ; an]T and the matrix norm as the induced norm by

the vector norm, i.e., for a matrix A= {aij}∈Rm×n; ‖A‖=
max16i6m

∑n
j=1 |aij|. The �-norm for a vector-valued func-

tion b(t)∈Rn is de5ned as ‖b(·)‖�=supt∈[0;T ] {e−�t‖b(t)‖};
�¿ 0: The system undertaken is assumed to perform identi-
cal tasks repeatedly over a 5nite time interval, i.e., t ∈ [0; T ].
Also the following properties are assumed.

(A1) The system dynamics described by (1) and (2) are
invertible.

(A2) The system has relative degree �(={�1; : : : ; �m}) for
all x(t); t ∈ [0; T ]:

(A3) The functions f(·), B(·), g(·), L�qf gq(·); 16 q6m,

and LbpL
�q−1
f gq(·); 16p6m; 16 q6m, are lo-

cally Lipschitz in x(t) for t ∈ [0; T ]; and lf; lb; lg; l
q
1

and lp;q2 denote the Lipschitz constants, respectively.
(A4) The operator B(·) is bounded for all x(t); t ∈ [0; T ]:
(A5) For an appropriate x0, all operations start within a

neighborhood of x0 in the sense that ‖x0−xk(0)‖6 cx0
for a positive constant cx0 , where xk(0) is the initial
condition at the kth cycle.

3. Analysis

3.1. Conventional ILC and its tracking error

To deal with the system of relative degree �, conventional
D-type learning algorithm takes the form of (Ahn et al.,
1993)

uk+1(t) = uk(t) + �(yk(t))(y
(�)
d (t)− y(�)

k (t)); (5)

where k refers to the number of operation cycle and y(�) =
[y(�1)

1 ; : : : ; y(�m)
m ]T. �(·)∈Rm×m is the bounded learning gain

and should be chosen such that

‖I − �(g(x))D(x)‖6  ¡ 1 (6)

with

D(x) =




Lb1L
�1−1
f g1(x); : : : ; LbmL

�1−1
f g1(x)

...
Lb1L

�m−1
f gm(x); : : : ; LbmL

�m−1
f gm(x)


 :

Theorem 1. Given a desired trajectory yd(t); t ∈ [0; T ]; let
updating law (5) be applied to system (1) and (2) under
assumptions (A1)–(A5). If at the beginning of each cy-
cle xk(0) = x0; i.e.; cx0 = 0; (6) holds and the trajectory
y∗(t) is realizable; where y∗(t) = [y∗

1 (t); : : : ; y
∗
m(t)]

T and
for 16 q6m;

y∗
q (t) = yq;d(t)−

�q−1∑
j=0

tj

j!
(y( j)

q;d(0)− y( j)
q;0(0));

t ∈ [0; T ]; (7)
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then the system output yk(t) converges uniformly to y∗(t)
on [0; T ] as k → ∞.

Remark 3.1. Note that the system is called invertible if it
is both right- and left-invertible. Clearly; for an appropri-
ate x0 and a realizable trajectory y∗(t); assumption (A1)
guarantees that there exists a unique control input u∗(t)
that will generate the trajectory (Nijmeijer and van der
Schaft; 1990). Namely; y∗(t)=g(x∗(t)); ẋ∗(t)=f(x∗(t))+
B(x∗(t))u∗(t); x∗(0)= x0; where x∗(t) is the corresponding
state.

Proof of Theorem 1. For simplicity; the time t is dropped in
the following proof where confusion will not occur. De5ne
ĝ(x) = [L�1f g1(x); : : : ; L

�m
f gm(x)]T. From (7); y(�q)

q;d − y(�q)
q;k =

y∗(�q)
q − y(�q)

q;k ; 16 q6m; which leads to

u∗ − uk+1 = (I − �(g(xk))D(xk))(u∗ − uk)− �(g(xk))

[ĝ(x∗)− ĝ(xk) + (D(x∗)− D(xk))u∗]:

Taking norms and applying the bounds and the Lips-
chitz conditions give rise to ‖ĝ(x∗) − ĝ(xk)‖6 l1‖Px∗k ‖;
‖D(x∗)− D(xk)‖6 l2‖Px∗k ‖ and

‖Pu∗k+1‖6  ‖Pu∗k‖+ c1‖Px∗k ‖; (8)

wherePu∗k=u
∗−uk ; Px∗k=x

∗−xk ; l1=max{l11; : : : ; lm1 }; l2=
max{l1;12 +· · ·+lm;12 ; : : : ; l1;m2 +· · ·+lm;m2 }; c1=c�(l1+l2cu∗);
c� is the norm bound for �(·) and cu∗ = supt∈[0;T ] ‖u∗(t)‖.
In order to evaluate the state error on the right-hand side of
(8); we integrate both sides of the state equations to obtain

Px∗k (t) =
∫ t

0
[f(x∗(s))− f(xk(s))

+ (B(x∗(s))− B(xk(s)))u∗(s)

+B(xk(s))Pu∗k (s)] ds:

Taking norms and using their properties produce

‖Px∗k (t)‖6
∫ t

0
(c2‖Px∗k (s)‖+ cB‖Pu∗k (s)‖) ds; (9)

where cB is the norm bound for B(·) and c2 = lf + lBcu∗ .
Multiplying both sides of (9) by e−�t(�¿ 0) results in

‖Px∗k ‖�6
1− e−�T

�
(c2‖Px∗k ‖� + cB‖Pu∗k‖�):

A �¿ 0 is chosen such that 1− c2(1− e−�T )=�¿ 0; which
implies

‖Px∗k ‖�6
cB(1− e−�T )=�

1− c2(1− e−�T )=�
‖Pu∗k‖�: (10)

Then multiplying both sides of (8) by e−�t and using (10)
yield

‖Pu∗k+1‖�6
(
 +

c1cB(1− e−�T )=�
1− c2(1− e−�T )=�

)
‖Pu∗k‖�: (11)

Since 06  ¡ 1; it is possible to 5nd a suQciently large �
such that R =  + c1cB(1−e−�T )=�

1−c2(1−e−�T )=� ¡ 1: Then; (11) is a con-
traction in ‖Pu∗k‖�. As the iterations increase; we obtain
‖Pu∗k‖� → 0 so that uk → u∗ uniformly on [0; T ] as k → ∞.
It follows from (10) that xk → x∗ uniformly on [0; T ] as
k → ∞. Furthermore; by the assumption on g(·) in (A3);
yk → y∗ uniformly on [0; T ] as k → ∞. This completes the
proof.

Remark 3.2. The above theorem shows that the con-
verged output follows y∗(t) which deviates from yd(t)
by
∑�q−1

j=0 (tj=j!)(y( j)
q;d(0) − y( j)

q;0(0)); 16 q6m; t ∈ [0; T ].
Thus; uniform convergence of (5) is guaranteed only when
y( j)
q;0(0) = y( j)

q;d(0); 06 j6 �q − 1; 16 q6m. At the kth
cycle; the output trajectory yq;k(t); 16 q6m; depends
on y( j)

q;k(0). However; (7) indicates that the limit trajectory

y∗
q (t) only relies on y( j)

q;0(0) as k tends to in5nity. That
is due to the aligned initial condition; xk(0) = x0; which
implies y( j)

q;k(0) = y( j)
q;0(0); 06 j6 �q − 1; 16 q6m.

3.2. Initial rectifying action

To overcome the deviated convergence shown in Theorem
1, an initial rectifying action is introduced into (5) in the
form of

uk+1(t)

=uk(t) + �(yk(t))(y
(�)
d (t)− y(�)

k (t))− �(yk(t))


�1−1∑
j=0

(
tj

j!

∫ h

t
%�1 ;h(s) ds

)(�1)
(y( j)

1;d(0)− y( j)
1;0(0))

...
�m−1∑
j=0

(
tj

j!

∫ h

t
%�m;h(s) ds

)(�m)
(y( j)

m;d(0)− y( j)
m;0(0))



;

(12)

where %�q;h : [0; T ] → R; 16 q6m, satis5es∫ h

0
%�q;h(s) ds= 1;

(
tj

j!

∫ h

t
%�q;h(&) d&

)(�q)∣∣∣∣∣∣
t=0

=

{
1; �q = j;

0; �q �= j:

One candidate of such function is given as

%�q;h(t) =




1
h2�q+1

(2�q + 1)!
�q!2

t�q(h− t)�q ; t ∈ [0; h];

0; t ∈ (h; T ]:

(13)
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Theorem 2. Given a desired trajectory yd(t); t ∈ [0; T ]; let
updating law (12) be applied to system (1) and (2) under
assumptions (A1)–(A5). If the learning gain �(·) is chosen
such that (6) holds and the trajectory y∗(t) is realizable;
where y∗(t) = [y∗

1 (t); : : : ; y
∗
m(t)]

T and for 16 q6m;

y∗
q (t) = yq;d(t)−

�q−1∑
j=0

(
tj

j!

∫ h

t
%�q;h(s) ds

)

(y( j)
q;d(0)− y( j)

q;0(0)); t ∈ [0; T ]; (14)

then the asymptotic bound of the error y∗(t) − yk(t) is
proportional to cx0 on [0; T ] as k → ∞.

Proof. As in the proof of Theorem 1; for an appropriate x0;
let u∗ be the control input which generates the trajectory y∗

and x∗ is the corresponding state. From (14); y(�q)
q;d −y(�q)

q;k =

y∗(�q)
q − y(�q)

q;k ; 16 q6m; which leads to

Pu∗k+1 = (I − �(g(xk))D(xk))Pu∗k − �(yk)

[ĝ(x∗)− ĝ(xk) + (D(x∗)− D(xk))u∗]:

Taking norms and applying the bounds and the Lipschitz
conditions give rise to

‖Pu∗k+1‖6  ‖Pu∗k‖+ c1‖Px∗k ‖; (15)

where c1 = c�(l1 + l2cu∗); l1 = max{l11; : : : ; lm1 } and
l2 =max{l1;12 + · · ·+ lm;12 ; : : : ; l1;m2 + · · ·+ lm;m2 }. For evalu-
ating the state error in (15); we integrate the state equations
to obtain

Px∗k (t) =
∫ t

0
[f(x∗(s))− f(xk(s))

+ (B(x∗(s))− B(xk(s)))u∗(s)

+B(xk(s))Pu∗k (s)] ds+ x0 − xk(0):

Parallel to (10); a �¿ 0 is chosen such that 1 − c2
(1− e−�T )=�¿ 0 and c2 = lf + lBcu∗ ; which ensures

‖Px∗k ‖�6
cB(1− e−�T )=�

1− c2(1− e−�T )=�
‖Pu∗k‖�

+
1

1− c2(1− e−�T )=�
cx0 : (16)

Then taking the �-norm for both sides of (15) and using
(16) result in

‖Pu∗k+1‖�6
(
 +

c1cB(1− e−�T )�
1− c2(1− e−�T )=�

)
‖Pu∗k‖�

+
c1

1− c2(1− e−�T )=�
cx0 : (17)

Since 06  ¡ 1; it is possible to 5nd a suQciently large
� such that R =  + c1cB(1−e−�T )=�

1−c2(1−e−�T )=� ¡ 1. Then; (17) is a

contraction in ‖Pu∗k‖�. When the iterations increase;

lim sup
k→∞

‖Pu∗k‖�6
1

1− R 
c1

1− c2(1− e−�T )=�
cx0 :

The results for Px∗k and y∗ − yk can be derived by
using (16) and the assumption on g(·) in (A3). The theorem
follows.

Remark 3.3. Theorem 2 implies that the system output con-
verges to the trajectory y∗(t) for all t ∈ [0; T ] as cx0 tends to
zero. From (14); y∗(t)= yd(t); t ∈ (h; T ]. Uniform conver-
gence of the system output to the desired trajectory yd(t)
is thus ensured on (h; T ]; while the converged output tra-
jectory on [0; h] is governed by the initial rectifying ac-
tion. The transition trajectory from initial position to the
desired trajectory is a smooth and joins the desired trajec-
tory at t = h moment which can be speci5ed. When (5) is
applied; the asymptotic bound of the error between yd(t)
and yk(t) is already known to be proportional to a posi-
tive constant cxd0 ; which is the bound on the error between
xk(0) and xd(0); the desired initial condition. It would be
very large when xk(0) is reset in the neighborhood of x0 and
‖x0 − xd(0)‖�cx0 . Theorem 2 shows that the proposed ini-
tial rectifying action leads to the bound proportional to cx0
after t¿ h. It is thus largely reduced. Therefore; the initial
rectifying action helps to improve tracking performance. If
the 0th cycle initial error y( j)

q;d(0) − y( j)
q;0(0); 06 j6 �q −

1; 16 q6m; in (12); is replaced with the kth cycle initial
error y( j)

q;d(0) − y( j)
q;k(0); a new updating law is achieved in

the form of

uk+1(t)

= uk(t) + �(yk(t))(y
(�)
d (t)− y(�)

k (t))− �(yk(t))


�1−1∑
j=0

(
tj

j!

∫ h

t
%�1 ;h(s) ds

)(�1)
(y( j)

1;d(0)− y( j)
1; k(0))

...
�m−1∑
j=0

(
tj

j!

∫ h

t
%�m;h(s) ds

)(�m)
(y( j)

m;d(0)− y( j)
m;k(0))



:

(18)

From (14);

y(�q)
q;d − y(�q)

q;k = y∗(�q)
k − y(�q)

q;k

+
�q−1∑
j=0

(
tj

j!

∫ h

t
%�q;h(s) ds

)(�q)
(Ljfgq(x0)− Ljfgq(xk(0)):

The same result as Theorem 2 can be obtained. Obviously;
if di3erent input updates in (18) are made in the manner
like that in Lee and Bien (1996); based on distinguishing
the regions of measured initial conditions; better tracking
performance in the face of perturbed initial conditions would
be achieved.
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Fig. 1. Comparison of convergence performance in the presence of 5xed initial shift: (a) Using conventional ILC (5); (b) Using proposed ILC (19).

4. Example

Consider the following nonlinear continuous-time system

ẋ1(t) = x2(t);

ẋ2(t) = sin(x3(t)) + u(t);

ẋ3(t) = cos(x1(t) + x2(t))u(t);

y(t) = x1(t):

The system has relative degree two. Let the desired trajec-
tory be given to be yd(t)=6t5−15t4+10t3; t ∈ [0; 1]. Sim-
ulations are conducted for two ILCs: (I) using conventional
learning algorithm (5) with �(yk(t)) = 0:7; and (II) using
learning algorithm with initial rectifying action (12), h=0:3
and �(yk(t)) = 0:7. For both ILCs, the initial control input
is chosen as u0(t)= 0; t ∈ [0; 1]. For this case, convergence
performance of the learning algorithms is examined in the
presence of 5xed initial shift where the initial condition at
each iteration is reset to xk(0)= [x1; k(0); x2; k(0); x3; k(0)]T =
[0:1; 0:2; 0:3]T, and thus yk(0)=0:1; ẏ k(0)=0:2. According
to Theorem 1, the converged trajectory by applying (5) is
limk→∞ yk(t)=yd(t)−(yd(0)−y0(0))−t(ẏ d(0)−ẏ 0(0)).
Fig. 1(a) shows the output trajectory at the tenth iteration
where the output trajectory tracks the desired one with the
lasting tracking error. The ILC with initial rectifying action
(12) can be used to eliminate the error and it is given as

uk+1(t) = uk(t) + �(yk(t))( Syd(t)− Sy k(t))

+�(yk(t))[%̇2; h(t)(yd(0)− y0(0))

+ (t%̇2; h(t) + 2%2; h(t))(ẏ d(0)− ẏ 0(0))]; (19)

where

%2; h(t) =




30
h5

t2(h− t)2; t ∈ [0; h];

0; t ∈ (h; T ]:

From Theorem 2, the converged trajectory is limk→∞
yk(t)=yd(t)−

∫ h
t %2; h(s) ds(yd(0)−y0(0))−t

∫ h
t %2; h(s) ds

Fig. 2. Robustness performance comparison by using updating laws (5)
and (19) in the presence of random initial shifts.

(ẏ d(0)− ẏ 0(0)). De5ne performance index Jk =supt∈[0:3;1]
‖yd(t)− yk(t)‖. The iteration stops if Jk ¡ 0:001. This per-
formance requirement is achieved at the sixth cycle. Fig.
1(b) shows the output trajectory at the sixth cycle, which
uniformly converges to the desired trajectory over the in-
terval [0:3; 1]. To examine the robustness in the presence
of variable initial shifts, let the initial conditions be reset
to x1; k(0) = 0:1 + 0:01randn; x2; k(0) = 0:2 + 0:01randn
and x3; k(0) = 0:3 + 0:01randn. The randn is a generator
of random scalar with normal distribution (mean = 0 and
variance = 1) but bounded on the interval [ − 1; 1]. Rep-
etition is done until k = 100. Figs. 2 shows the tracking
results produced by applying (5) and (19), respectively.
Clearly, better performance is achieved by the ILC with
initial rectifying action.

5. Conclusion

For trajectory tracking of a class of nonlinear systems
with well-de5ned relative degree, the defect in tracking per-
formance exists due to initial shift when the conventional
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learning algorithm is applied. The learning algorithm with
the proposed initial action is able to rectify this defect in
tracking performance and achieves uniform convergence
of the output trajectories to the desired one with speci5ed
smooth transience. The results also show that the robustness
performance of the conventional learning algorithm with re-
spect to variable initial shifts can be improved by the initial
rectifying action.
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