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Many schemes of iterative learning control (ILC) have been developed for continuous-time, non-linear dynamic systems
to improve tracking performance. Two schemes, D-type and P-type, have been the bases for many ILC designs. Recently,
the anticipatory ILC scheme has been introduced, on the basis of a di� erent approach (Wang 1998a, 1999). In this paper,
these basic schemes are compared from both analysis and implementation view points. The anticipatory ILC scheme is
designed on the basis of a causal pair of the action taken and its resulting state variables. This approach has the
anticipatory characteristics of the D-type ILC and the simplicity for implementation of P-type ILCs. A sampled-data
ILC scheme is presented as another form of this anticipatory ILC scheme. Furthermore, control device saturation is
taken into account and tracking error convergence results are established, with proofs. The convergence results are also
provided in the presence of uncertainties, disturbances and measurement noises. Experimental results are presented to
show the e� ectiveness of this scheme.

1. Introduction

Consider the continuous-time, non-linear dynamic
systems described by the following state and output
equations :

_xi…t† ˆ f …xi…t†;t†‡ B…xi…t†;t†ui…t† …1†
yi…t† ˆ g…xi…t†;t† …2†

where the subscript i indicates the operation cycle,
x…t† 2 Rn the state vector, y…t† 2 Rp the output vector
and u…t† 2 Rr the input vector. The vector and matrix
functions f , g and B are known to have only certain
properties. Given a desired output trajectory yd…t† for
a ® xed operation period G ˆ ‰0 ;T Š, the aim is to ® nd a
desired feed-forward term ud…t† in an iterative manner,
i.e. as i ! 1, ui…t† ! ud…t† and thus yi…t† ! yd…t†. In
practice, convergence to a speci® ed neighbourhood of
the desired trajectories will be su� cient for most appli-
cations. The control ui…t† should be updated on the basis
of the actions taken and its results produced in the pre-
vious operation cycle(s), i.e.

ui‡1…t† ˆ ui…t†‡ L …¢ ;ej…½†† …3†
where j µ i, ½ 2 G, ej…½† ˆ yd…½† ¡ yi…½† and L …¢† is a
function chosen by the designer.

In most existing ILCs, ½ is set to t. In this paper, we
consider an anticipatory iterative learning scheme of the
form, with D > 0 being a small number,

ui‡1…t† ˆ ui…t†‡ L …¢ ;ei…t ‡ D†† …4†
The rest of the paper is organized as follows. Section
2 reviews the basic D-type and P-type ILCs and lists
some observations for comparative analysis. Section 3

describes the anticipatory ILC design in detail and pro-
vides convergence proof . Section 4 presents the sampled-
data ILC design as another form of the anticipatory ILC
scheme. Section 5 presents experimental results. Section
6 provides concluding remarks.

2. Revisiting D-type and P-type ILC

Most existing ILCs are of either D-type or P-type or
their variations (Hauser 1987, Bien and Huh 1989,
Arimoto 1990, Heinzinger et al. 1992, Kuc et al. 1992,
Moore et al. 1992, Ahn et al. 1993, Saab 1994, Chien
and Liu 1996, Cheah and Wang 1998b, Wang and
Cheah 1998, Xu 1998, Xu and Zhu 1999). Here we revi-
sit these two controllers for comparisons and to moti-
vate the proposed anticipatory ILC approach.

2.1. D-type IL C

The basic form of D-type ILC is given as follows
(Hauser 1987, Arimoto 1990, Heinzinger et al. 1992)

ui‡1…t† ˆ ui…t†‡ L …¢†…_yd…t† ¡ _yi…t†† …5†
Some observations of this ILC scheme can be obtained
as follows.

(1) The right-hand side of the updating law (5) uses
a causal pair of the action taken and the result
produced …ui…t†; _yi…t††. In the ith operation cycle,
the input action ui…t† is used at time moment t
and its directly produced result, seen from (1), is
_xi…t† which is then transmitted to the output
derivative _y…t† using the di� erentiation of equa-
tion (2), i.e.

_yi…t† ˆ gx…xi…t†;t† _x…t†‡ gt…xi…t†;t† …6†
All these transmissions are algebraic and occur
at the same time moment t when the input action
is applied. Based on (2) and (6), this pair is cau-
sal and algebraically related. The convergence
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proofs of the D-type ILC and many advanced D-
type-based ILC controllers are straightforward
and the convergence ensures zero tracking errors
in the absence of uncertainties and noises (Ari-
moto 1990, Heinzinger et al. 1992, Wang and
Cheah 1998).

(2) When the D-type ILC is used, the highest order
derivative signals of a dynamic system are
required. This requirement makes implementa-
tion di� cult because the highest derivatives nor-
mally are not measurable and are very noisy
from numerical di� erentiation. Most robots are
equipped with only joint position sensors but not
velocity and acceleration sensors. The accelera-
tion signals have to be obtained by numerically
di� erentiating the position measurements twice,
and can contain severe noises. Furthermore,
high noise levels reduce the e� ectiveness and
accuracy. It is well known that the bounds of
converged tracking errors are proportional to
the noise levels (Hac 1990, Heinzinger et al.
1992, Oh et al. 1994, Wang and Cheah 1998).
This implies that high-level noises in measure-
ments can severely reduce the e� ectiveness of
the D-type ILC in practice, despite the promises
shown in theory and simulations.

2.2. P-type IL C

P-type ILCs are given as one of the following two
basic forms (Arimoto 1990, Kuc et al. 1992, Saab 1994,
Chien and Liu 1996), with and without a scalar forget-
ting factor ® 2 …0;1†

ui‡1…t† ˆ …1 ¡ ®†ui…t†‡ ®u0…t†‡ L …¢†…yd…t† ¡ yi…t†† …7†
or

ui‡1…t† ˆ ui…t†‡ L …¢†…yd…t† ¡ yi…t†† …8†
Some observations of the P-type updating law (7) or (8)
can be made as follows.

(1) The pair …ui…t†;yi…t†† on the right-hand side of
the updating laws (7) and (8) is not a causal pair
of the input action taken and its results produced
in the ith operation cycle. In the ith operation,
and when input action ui…t† is applied to
dynamic equation (1), its produced results/e� ects
cannot be seen from xi…t† at the same time
moment t. Its produced results can only be
seen later because of the system’ s dynamic nat-
ure. In other words, the state xi…t† is the result of
the input actions applied before the time moment
t but not of ui…t†. Thus the learning laws do not
capture the direction or trend of errors that
occur in the previous operations. For example,
when yd…t† ¡ yi…t† ˆ 0, the updating law (8)

stops learning, but _yd…t† ¡ _yi…t† could be of any
value.

(2) Up to now, the convergence results of P-type
ILCs (7) and/or (8), found in Arimoto (1990),
Kuc et al. (1992), Saab (1994) and Chien and
Liu (1996) provide only limited success in show-
ing theoretically the e� ectiveness of the P-type
scheme for general non-linear dynamic continu-
ous-time systems. As pointed out in Chien and
Liu (1996), the form (8) is able to ensure the
convergence of tracking errors only in the
absence of uncertainties and/or disturbances. It
is not robust to perturbation from the initial
state or output errors. It is easily seen that,
when yd…0† ¡ yi…0† 6ˆ 0, 8 i ¶ 0, then (8) can
result in ui…0† ! 1 as i ! 1. To gain robust-
ness against uncertainties, the forgetting factor is
used in P-type learning (7) (Arimoto 1990, Saab
1994, Chien and Liu 1996). It has been shown in
Arimoto (1990), Saab (1994) and Chien and Liu
(1996) that the tracking errors will be bounded
under various assumptions. Arimoto (1990) con-
siders only the robotic systems. For general
systems, the boundedness is established in Saab
(1994) under a very strict and uncheckable
assumption (A5). In Chien and Liu (1996), the
bounds on the tracking errors, stated in Theorem
4.1 and de® ned in equations (3.22), (3.23) and
(3.24), are inversely proportional to the forget-
ting factor. This implies that, the smaller the for-
getting factor, the larger are the tracking error
bounds. Thus, suppressing the tracking error
bounds is in con¯ ict with the aim of the forget-
ting factor. The forgetting factor ® in (7) should
be small, ideally zero, to f̀orget’ the arbitrary
initial guessed input u0…t†. From (7), if the for-
getting factor is non-zero, it is easy to see that
the necessary condition for achieving
yi…t† ˆ yd…t† and ui‡1…t† ˆ ui…t† ˆ ud…t† simul-
taneously as i ! 1 is u0…t† ˆ ud…t†. Thus a selec-
tive learning scheme (Arimoto et al. 1991) is
introduced to reduce the error u0…t† ¡ ud…t† by
replacing u0…t† with a better ui…t† that is closer
to ud…t†, if such a ui…t† is found after certain
number of operations.

(3) The P-type ILC does not require the highest
order derivative signals in the dynamic system.
Implementation requires only measurements of
state variables, which are normally available
and less noisy. When P-type ILCs are used
together with D-type ILCs, so called PD-type
ILCs, this has been shown to be e� ective in
ensuring the convergence of the tracking errors
(Heinzinger et al. 1992).
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3. An Anticipatory ILC Scheme

We wish to propose an anticipatory scheme which
should have the following features.

(1) Use a causal pair of the action taken and its
result produced from the ith operation cycle to
compute the action to be taken in the …i ‡ 1†th
operation cycle.

(2) Capture the trend/direction information from
the recorded errors in the previous operations
but avoid using the highest order derivatives of
the dynamic system.

(3) Keep the noise levels down in the measurement
process for easy implementation.

From the dynamic state equation (1), the e� ects pro-
duced by ui…t† can be seen from _xi…t† at time moment t,
or from state variable xi…t ‡ D† at time moment t ‡ D.
The latter can be seen from

xi…t ‡ D† ˆ xi…t†‡
… t‡D

t
_xi…½† d½

ˆ xi…t†‡
… t‡D

t
f …xi…½†; ½†‡ B…xi…½†;½†ui…½† ;d½

…9†
This xi…t ‡ D† is carried over to yi…t ‡ D† in output
equation (2). It is logical that the next input action is
updated on the basis of the actions and their produced
results in the previous operation cycle. Thus
fui…t†;yi…t ‡ D†g is a causal pair of dynamically related
cause and e� ect in the ith operation. The iterative learn-
ing control scheme (4) is e� ect-driven. It has an antici-
patory nature because yi…t ‡ D† is comparable to _yi…t† in
capturing the trend/directional information. In particu-
lar, equation (4) can take a simpler form, with control
device saturations being taken into account, as follows

vi‡1…t† ˆ ui…t†‡ L …¢†‰yd…t ‡ D† ¡ yi…t ‡ D†Š
ui‡1…t† ˆ sat…vi‡1…t††

7

¼ if vi‡1…t† > ¼

vi‡1…t† if kvi‡1…t†k µ ¼

¡¼ if vi‡1…t† < ¡¼

8
>><
>>:

…10†

where ¼ > 0 is the saturation constant. The design par-
ameter D and the learning gain L …¢† are to be chosen.

To state and prove the convergence of the ILC
updating law (10), the following assumptions and prop-
erties are stated.

Assumption 1: A desired output yd…t† being continuous
for t 2 G is achievable with a unique input ud…t†, for
t 2 G. This desired input ud…t† is bounded, i.e.
kud…t†k µ bud

for a positive constant bud
µ ¼1 < ¼, and

so is the corresponding state sequence xd…t†, t 2 G. At
the desired state, equations (1)± (2) take the following
form

_xd…t† ˆ f …xd…t†;t†‡ B…xd…t†;t†ud…t† …11†
yd…t† ˆ g…xd…t†;t† …12†

Assumption 2: The output function g…x…t†;t† is con-
tinuous and di� erentiable in …x ;t† with gx ˆ @g=@x
and gt ˆ @g=@t. The functions f …x…t†; t†, B…x…t†;t†,
g…x…t†;t†, gx…x…t†;t† and gt…x…t†;t† are globally uni-
formly L ipschitz in x on G. That is,

k …x1…t†;t† ¡  …x2…t†;t†k µ c kx1…t† ¡ x2…t†k
for t 2 G and positive constants c for  2 ff ;B ;g;gx ;gtg.

Assumption 3: The functions f …x…t†;t†, B…x…t†;t†,
g…x…t†;t†, gx…x…t†;t† and gt…x…t†; t† are bounded in the
sense of k …x…t†;t†k µ b for …x ;t† 2 Rp £ G and posi-
tive constants b , where  2 ff ;B ;g ;gx ;gtg.

Assumption 4: All operations start from the initial con-
dition xi…0† ˆ xd…0† for all i ˆ 1;2; . . ..

Note that Assumption 1 implies vd…t† ˆ ud…t† and
that Assumption 4 is made for simplicity in presenta-
tion. Uncertainties in initial state, dynamic ¯ uctuations,
disturbances and measurement noises can be taken into
account and convergence can be established to a similar
line of proof . More discussions are given in Remark 4
and Theorem 2 later in this paper.

Theorem 1: Applying the anticipatory iterative learning
control (10) to the dynamic system (1)± (2). Under As-
sumptions 1± 4, if the following inequality

I ¡ L …¢†
… t‡D

t
gx…x…·†;·†B…x…·†;·†d· µ « < 1 …13†

holds for all x 2 Rn, t 2 G and D is chosen small enough,
as operations repeat, i ! 1, the control input error
ud…t† ¡ ui…t† converges into a speci® ed bound.
Furthermore, the state and output tracking errors also
converge into some speci® ed bounds.

For convergence proof , the ¶-norm is de® ned as fol-
lows.

De® nition 1: The ¶-norm for a function b…t† is

kbk¶
7 sup

t2‰0;T Š
e¡¶tkb…t†k …14†

where ¶ is a positive scalar.

De® nition 2: The 1-norm for a function b…t† is

kbk1 7 sup
t2‰0;T Š

kb…t†k …15†

Note that the ¶-norm is equivalent to the 1-norm
because kbk¶ µ kb…t†k1 µ kbk¶e¶T .
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For convenience of presentation, we de® ne the fol-
lowing shorthand notations

¯yi…t†7 yd…t† ¡ yi…t†; ¯xi…t†7 xd…t† ¡ xi…t†
¯ui…t†7 ud…t† ¡ ui…t†; ¯vi…t†7 ud…t† ¡ vi…t†
gd…t†7 g…xd…t†;t†; gi…t†7 g…xi…t†;t†

¯gi…t†7 gd…t† ¡ gi…t†; _gd…t†7 …d=dt†g…xd…t†;t†
_gi…t†7 …d=dt†g…xi…t†;t†; fd…t†7 f …xd…t†;t†
f i…t†7 f …xi…t†; t†; Bd…t†7 B…xd…t†;t†

Bi…t†7 B…xi…t†;t†; gxi…t†7 …@=@x†g…xi…t†;t†
gxd…t†7 …@=@x†g…xd…t†;t†; ¯gxi…t†7 gxd…t† ¡ gxi…t†
gti…t†7 …@=@t†g…xi…t†;t†; gtd…t†7 …@=@t†g…xd…t†;t†

¯gti…t†7 gtd…t† ¡ gti…t†
¯…gxif i†…t†7 gxd…t†fd…t† ¡ gxi…t†f i…t†

¯…gxiBi†…t†7 gxd…t†Bd…t† ¡ gxi…t†Bi…t†:
Proof of Theorem 1: Taking the di� erence between
(12) and (2) at time t ‡ D yields

¯yi…t ‡ D† ˆ ¯yi…t†‡
…t‡D

t
‰ _gd…½† ¡ _gi…½†Š d½

ˆ ¯gi…t†‡
…t‡D

t
‰¯…gxif i†…½†‡ ¯…gxiBi†…½†ud…½†

‡ ¯gti…½†Š d½

‡
… t‡D

t
gxi…½†Bi…½†¯ui…½† d½

ˆ
… t‡D

t
gxi…½†Bi…½†d½¯ui…t†

‡ ¯gi…t†‡
… t‡D

t
‰¯…gxif i†…½†

‡ ¯…gxiBi†…½†ud…½†‡ ¯gti…½†Š d½

‡
… t‡D

t
gxi…½†Bi…½†‰¯ui…½† ¡ ¯ui…t†Š d½ …16†

From the anticipatory law (10), we have the following
input error equation

¯vi‡1…t† ˆ ¯ui…t† ¡ L …¢†¯yi…t ‡ D†

ˆ I ¡ L …¢†
… t‡D

t
gxi

…½†Bi…½†d½ ¯ui…t† ¡ L …¢†¯gi…t†

¡ L …¢†
… t‡D

t
‰¯…gxi f i†…½†‡ ¯…gxiBi†…½†ud…½†

‡ ¯gti…½†Š d½ ¡ L …¢†
… t‡D

t
gxi…½†Bi…½†‰¯ui…½†

¡ ¯ui…t†Š d½ …17†

Taking norms on both sides and using (13)

k¯vi‡1…t†k µ «k¯ui…t†k ‡ bL cgk¯xi…t†k

‡ bL …cgx f ‡ budcgxB ‡ cgt
†
… t‡D

t
k¯xi…½†k d½

‡ bL bgx
bB

… t‡D

t
k¯ui…½† ¡ ¯ui…t†k d½ …18†

where cgxf ˆ bgx
cf ‡ bf cgx

, cgxB ˆ bgx
cB ‡ bBcgx

.
The saturation feature in (10) leads to the following

two inequalities

… t‡D

t
k¯ui…½† ¡ ¯ui…t†k d½ µ 4¼D …19†

and

k¯ui…t†k µ k¯vi…t†k …20†

Using these two inequalities in equation (18) yields

k¯vi‡1…t†k µ «k¯vi…t†k ‡ bL cgk¯xi…t†k

‡ bL …cgx f ‡ budcgxB ‡ cgt
†
… t‡D

t
k¯xi…½†k d½

‡ 4bL bgx
bB¼D …21†

Multiplying both sides by e¡¶t, with ¶ being a positive
constant, we have, in ¶-norm,

k¯vi‡1k¶ µ «k¯vik¶ ‡ p…e¶D ¡ 1†
¶

k¯xik¶ ‡ 4bL bgx
bB¼D

…22†

where p 7 bL …cg ‡ cgxf ‡ budcgxB ‡ cgt
† and the follow-

ing inequality has been used

… t‡D

t
e¡¶tk¯xi…½†k d½ ˆ

… t‡D

t
e¶…½¡t†k¯xi…½†ke¡¶½ d½

µ kxik¶

… t‡D

t
e¶…½¡t† d½

ˆ …e¶D ¡ 1†
¶

kxik¶ …23†

Applying the Bellman± Gronwall inequality (Flett 1980)
to equation (1) produces

k¯xi…t†k µ bB

… t

0
eh1…t¡½†k¯ui…½†k d½ …24†

where h1 ˆ cf ‡ budcB. Multiply both sides of (24) by
e¡¶t, with ¶ > h1. Equation (24) becomes, in ¶-norm,
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k¯xik¶ µ bB

… t

0
e…¶¡h1†…½ ¡t†k¯ui…½†ke¡¶½ d½

µ bBk¯uik¶

… t

0
e…¶¡h1†…½¡t† d½

µ bB…1 ¡ e¡…¶¡h1†T †
¶ ¡ h1

k¯uik¶

µ bB…1 ¡ e¡…¶¡h1†T †
¶ ¡ h1

k¯vik¶ …25†

Substituting this inequality into equation (22), we obtain

k¯vi‡1k¶ µ « ‡ p…e¶D ¡ 1†
¶

¢ bB…1 ¡ e¡…¶¡h1†T †
¶ ¡ h1

" #
k¯vik¶

‡ 4bL bgx
bB¼D …26†

De® ne

-« ˆ « ‡ p…e¶D ¡ 1†
¶

¢ bB…1 ¡ e¡…¶¡h1†T †
¶ ¡ h1

…27†

In view of the fact that « < 1, it is possible to choose ¶
su� ciently large to ensure

« ‡ pbB…1 ¡ e¡…¶¡h1†T †
¶ ¡ h1

< 1 …28†

For any such ® xed ¶, it is possible to choose D small
enough such that

…e¶D ¡ 1†
¶

< 1 …29†

because …e¶D ¡ 1† ! 0 as D ! 0. Combining the above
two inequalities implies that -« < 1 and that equation
(26) is a contraction. We have

lim
i!1

sup k¯vik¶ µ
4bL bgx

bB¼

1 ¡ -«
D …30†

Using (10) and noting that ud…t† ˆ vd…t† and
kud…t†k µ bud µ ¼1 < ¼, we have

lim
i!1

sup k¯uik¶ µ
4bL bgx

bB¼

1 ¡ -«
D …31†

Using (30) in equation (25) yields

lim
i!1

sup k¯xik¶ µ bB…1 ¡ e¡…¶¡h1†T †
¶ ¡ h1

¢
4bL bgx

bB¼

1 ¡ -«
D …32†

Finally, using equations (2) and (12) produces

lim
i!1

sup k¯yik¶ µ
cgbB…1 ¡ e¡…¶¡h1†T †

¶ ¡ h1
¢
4bL bgx

bB¼

1 ¡ -«
D

…33†
This completes the proof . &

Remark 1: The tracking error bounds in (30), (32)
and (33) are proportional to the time shift D. The an-

ticipatory scheme requires D > 0 but it can be small
enough to specify the bounds as required.

Remark 2: Due to the shift by the time interval D,
the learning law (4) or (10) cannot be used for
t > T ¡ D. During this ® nal time interval …T ¡ D;T †,
the ® nal output measurement yi…T † can be used in the
learning law. That is, for t 2 …T ¡ D;T †, the ® rst equa-
tion in (14) takes the form

vi‡1…t† ˆ ui…t†‡ L …¢†…yd…T † ¡ yi…T †† …34†

Remark 3: This learning law (10) is di� erent from the
di� erential approximation of the D-type ILC (5) which
normally takes the form of (Tso and Ma 1993, Cheah
et al. 1994)

ui‡1…t† ˆ ui…t†‡ L …¢† …ei…t ‡ D†† ¡ ei…t†
h

…35†

with h being the sampling time interval, and is basically
a numerical di� erentiation that is the source of severe
noise in practical implementations. This learning law
(10) is di� erent from the P-type ILC (7) because this
anticipatory ILC scheme requires D > 0. If D ˆ 0 is
chosen, (13) is not satis® ed and the resulting controller
from (10) is not an anticipatory ILC.

Remark 4: In practical applications, control systems
involve state resetting uncertainties, measurement
noises and disturbances. In Theorem 1, convergence is
established in the absence of these uncertainties, meas-
urement noises and disturbances. However, robustness
of this anticipatory iterative learning law can be easily
established, as stated in the following theorem.

Consider the following dynamic system with dis-
turbances, measurement noises and state resetting
uncertainties

_xi…t† ˆ f …xi…t†;t†‡ B…xi…t†;t†ui…t†‡ ²i…t† …36†
yi…t† ˆ g…xi…t†;t†‡ ¹i…t† …37†

where ²i…t† and ¹i…t† are the state disturbance and output
measurement noise, respectively. Assumption 4 is
restated as the following Assumption 4 0 :

Assumption 4 0 : The initial state resetting error
kxd…0† ¡ xi…0†k µ bx0, 8 i and state disturbance
k²i…t†k µ b², output measurement noise k¹i…t†k µ b¹ 8 i
and 8t 2 G ˆ ‰0 ;T Š for some positive constants
bx0 ;b² ;b¹ .

Theorem 2: Applying the anticipatory iterative learning
control …10† to the dynamic system …36†± …37†. Under as-
sumptions 1± 3 and 4 0, if the inequality …13† holds for all
x 2 Rn, t 2 G and D is chosen small enough, as opera-
tions repeat, i ! 1, the tracking errors converge into
the following error bounds
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lim
i!1

sup k¯uik¶ µ
4bL bgx

bB¼

1 ¡ -«
D ‡ ·u…bx0 ;b² ;b¹† …38†

lim
i!1

sup k¯xik¶ µ
bB…1 ¡ e¡…¶¡h1†T †

¶ ¡ h1
¢
4bL bgx

bB¼

1 ¡ -«
D

‡ ·x…bx0 ;b² ;b¹† …39†

lim
i!1

sup k¯yik¶ µ
cgbB…1 ¡ e¡…¶¡h1†T †

¶ ¡ h1
¢
4bL bgx

bB¼

1 ¡ -«
D

‡ ·y…bx0 ;b² ;b¹† …40†
where ·u…bx0 ;b² ;b¹†, ·x…bx0 ;b² ;b¹† and ·y…bx0 ;b² ;b¹† are
some constants proportional to constants bx0, b², and b¹,
linearly and independently.

The proof of this result follows the same lines of that
for Theorem 1 and thus is omitted.

Remark 5: The ® rst terms in convergence error
bounds (38), (39) and (40) can be speci® ed by the de-
sign parameter D whereas the second terms cannot.
Thus, in practical applications, the ® rst terms in these
bounds are not dominant when D is chosen small
enough.

4. Sampled-data ILC approach

This proposed anticipatory scheme can be easily
implemented using a sampled-data approach (Wang
1995, Zhang 1996, Chien 1998, Longman 1998). Here
we propose a sampled-data ILC taking into account the
saturation of the control device. Fix a sampling interval
D ˆ h ˆ T =N and choose

ui…t† ˆ ui…kD† …41†
for k 2 N ˆ f0 ;1 ;2 ; . . . ;Ng and t 2 ‰kD;…k ‡ 1†D†. The
sampled-data anticipatory ILC takes the following
form, with consideration of control device saturation

vi‡1…kD† ˆ ui…kD†‡ L …¢†‰yd……k ‡ 1†D† ¡ yi……k ‡ 1†D†Š
ui‡1…kD† ˆ sat…vi‡1…kD††

7

¼ if vi‡1…kD† > ¼

vi‡1…kD† if kvi‡1…kD†k µ ¼

¡¼ if vi‡1…kD† < ¡¼

8
>><
>>:

…42†

where ¼ > 0 is the saturation constant.

Remark 6: The right-hand side of the updating law
(42) uses the causal pair fui…kD†;yi……k ‡ 1†D†g which
are the input action taken during the sampling period
t 2 ‰kD;…k ‡ 1†D† and its result produced at the end of
the same period, t ˆ …k ‡ 1†D.

Remark 7: After each operation cycle, this updating
law will be used N times to compute N values of ui‡1

for the next operation cycle. This o� -line computation
is not demanding and time saving.

The design of (41) and (42) implies that the input
remains constant for the whole sampling period, and
its produced result is taken from the end of the sampling
period. We can state the convergence results using (42)
at the sampling instances as follows.

Theorem 3: Consider the system (1) and (2) with the
IL C (41) and (42). Under Assumptions 1± 4, if the learn-
ing gain L …¢† is chosen such that the following inequality

I ¡ L …¢†
……k‡1†D

kD
gx…x…½†;½†B…x…½†;½†d½ µ « < 1

…43†
holds for all …x ;k† 2 Rp £ N and D is small enough, as
i ! 1, k¯uik¶ ! 0, k¯xik¶ ! 0, k¯yik¶ ! 0 at the sam-
pling time instances.

Two norms of a positive real function q : N ! R are
de® ned for the proof of Theorem 3:

De® nition 2: The ¬-norm is de® ned as kq…¢†k¬
ˆ

supk2N q…k†¬k with 0 < ¬ µ 1.

De® nition 3: The 1-norm is de® ned as kq…¢†k1 ˆ
supk2N q…k†:

Note that these two norms are equivalent by noting
that kq…k†k¬ µ kq…k†k1 µ …1=¬†nkq…k†k¬.

Proof of Theorem 3: In the following proof ,
z…k†7 …kD†, for z 2 fx;y;u;v; f ;B ;g ;gx ;gtg. Taking
the di� erence between (2) at the desired state and (2)
at the ith operation cycle yields, at sampling instant
t ˆ …k ‡ 1†D,

¯yi…k ‡ 1† ˆ g…xd…k ‡ 1†;k ‡ 1† ¡ g…xi…k ‡ 1†;k ‡ 1†
ˆ g…xd…k†;k† ¡ g…xi…k†;k†

‡
……k‡1†D

kD
‰ _g…xd…½†;½† ¡ _g…xi…½†; ½†Šd½

ˆ ¯g…xi…k†;k†‡
……k‡1†D

kD
‰gxd

_xd…½†‡ gtd…½†

¡ gxi
_xi…½† ¡ gti…½†Š d½

ˆ
……k‡1†D

kD
‰gx…xi…½†;½†B…xi…½†;½†Š d½…ud…k†

¡ ui…k††‡ ¯g…xi…k†;k†

‡
……k‡1†D

kD
‰…gx…xd…½†;½†f …xd…½†;½†

¡ gx…xi…½†;½†f …xi…½†;½††
‡ …gx…xd…½†;½†B…xd…½†;½†
¡ gx…xi…½†;½†B…xi…½†;½††ud…k†
‡ …gt…xd…½†;½† ¡ gt…xi…½†;½††Šd½ …44†
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In the above equation and the following devel-
opment, the continuous-time t or ½ is dropped and
functions are represented in short, i.e. z…xi…t†;t†
being denoted as zi and z…xd…t†;t† as zd for
z 2 ff ;B ;g ;gx ;gtg, when and where confusion does
not occur. We also use ¯zi to denote zd ¡ zi for
z 2 fx;y;u;v; f ;B ;g ;gx ;gtg.

Substituting the above equation into (42) and using
ud…k† on both sides,

¯vi‡1…k† ˆ ¯ui…k† ¡ L …¢†¯yi…k ‡ 1†

ˆ I ¡ L …¢†
……k‡1†D

kD
gx…xi…½†;½†B…xi…½†;½†d½

" #

£ ¯ui…k† ¡ L …¢†¯gi…k†

¡ L …¢†
……k‡1†D

kD
‰¯…gxi

f i†…½†

‡ ¯…gxi
Bi†…½†ud…½†‡ ¯gtiŠd½ …45†

Taking norms on both sides of the above equation yields

k¯vi‡1…k†k µ «k¯ui…k†k ‡ bL cgk¯xi…k†k

‡ bL h2

… …k‡1†D

kD
k¯xi…½†k d½ …46†

where, noting inequality (43),

I ¡ L …¢†
… …k‡1†D

kD
gx…xi…½†;½†B…xi…½†;½†d½ µ « < 1

and some constants are de® ned as: h1 ˆ cf ‡ bud
cB and

h2 ˆ bgx
h1 ‡ cgx

…bf ‡ bBbud
†‡ cgt

. On the other hand,
from equation (1), for t 2 G,

¯xi…t† ˆ
… t

0
‰¯f i ‡ ¯Biud ‡ Bi¯uiŠd½

Taking norms on both sides of the above equation, we
get

k¯xi…t†k µ
… t

0
‰h1k¯xi…½†k ‡ bBk¯ui…½†kŠd½

Using a general form of the Bellman± Gronwall inequal-
ity (Flett 1980), the above equation becomes

k¯xi…t†k µ
… t

0
eh1…t¡½†bBk¯ui…½†k d½

For t µ …k ‡ 1†D, the above inequality becomes

k¯xi…t†k µ bBeDh1…k‡1†
……k‡1†D

0
e¡h1½k¯ui…½†k d½

Note that the time interval ‰0 ;…k ‡ 1†D† consists of k ‡ 1
sampling intervals ‰ jD ;…j ‡ 1†D† for j ˆ 0 ;1 ; . . . ;k, and
the control inputs are constants in each of these sam-
pling intervals. We have

k¯xi…t†k µ bBeDh1…k‡1† Xk

jˆ0

k¯ui…j†k
……j‡1†D

jD
e¡h1½d½

µ bB
eDh1 ¡ 1

h1

Xk

jˆ0

k¯ui…j†keDh1…k¡j† …47†

Using inequality (47) in equation (46) for t 2
‰kD ;…k ‡ 1†D†, we obtain

k¯vi‡1…k†k µ «k¯ui…k†k ‡ …bL bgx
‡ Dh2†bB

eDh1 ¡ 1
h1

£
Xk

jˆ0

k¯ui…j†keDh1…k¡j†

Multipling both sides of above equation by ¬k , with
0 < ¬ < eDh1 ,

k¯vi‡1…k†k¬k µ «k¯ui…k†k¬k ‡ …bL bA ‡ Dh2†bB
eDh1 ¡ 1

h1

£
Xk

jˆ0

k¯ui…j†k¬j…eDh1¬†…k¡j† …48†

In ¬-norm, the above equation becomes, noting that
k¯uik¬ µ k¯vik¬,

k¯vi‡1k¬ µ «̂k¯uik¬ µ «̂k¯vik¬ …49†
where

«̂ ˆ « ‡ …eDh1 ¡ 1†…bL bgx
‡ Dh2†bB

1 ¡ …eDh1 ¬†n

h1…1 ¡ …eDh1 ¬††
When D tends to zero, limD!0…eDh1 ¡ 1† ˆ 0: Thus the
sampling interval D can be chosen small enough so that
«̂ < 1. In this case, equation (49) is a contraction map-
ping of k¯vk¬. Therefore, when operations increase,
k¯vk¬ and k¯uk¬ converge to zero

lim
i!1

sup k¯vik¬
ˆ lim

i!1
sup k¯uik¬

ˆ 0

Similarly, we can show that the states converge to the
desired trajectory. From equation (47), setting
t ˆ …k ‡ 1†D, and multipling both sides by ¬k‡1,

k¯xi…k ‡ 1†k¬k‡1 µ ¬bB…eDh1 ¡ 1†
h1

£
Xk

jˆ0

k¯ui…j†k¬j…eDh1¬†…k¡j†

In ¬-norm,

k¯xik¬ µ ·bBk¯uik¬

where · ˆ ¬…eDh1 ¡ 1†…1 ¡ …eDh1¬†n†=…h1…1 ¡ eDh1¬††. When
operations increase, we have
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lim
i!1

sup k¯xik¬
ˆ 0

Finally, the convergence of the output tracking error
can be established as, using equation (2),

lim
i!1

sup k¯yik¬
ˆ 0

This completes the proof . &

Remark 8: In the above development, convergence is
established without considering uncertainties, measure-
ment noises and disturbances. However, robustness of
this sampled-data learning law can be easily estab-
lished against the presence of state disturbances, out-
put measurement noise and initial state uncertainties.
Proof of the convergence follows similar lines to those
for Theorem 3. The results can be stated in the follow-
ing theorem, with proof omitted.

Theorem 4: Consider the system (36) and (37) with the
IL C (41) and (42). Under the assumptions 1± 3 and 4 0 if
the learning gain L …¢† is chosen such that the inequality
(43) holds for all …x ;k† 2 Rp £ N and D is small enough,
as i ! 1, we have, at the sampling time instances

lim
i!1

sup k¯uik¶
ˆ ·̂u…bx0 ;b² ;b¹† …50†

lim
i!1

sup k¯xik¶
ˆ ·̂x…bx0 ;b² ;b¹† …51†

lim
i!1

sup k¯yik¶
ˆ ·̂y…bx0 ;b² ;b¹† …52†

where the tracking error bounds ·̂u…bx0 ;b² ;b¹†,
·̂x…bx0 ;b² ;b¹† and ·̂y…bx0 ;b² ;b¹† are some constants
proportional to constants bx0, b², and b¹, linearly and
independently.

Remark 9: The results developed above are for
continuous-time dynamic systems. In discrete-time
domain, many ILCs have been developed on the basis
of the causal pairs of actions and results (Rogers and
Owens 1992, Amann et al. 1995, Xu 1997, Longman
1998, Wang 1998b, Cheah and Wang 1998a) for di� er-
ent systems and applications.

5. Experiments

In the experimental study, we test the anticipatory
scheme using two experimental setups. Both experi-
ments provide positive results to con® rm the proposed
theory.

5.1. Experiment 1

We use a mechanism of a dc-motor driving a single
rigid link through a gear, as shown in ® gure 1. An opti-
cal encoder is mounted on the link side to measure the
link angle position. All parameters are unknown, except
we know that the dynamics of the system is governed by
the following second-order di� erential equation

Jm ‡ Jl

n2… †�³m ‡ Bm ‡ Bl

n2… †_³m ‡ Mgl
n

sin
³m

n… †ˆ u

…53†
and the link angle position is related to the motor angle
as

³l ˆ ³m=n …54†
where ³m ;Jm ;Bm and ³l ;Jl ;Bl are the motor and link
angles, inertia and damping coe� cients, respectively, n
is the gear ratio, u is the motor torque, M is the lumped
mass and l is the centre of mass from the axis of motion.
The motor is controlled by a PC with a power ampli® er.

The operation cycle is set as G ˆ 3 s and the desired
trajectory is given as

³ld…t† ˆ ºt2

6
¡ ºt3

27
rad …55†

The starting position (08) of the link is vertically
upwards and the ending position (908) is horizontal,
pointing out where the gravity e� ect is the greatest.

The state di� erential equation (36) can be derived
from (53) with x ˆ …x1 ;x2†T ˆ …³m ; _³m†T, y ˆ
…y1 ;y2†T ˆ …³l ; _³l†T and the following functions

f …x…t†; t†

ˆ
x2…t†

1
Jm ‡ Jl=n2 ‰¡…Bm ‡ Bl=n2†x2…t† ¡ Mgl

n
sin…x1…t†=n†

0
B@

1
CA

…56†

B…x…t†; t† ˆ
0
1

Jm ‡ Jl=n2

0

@

1

A …57†

The state disturbances ²…k† include the frictions and
ampli® er and circuit uncertainties. The output equation
takes the form (37) with

g…x…t†; t† ˆ
x1…t†=n

x2…t†=n… † …58†
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The output noises ¹…t† include the sensor noises and
numerical di� erentiation errors.

In the experiment, the sampled-data ILC (42) is used
with the sampling time interval set to D ˆ 50 ms. The set
of sampling instances is N ˆ f0 ;1 ; . . . ;60g. The ® rst
equation of (42) is given as

vi‡1…k† ˆ ui…k†‡ l1… _³ld…k ‡ 1† ¡ _³li…k ‡ 1††

‡ l2…³ld…k ‡ 1† ¡ ³li…k ‡ 1†† …59†

The learning control gain matrix has two gains as
L ˆ ‰l1 ; l2Š. The convergence condition (43) becomes

1 ¡ l2nD
nJm ‡ Jl

< « < 1 …60†

It is easy to choose a learning gain to satisfy the inequal-
ity. In the experiment, l1 ˆ l2 ˆ 2 are chosen. No on-line
feedback control is used and the initial input is set to
zero, i.e. u0…k† ˆ 0, for k 2 N .

The experimental results are given in ® gures 2 and 3.
They clearly show that, through iterations, the position
trajectory converges to the desired trajectory de® ned in
(55).

5.2. Experiment 2

This experiment is performed using an industrial
robot, SEIKO TT3000, which is a SCARA type robotic
manipulator, as shown in ® gure 4. Joints 2 and 3 control
the two links moving in a horizontal plane. The
dynamics of these two links possess the non-linear and
coupling characteristics and thus joints 2 and 3 are used
to test our proposed controllers. The dynamics of these
two links are given as

…m2 ‡ m3†a2
2 ‡ m3a2

3 ‡ 2m3a2a3 cos ³2 m3a2
3 ‡ m3a2a3 cos ³3

m3a2
3 ‡ m3a2a3 cos ³3 m3a2

3

0

@

1

A
�³2

�³3

0

@

1

A

‡
¡m3a2a3…2 _³2

_³3 ‡ ³2
3† sin _³3

m3a2a3
_³2
2 sin ³3

0

@

1

A ‡
fv2

_³2

fv3
_³3

0

@

1

A ‡
Fc2

Fc3
… †̂ ½2

½3
…†
…61†

where ³j , f , Fcj and ½j ; j ˆ 2 ;3 are the joint angles, vis-
cous frictions, Coulomb frictions and control torques of
joints 2 and 3, respectively. m j and aj , j ˆ 2;3 ; are the
masses and centres of mass of links 2 and 3, respectively.
The values of these parameters are unknown for our
ILC design.

The second-order di� erential equation (61) can be
rewritten in the form (36) in terms of state variables

x…t† ˆ ‰³2 ;³3 ; _³2 ; _³3ŠT

The output equation (2) is given as
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y…t† ˆ ³2

n2
;

_³2

n2
;
³3

n3
;

_³3

n3

" #T

…62†

where n2 and n3 are the unknown gear ratios of joints 2
and 3.

The robot control system consists of the industrial
robot SEIKO TT3000 and an open architecture control-
ler, as shown in ® gure 5. The robot controller has two
levels of computer systems. The lower level is the real-
time platform using a VME bus-based system with
multiprocessor motion controllers. It includes the host
computer MVME 147 consisting of an MC68030-based
system, 4MB DRAM and 25 MHz system clock, and the
target computer MVME104 consisting of an MC68010-
based system, 10 MHz CPU clock frequency and 512 k
byte random access memory. The MVME104 is also
responsible for I/O operations, including four channels
encoder input ports and four channels A/D converters.
The second level is the PC platform, which is mainly
responsible for task management and data processing.

The joint angle values are measured in real-time at
MVME104 and then passed to the motion control algor-
ithm which is in MVME147 for control input calcula-
tions. The control signal is converted to analogue signals
for PWM power ampli® ers with working switching fre-
quency as high as 40 KHz. These outputs are channelled
to control the joint motors. The sensing and control
inputs are run at the frequency of f ˆ 244 Hz.

The desired velocity trajectory of joint 2 is given as
follows

_³2d…t† ˆ

0:05t2 ; for 0 µ t < 300=f

¡0:05…t ¡ 600=f †2
;

for 300=f µ t < 600=f

0:15…0:3 cos …t ¡ 600=f †‡ 0:7†;

for t ¶ 600=f

8
>>>>>><
>>>>>>:

and the desired velocity trajectory of joint 3 is given as

_³3d ˆ ¡ _³2d…t†
The desired position trajectories for joints 2 and 3

are given as

³jd…t† ˆ
… t

0

_³jd…½†d½ ‡ ³jd…0†

with j ˆ 2 ;3 and integration constants (desired initial
joint angle positions) ³2d…0† ˆ 0:5 rad and ³3d…0† ˆ
1:786 rad.

The controllers for both joints are given in the form
of, for j ˆ 2;3,

uj…t† ˆ ujf b…t†‡ ujf f …t† …63†
where ujf b…t† are the feedback PD controllers to ensure
stability. The position and velocity gains are chosen as
kp2 ˆ kp3 ˆ 50 and kv2 ˆ kv3 ˆ 50. ujf f …t† is the feed-for-
ward input which is updated using the anticipatory ILC
law of the form (42). The sampling interval is chosen as
D ˆ 0:02 s. The learning gain matrix is chosen as

L …¢† ˆ diag ‰lp2 ; lv2 ; lp3 ; lv3Š ˆ diag ‰60 ;6 ;37:5 ;1:25Š
The experimental results, in ® gures 6± 9, clearly show the
convergence of the tracking errors in both joints 2 and 3,
respectively. This experiment demonstrates the e� ective-
ness of the proposed anticipatory ILC scheme and its
robustness against uncertainties in robot repeatability,
frictions and measurement noises.

6. Conclusion

In this paper, continuous-time non-linear dynamic
systems with relative degree one are considered and
the convergence of iterative learning control is studied.
The proposed anticipatory ILC scheme uses a causal
pair of the input action taken and its produced result
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in state variable measurement to compute the required
input action for the next operation cycle. The time shift
ahead in the output errors installs anticipatory charac-
teristics in the updating laws (4), (10) and (42). When
the sampled data form is used, this ILC scheme saves
computation time and achieves convergent results. Ex-
perimental results show its e� ectiveness and robustness
against uncertainties in the robot repeatability, frictions
and measurement noises.
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