
A 64 × 64 CMOS Image Sensor With On-Chip
Moving Object Detection and Localization

Bo Zhao, Student Member, IEEE, Xiangyu Zhang, Student Member, IEEE, Shoushun Chen, Member, IEEE,
Kay-Soon Low, Senior Member, IEEE, and Hualiang Zhuang

Abstract—This paper presents a 64×64 CMOS image sensor
with on-chip moving object detection and localization capability.
Pixel-level storage elements (capacitors) enable the sensor to
simultaneously output two consecutive frames, with temporal dif-
ferences digitalized into binary events by a global differentiator.
An on-chip, hardware-implemented, clustering-based algorithm
processes events on the fly and localizes up to three moving
objects in the scene. The sensor can automatically switch to
region of interest mode and capture a picture of the object.
The proposed image sensor was implemented using UMC 0.18
μm CMOS technology with a die area of 1.5 mm × 1.5 mm, and
power consumption was only 0.4 mW at 100 FPS.

Index Terms—Motion detection, moving object localization,
on-the-fly clustering, smart image sensor.

I. Introduction

CAMERA systems that localize and track fast-motion ob-
jects are important to a number of applications, including

surveillance, security monitoring, and road traffic enforcement.
Despite aggressive advancements in CMOS technology, exist-
ing implementations of these systems remain bulky [1]–[4].
In addition to complex signal processing algorithms, these
systems usually need high-speed imaging to avoid motion blur
and multiple sensors to cover a large surveillance area from
different view angles. Cameras that have no or few feature
extraction capabilities produce large amounts of unimportant
data that must be read and processed to obtain features of
interest [5]. Thus, huge computation resources are demanded
for real-time operation, and this consequently can only be
done on high-performance computing platforms. Translation
of these systems into low-cost and lightweight platforms is
therefore a challenging task.

Smart image sensors combine focal-plane signal processing
and implement novel approaches to improve the computation
efficiency, when compared to conventional discrete sensor-
processor systems. Among these are various image sensors for
motion detection, adaptive resolution, and even object tracking

[6]–[15]. An architecture of an object tracking CMOS image
sensor was presented in [9]. The sensor can switch between
two operation modes: object acquisition and tracking. It first
finds the N most salient targets in the field of view and defines
windows around their centroid coordinates, then only the
regions inside the windows are processed. A spatial-temporal
multi-resolution CMOS image sensor was reported in [15].
This image sensor can simultaneously generate two outputs:
one at a low frame rate with maximum spatial resolution
for stationary backgrounds and the other at a high frame
rate with reduced spatial resolution for moving objects in the
region-of-interest (ROI). Based on 1-bit motion information,
the centroid of the moving object is computed by an external
CPLD device and sent back to the sensor. The row decoder
and the column selector later only access ROI pixels to track
the object. The overall system requires two external CPLDs
and the algorithm suffers from background noise and cannot
adaptively change the size of the region of interest. A more
advanced object tracking algorithm was proposed in [16] and
[17]. This tracking system was developed using an asyn-
chronous, temporal-contrast, address-event-representation-type
vision sensor [14] and an off-chip digital signal processor. The
algorithm continuously clusters incoming events based on a
mean-shift approach. Each new event is assigned to a cluster
based on a distance criterion, and the event is used to update
this cluster’s weight and position. Though this system removes
the need for a buffer to record every motion event, computation
tends to be extensive due to the long list of clusters to be
maintained and updated for every event. This is caused by
the random spatial and temporal distribution of motion events
out of the vision sensor, in which the pixels belonging to one
object arrive in nonconsecutive order. An individual motion
pixel cannot easily be treated as “noise” or “a part of an
interested object” without waiting a significant amount of time
to see whether it is surrounded by enough nearby neighbors.

In this paper, we propose an image sensor with on-
chip moving object detection and localization. The algorithm
was implemented on-chip without the need for any external
computation and storage. This image sensor performs frame
differencing [18] to generate binary motion events, which are
processed on the fly to build clusters based on a distance
criterion. After the position and size of the active object is ob-
tained, the sensor switches to ROI intensity mode and reports a
picture of the object. The aim of this paper is to develop a real-
time tracking system for low-power applications. Our major

1



Fig. 1. Block diagram of the single-chip image sensor with moving objects
detection and localization functionality. The event generator digitalizes tem-
poral differences into sequential motion events, which are processed by the
moving object localization unit on the fly to find the boundary addresses of
the moving object region. With these addresses, the address controller enables
the image sensor to extract the image in the ROI.

contribution resides in two areas: 1) an efficient clustering-
based object localization algorithm; and 2) single-chip fusion
of motion detection and object localization.

The rest of this paper is organized as follows. In Section II,
we introduce the system architecture. Section III describes the
moving object localization algorithm. The very large scale in-
tegration (VLSI) implementation of motion detection and ob-
ject localization is illustrated in Section IV. Section V reports
the experimental results and Section VI concludes this paper.

II. System Architecture

Fig. 1 shows the system architecture of the proposed image
sensor. Main building blocks include a 64×64 pixel array,
temporal difference event generator, object localization unit,
address controller, and decoders. Each pixel is equipped with
an analog memory (capacitor) and can output both the new
integration voltage on its photodiode and the previous voltage
stored on its capacitor. The event generator computes the
difference between the two voltages and compares it to a
positive and negative threshold. A motion event is generated if
this difference exceeds the thresholds. If the scene illumination
and object reflectance are constant, the changes in scene re-
flectance only result from object movements or camera motion.
The background information is thus filtered by the camera,
avoiding the background subtraction computation needed with
systems that employ standard intensity cameras [19], [20].
The motion events are processed on the fly to build clusters
based on a distance criterion. At the end of the frame, the
position and size of the active object is obtained. The sensor
can automatically switch to ROI intensity mode and capture a
picture of the object.

III. Object Localization Algorithm

Integration of a signal processing algorithm onto silicon
involves trading off between performance and complexity.

Fig. 2. Updating an existing cluster upon the arrival of a new active motion
event (pixel value equals “1”). (r1, c1) and (r2, c2) illustrate the cluster’s
original boundary, w and h are its width and height, and Thx and Thy

define the search range of the cluster. dx and dy show the row distance and
column distance between the cluster center (red cross) and the incoming event,
respectively. If the new event resides within the search range of the cluster,
then it is defined as belonging to that cluster, and the cluster’s information
will be updated correspondingly.

Increased complexity usually translates into higher system
cost and power consumption. On the other hand, an over-
simplified algorithm will downgrade system performance and
lose ground for practical usage. On the basis of these con-
siderations, we proposed an efficient object localization algo-
rithm and seamlessly integrated it into the above-mentioned
motion detection sensor. The key processing element is a so-
called “cluster,” which is a block of pixels belonging to the
same object. As illustrated in Fig. 2, a cluster is visually
represented as a rectangle shape and is uniquely defined
by its boundary coordinates (r1, c1), (r2, c2). Besides these
boundary coordinates, parameters of a cluster also include
number of events (NoE). By trading off between performance
and implementation complexity (explained in Section III-B),
we employ three clusters and the chip is therefore able to track
up to three objects at the same time.

A. Clustering of Motion Events

The algorithm is implemented in an on-the-fly fashion. It
continuously monitors the incoming pixel data (motion event),
in which “1” stands for a pixel on a motion object (active
motion event) and “0” for a still background pixel (inactive
motion event). For the sake of clarity, the “event” mentioned
in the following part always refers to the active motion event.

At the beginning of each frame, all clusters are reset (i.e.,
number of events of each cluster is cleared to 0). A cluster is
initiated upon the arrival of the first active motion event. Later
on, the algorithm examines the distance of a new event to the
existing clusters (nonempty) based on the following criterion:

dx < Thx and dy < Thy (1)

where dx and dy are the row distance and column distance
between the event and the cluster center, respectively. Thx

and Thy define a search range (the largest rectangular area
in Fig. 2) with respect to the center of the existing cluster.

2



Fig. 3. Illustration of instant merging. If the incoming event belongs to more
than one cluster at the same time, then all corresponding clusters and current
event will be merged together.

Thx and Thy are not constants; they instead grow with the
cluster. Let w and h be the width and height of the cluster,
then Thx and Thy can be described as

Thx = Th0 + h
/

2
Thy = Th0 + w

/
2

(2)

where Th0 is a user-defined threshold, which stands for the
distance from the boundary of the cluster to the boundary of
search range.

The clusters will then be updated according to the following
procedure.

1) If the event falls within the boundary of an existing
cluster, the cluster simply increases its number of events
by one. If the event falls out of the cluster boundary but
is still within the search range, it is still considered to
be part of this cluster, and the cluster therefore grows
its boundary to enclose the event. This procedure is
illustrated in Fig. 2.

2) If the incoming event is out of the search range, a new
cluster needs to be initiated which is centered at the
address of the event.

3) In case the event belongs to more than one cluster
at the same time, these clusters are merged into a
single larger cluster. As illustrated in Fig. 3, when the
search ranges of cluster 1 and cluster 2 overlap and
an event occurs in the common region, we merge the
two clusters into a single one and store the updated
information into cluster 1. We name this strategy “instant
merging.” In this way, the resource of cluster 2 can be
reused, effectively reducing required total number of
clusters.

4) If the event belongs to none of the existing clusters,
a new cluster needs to be initiated. Due to limited
resources, there is a chance that all clusters are deployed.
In this case, a discarding strategy is adopted. The cluster
containing the least number of events is considered a
noise object and discarded. At the same time, it is re-
initiated according to the address of the event.

Fig. 4 shows the intermediate clusters during the sequen-
tial scanning of a binary image, which models the output
data stream from the image sensor. It illustrates the above-
mentioned clustering process, including initiation of a new
cluster, cluster growing, merging, and discarding.

Fig. 4. Evolution of the intermediate clusters during the sequential scanning
of a temporal difference image. (a) Test image which models the output data
stream from the sensor. (b) First motion event initiates cluster 1 (solid box).
(c) As more events are received and processed, cluster 1 is enlarged, and
cluster 2 is initiated (dashed box). (d) Instant merging: a new event belongs
to both clusters 1 and 2, and the two clusters are therefore considered to
be parts of one object and merged. (e), (f) Discarding strategy. A new event
belongs to none of the existing clusters and all cluster resources are taken, then
the cluster containing the least number of events (cluster 3, in this example,
shown as a dotted box) is considered a noise object and discarded. At the
same time, this cluster is re-initiated at the address of the event.

Fig. 5. (a) Figure that is used to illustrate the definition of localization error.
Dotted regions represent the nonoverlapping area. (b) Lists some sample test
images. (c) and (d) present corresponding ground truth and simulation results
(at certain Th0 and number of clusters), respectively.

B. Selection of Optimal Parameters

In order to evaluate the proposed algorithm and select
optimal parameters (search range threshold Th0 and number
of clusters), we have defined a quantitative criterion. As
illustrated in Fig. 5(a), for a test image with a resolution
of 64×64, the boundary of the largest object in the scene
is manually marked as the reference ground truth, and is
compared to the boundary computed by the algorithm (at
certain Th0 and number of clusters). The localization error
is defined as follows:

err = Nd

/
Nt (3)

where Nd is the number of pixels in the nonoverlapping area
of the two bounding boxes, and Nt is the number of pixels in
the ground truth box.

We have built a library of 120 motion images, including var-
ious scenarios such as road traffic, pedestrians, and laboratory

3



Fig. 6. RMSE versus Th0 for a test image sequence (given three clusters).
The optimal Th0 is 3.

activities. A few examples are shown in Fig. 5(b). Based on
the test image library, we first evaluated the choice of search
range threshold Th0. Given a fixed number of clusters (e.g.,
1, 2, 3, · · ·), for a certain threshold, Th0 = k, 1 ≤ k < 64,
each image of the test sequence produces an error (erri, i =
1, 2, ..., N, N = 120), and root mean square error (RMSE) is
calculated based on the following performance metric:

RMSEk =

√√√√ 1

N

N∑
i=1

err2
i . (4)

On one hand, a smaller threshold (corresponding to a
conservative boundary expansion rate) leads to better noise re-
jection and allows production of a “cleaner” bounding box for
an object. On the other hand, a larger threshold (corresponding
to an aggressive boundary expansion rate) is required to merge
discontinuous regions of one object, which are commonly
found in temporal difference images due to the nonuniform
motion speed of parts belonging to one object. With the given
library, we tried different numbers of clusters (1 to 5); and for
each number, we sweep the search range threshold Th0 to find
an optimal value, based on the minimum RMSE rule. When
using only one cluster, the optimal threshold Th0 is found at
10; while for two to five clusters, the optimal thresholds are all
coincidentally equal to 3. Fig. 6 shows the simulation result
for three clusters. The best clustering performance (i.e., the
minimum RMSE) for each cluster number is reported in Fig.
7. More clusters undoubtedly improve performance; however,
the improvement almost saturates when cluster number is
more than three. In addition, seen from the description of
the algorithm, larger number of clusters will involve more
operations such as distance measurement and comparison, and
hence end up with more hardware resources. With the above
considerations, we employ three clusters in the system.

With the obtained parameters (i.e., three clusters and Th0 =
3), we execute the algorithm on a short motion video sequence.
For each frame, the computed bounding box is compared
with a manually marked ground truth. The simulation result
is shown in Fig. 8.

Fig. 7. RMSE versus number of clusters (at corresponding best threshold
Th0). Three clusters are enough for the given test image library.

Fig. 8. Comparison of the width and height of the computed bounding box
to the ground truth box for the test library.

C. Performance Under Different Noise Conditions

In order to quantitatively analyze the influence of noise on
the algorithm’s performance, we added salt and pepper noise
to all the library images. We tried different noise densities,
ranging from 0.01 to 0.10, with a step length of 0.01. The
RMSE for each noise density was calculated and shown in
Fig. 9. As expected, the RMSE gradually increases with the
increase of noise density. Fig. 10 shows samples of localization
results under different noise conditions. It demonstrates the
robustness of our algorithm against low to medium level noise
interference.

IV. VLSI Implementation

A. Motion Detection

The image sensor consists of a 64×64 pixel array, and each
pixel is equipped with an analog memory (capacitor). The
whole array is hence capable of storing the previous frame as
a reference image. The rows are first sequentially selected for
reset. Later, at another round of scanning, the rows of pixels
are sequentially selected for readout. Each pixel will output
both the new integration voltage on its photodiode and the

4



Fig. 9. RMSE versus noise density. (Algorithm parameters: three clusters,
search range threshold Th0 equals 3.)

Fig. 10. Localization results of an example image under different noise
conditions. The first one is the result before adding noise. The others are
results under different levels of salt and pepper noise interference (from left
to right, noise densities are 0.01, 0.02, 0.05, and 0.10, respectively).

Fig. 11. Schematic of the pixel. Low threshold NMOS follower m2 is
highlighted with a circle. Capacitor C is the memory device that stores the
previous-frame pixel value.

previous voltage stored on its capacitor. The two voltages are
fed into a global event generator circuit which is composed
of a global amplifier with a temporal-difference computation
circuit based on dual comparison [18]. The event generator
computes the difference between the two voltages and com-
pares it to a positive and negative threshold. A digital motion
event is generated if this difference exceeds the thresholds.

Fig. 11 shows the schematic of the pixel. Building blocks
include a photo sensing element (photodiode), reset transistor
(m1), an internal unity gain buffer made of a NMOS source
follower (m2–m4), a sample-and-hold circuit (m5, m6, C) for
storing the previous photo sensing voltage, and two sets of
PMOS source follower readout paths (m7, m8 and m9, m10).
In order to address the body effect and improve linearity,
PMOS source follower transistors are designed in dedicated
Nwells. This comes at the cost of a minor increase in silicon
area.

Fig. 12. Block diagram of the object localization unit.

B. Object Localization

Fig. 12 shows the block diagram of the object localization
unit. Major building blocks include three sets of registers for
storing clusters’ information and a batch of computational
logics, including Distance Measurement Unit (“belong2clu1,”
“belong2clu2,” and “belong2clu3”), “Clustering Flags Gener-
ator,” and “Clusters Update Logic.”

1) Distance Measurement: The motion event and its
address are sent in parallel to the distance measurement
unit. Based on the criterion described in (1), three bits of
comparison results are produced, namely “belong2clu1,” “be-
long2clu2,” and “belong2clu3,” respectively.

For instance, signal “belong2clu1” indicates whether the
new event falls within the search range of cluster 1. Let
(x, y), (xc, yc), (r1, c1), and (r2, c2) denote the addresses
of the motion event, cluster-1’s center, top left corner, and
bottom right corner, respectively; then the distance between
the event and the cluster center, the search range, and the
final comparison results are computed by

h = r2 − r1
w = c2 − c1
Thx = Th0 + h/2
Thy = Th0 + w/2
xc = (r1 + r2)/2
yc = (c1 + c2)/2
dx = abs(x − xc)
dy = abs(y − yc)
belong2clu1 = (dx < Thx)&&(dy < Thy).

(5)

Therefore, the computational core for measuring the dis-
tance to each cluster consists of ten adders. Fig. 13 shows the
implementation of “a < b” and “abs(a − b)” operation.

2) Clustering Flags Generator: Seen from the description
of the algorithm, one event may simultaneously belong to
multiple clusters. The three bits of comparison results are fed
to “Clustering Flags Generator” to make further judgements.

For instance, the combination of ’b100 (“belong2clu1” =
1, “belong2clu2” = 0, “belong2clu3” = 0) indicates that the
motion event only belongs to cluster-1 and hence cluster-1
should be enlarged. As shown in Fig. 14, this can be simply
implemented in hardware by a “AND3” gate, which outputs

5



Fig. 13. Arithmetic operations for (a < b) and abs(a − b). (a) (a < b).
(b) abs(a − b).

Fig. 14. Generation of the clustering flags. The 3 bits of comparison
results (“belong2clu1,” “belong2clu2,” and “belong2clu3”), together with the
information of NoE in each cluster, generate ten clustering flags.

Fig. 15. Update of cluster-1 registers. Clustering flags control a series of
tri-state buffers to choose the right boundary update results.

a flag signal, denoted as “flag−enlarge−1.” Similarly, the
sequence of ’b111 asserts a signal namely “flag−merge−1∼3.”
In particular, ’b000 means the event belongs to none of the
clusters. In this case, the cluster containing the least number
of events will be re-initialized.

3) Clusters Update Logic: The aforementioned flags will
determine the clusters’ update operations, i.e., initiation, grow-
ing, merging, and so on. In hardware (shown in Fig. 15),
a batch of dedicated arithmetic blocks first compute every
possible future cluster information (i.e., boundary address and
number of events). The clustering flags then control a series
of tri-state buffers to select one out of the future values.

The computational core in each arithmetic block only con-
sists of adders. For instance, enlarging cluster-1 involves the

following arithmetic operations:

r1′ = min(r1, x)
r2′ = max(r2, x)
c1′ = min(c1, y)
c2′ = max(c2, y)
NoE1′ = NoE1 + 1

(6)

where (r1′, c1′), (r2′, c2′), and NoE1′ represent the updated
boundary and number of events.

4) Discussion: We examined the implementation complex-
ity of the localization block with respect to scaled number of
clusters.

a) Storage of the clusters (i.e., flip-flops) will linearly
increase. Each cluster records its two corner addresses
(r1, c1) and (r2, c2), and NoE. This needs 41 bits of
flip-flops in total.

b) Since a new event has to check whether it belongs to
each cluster, the complexity of the distance measurement
unit (i.e., +, −, and < operations) will linearly increase.

c) More inter-cluster operations are needed. For instance,
when there are three clusters, an incoming event will
check whether it belongs to only one of them or simul-
taneously two of them, or even three of them. These
operations are translated to “AND” gates (as shown in
Fig. 14). For N clusters, the total number of “AND” op-
erations is C(N, 0)+C(N, 1)+C(N, 2)+...+C(N, N) = 2N .
Moreover, in order to find out which cluster has the least
number of events, another 2N “AND” gates and C(N, 2)
comparators are required.

In summary, building larger number of clusters on-chip
allows us to track more objects and offers better noise rejection
performance; however, this is at the expense of more hardware
resources.

V. Experimental Results

The single-chip smart vision sensor consisting of a temporal
difference imager and an object localization unit was imple-
mented using UMC 0.18 μm CMOS process (one poly and six
metal layers). Fig. 16 shows the chip microphotograph with
main building blocks highlighted. The chip has a total area
of 1.5 mm × 1.5 mm (inclusive of I/O pads). The 64×64
pixel array, motion event generator, and row and column
decoders were implemented using a full custom approach.
Each pixel features an area of 14×14 μm2 with a fill-factor of
32%. The object localization unit was designed from register
transfer level using Verilog HDL, and it was implemented as
synchronous digital circuits using standard cells. It occupies
a relatively small silicon area of 600×220 μm2. Guard rings
were extensively used to limit substrate coupling and shield
the pixels from the outer-array digital circuitry. Power and
ground buses were routed using top layer metal.

In order to test the chip, we developed a field-programmable
gate array (FPGA) based testing platform as shown in Fig.
17. The vision sensor is interfaced with an Opal-Kelly XEM
3005 FPGA board. The FPGA is configured to provide
input control signals (clock, reset and switch between
analog/motion mode), temporarily store the cluster data to an

6



Fig. 16. Chip microphotograph with main building blocks highlighted.

Fig. 17. FPGA based testing platform. The vision sensor is interfaced with
an Opal-Kelly XEM 3005 FPGA board.

on-board SDRAM, and communicate with a PC through a
high-speed USB link. On the PC side, a graphic user interface
is developed which translates operational parameters such as
frame rate and motion sensitivity into FPGA signals. At the
end of each frame, the three clusters are read out sequentially.
Based on the features of object size, position, and motion
density (which can be derived from the cluster size and
number of events), external processors can effectively track
the object of interest. The sensor can automatically switch to
ROI intensity mode, and the on-chip address unit will only
read out the ROI pixels. An on-board 12-bit ADC (AD7476)
is used for analog image conversion.

Fig. 18 reports a few sample images of road traffic. The
demo video can be accessed from our lab website [21]. In
this example, we assume the largest object in the scene is the
target of interest, and one can note that the sensor can locate
and extract the running person, motorcycle, and car quite well.
During data acquisition, the sensor was mounted still on the
second floor and faces the road with an angle of ±45°. Due to
the limited resolution of 64×64 pixels, the image quality of
the ROI is not very satisfying when the object goes far. With
the successful proof of this concept sensor, we plan to adopt
a multi-resolution strategy [15] in the future. The proposed

Fig. 18. Sample images of the prototype image sensor. (a) Gray level images
captured in normal intensity mode. (b) Corresponding images captured in
temporal difference mode. (c) Localization results on top of the temporal
difference images. (d) Snapshot of the ROI (images are resized in software
for better visualization).

TABLE I

Chip Characteristics

Process Technology UMC 0.18 μm 1P6M CMOS, 1.8 v Supply

Die size 1.5 × 1.5 mm2

Pixel array 64 × 64

Pixel size 14 × 14 μm2

Number of trans/pixel 10
Fill factor 32%

Readout strategy Sequential scan
Fixed pattern noise 0.4%

Dark current 6.7 fA
Sensitivity 0.11 v/(lux·s)

Max frame rate 100 fps
Power consumption Pixels array + motion detection 0.4 mW,

object localization 8.63 μW (at 100 fps)

clustering algorithm works at low resolution and high frame
rate. Once the object of interest is determined, the sensor can
switch to higher resolution and only reports intensity image
of the ROI.

Other characteristic parameters of the chip are summarized
in Table I. In particular, the sensor features low power con-
sumption. The analog part only dissipates 0.4 mW, and the
clustering part consumes 8.63 μW when operating at 100 f/s.

VI. Conclusion

This paper reported the theory, simulation, VLSI design,
and experimental measurements of a single-chip CMOS image
sensor with moving object detection and localization capabil-
ity. Motion events are first detected using a frame differencing
scheme; then they are processed by an on-the-fly clustering
processor to localize the motion objects in the scene. Unlike
existing systems relying on external FPGAs or CPLDs to
perform object localization, our system does not require any
external computation or storage. The proposed algorithm is
integrated on chip, featuring compact silicon implementation
and little power consumption. The proposed design is an ideal
candidate of wireless sensor network node, for applications
such as assisted living monitors, security cameras, and even

7



robotic vision. Future improvements include adoption of a
dynamic resolution pixel array and event based object tracking.

References

[1] C.-H. Chen, Y. Yao, D. Page, B. Abidi, A. Koschan, and M. Abidi,
“Heterogeneous fusion of omnidirectional and PTZ cameras for multiple
object tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 18,
no. 8, pp. 1052–1063, Aug. 2008.

[2] A. Blumberg, L. Keeler, and A. Shelat, “Automated traffic enforcement
which respects ‘driver privacy’,” in Proc. IEEE ITSC, Sep. 2005, pp.
941–946.

[3] Y. Cho, S. O. Lim, and H. S. Yang, “Collaborative occupancy reasoning
in visual sensor network for scalable smart video surveillance,” IEEE
Trans. Consumer Electron., vol. 56, no. 3, pp. 1997–2003, Aug. 2010.

[4] Y.-J. Wu, F.-L. Lian, and T.-H. Chang, “Traffic monitoring and vehicle
tracking using roadside cameras,” in Proc. IEEE Int. Conf. SMC, vol. 6.
Oct. 2006, pp. 4631–4636.

[5] H. Zhuang, K.-S. Low, and W.-Y. Yau, “On-chip pulse based parallel
neural circuits for object-tracking system,” IET Electron. Lett., vol. 46,
no. 9, pp. 614–616, Apr. 2010.

[6] M. Gottardi, N. Massari, and S. Jawed, “A 100 μW 128 × 64 pixels
contrast-based asynchronous binary vision sensor for sensor networks
applications,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1582–
1592, May 2009.

[7] E. Artyomov and O. Yadid-Pecht, “Adaptive multiple-resolution CMOS
active pixel sensor,” IEEE Trans. Circuits Syst. I: Regular Papers,
vol. 53, no. 10, pp. 2178–2186, Oct. 2006.

[8] A. Teman, S. Fisher, L. Sudakov, A. Fish, and O. Yadid-Pecht, “Au-
tonomous CMOS image sensor for real time target detection and
tracking,” in Proc. IEEE ISCAS, May 2008, pp. 2138–2141.

[9] A. Fish, L. Sudakov-Boresha, and O. Yadid-Pecht, “Low-power tracking
image sensor based on biological models of attention,” Int. J. Inform.
Theory Applicat., vol. 14, no. 2, pp. 103–114, 2006.

[10] S. Chen, F. Boussaid, and A. Bermak, “Robust intermediate read-out
for deep submicron technology CMOS image sensors,” IEEE Sensors
J., vol. 8, no. 3, pp. 286–294, Mar. 2008.

[11] S. Chen, A. Bermak, and Y. Wang, “A CMOS image sensor with on-
chip image compression based on predictive boundary adaptation and
memoryless QTD algorithm,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 19, no. 4, pp. 538–547, Apr. 2011.

[12] Y. Chi, U. Mallik, M. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-
Cummings, “CMOS camera with in-pixel temporal change detection and
ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2187–2196, Oct.
2007.

[13] S. Mizuno, K. Fujita, H. Yamamoto, N. Mukozaka, and H. Toyoda, “A
256 × 256 compact CMOS image sensor with on-chip motion detection
function,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1072–1075,
Jun. 2003.

[14] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 dB 15 μs
latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-
State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.

[15] J. Choi, S.-W. Han, S.-J. Kim, S.-I. Chang, and E. Yoon, “A spatial-
temporal multiresolution CMOS image sensor with adaptive frame rates
for tracking the moving objects in region-of-interest and suppressing
motion blur,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2978–
2989, Dec. 2007.

[16] M. Litzenberger, C. Posch, D. Bauer, A. Belbachir, P. Schon, B. Kohn,
and H. Garn, “Embedded vision system for real-time object tracking
using an asynchronous transient vision sensor,” in Proc. Digit. Signal
Process. Workshop, Sep. 2006, pp. 173–178.

[17] M. Litzenberger, A. Belbachir, N. Donath, G. Gritsch, H. Garn, B. Kohn,
C. Posch, and S. Schraml, “Estimation of vehicle speed based on
asynchronous data from a silicon retina optical sensor,” in Proc. IEEE
ITSC, Sep. 2006, pp. 653–658.

[18] S. Chen, W. Tang, and E. Culurciello, “A 64 × 64 pixels UWB wireless
temporal-difference digital image sensor,” in Proc. IEEE ISCAS, Jun.
2010, pp. 1404–1407.

[19] H. Su and F.-G. Huang, “Human gait recognition based on motion
analysis,” in Proc. Int. Conf. Mach. Learning Cybern., vol. 7. Aug. 2005,
pp. 4464–4468.

[20] J. Triesch and C. von der Malsburg, “A system for person-independent
hand posture recognition against complex backgrounds,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 23, no. 12, pp. 1449–1453, Dec. 2001.

[21] B. Zhao. (2011, Jan.). Demo Video [Online]. Available: http://www3.
ntu.edu.sg/home2009/zhao0130/1/demo.htm

Bo Zhao (S’11) received the B.S. and M.S. degrees
in electronic engineering from Beijing Jiaotong Uni-
versity, Beijing, China, in 2007 and 2009, respec-
tively. He is currently pursuing the Ph.D. degree with
the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore.

His current research interests include smart vision
sensors and energy-efficient algorithms for object
recognition.

Xiangyu Zhang (S’11) received the B.S. degree
in electronic engineering from Southeast University,
Nanjing, China, in 2009. He is currently pursu-
ing the Ph.D. degree with the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore.

His current research interests include mixed-signal
integrated circuit design for smart image sensors.

Shoushun Chen (M’05) received the B.S. degree
from Peking University, Beijing, China, the M.E.
degree from the Chinese Academy of Sciences,
Beijing, and the Ph.D. degree from the Hong Kong
University of Science and Technology, Clear Water
Bay, Hong Kong, in 2000, 2003, and 2007, respec-
tively.

He was a Post-Doctoral Research Fellow with the
Department of Electronic and Computer Engineer-
ing, Hong Kong University of Science and Technol-
ogy for one year after graduation. From February

2008 to May 2009, he was a Post-Doctoral Research Associate with the
Department of Electrical Engineering, Yale University, New Haven, CT. In
July 2009, he joined the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore, as an Assistant Professor. His
current research interests include mixed signal integrated circuits design for
sensors, feature extracting biomimetic sensors for sensor networks, energy-
efficient algorithms for object recognition, smart vision sensors, asynchronous
very large scale integration circuits, and systems.

Dr. Chen serves as a Technical Committee Member of Sensory Systems,
IEEE Circuits and Systems Society, an Associate Editor of the Sensors
Journal, and the Program Director (Smart Sensors) of VIRTUS, IC Design
Center of Excellence.

Kay-Soon Low (M’88–SM’00) received the B.Eng.
degree in electrical engineering from the National
University of Singapore, Singapore, and the Ph.D.
degree in electrical engineering from the University
of New South Wales, Sydney, Australia.

He joined the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore, in 1994 as a Lecturer and sub-
sequently became an Associate Professor. He has
served as a consultant to many companies and has
a number of granted patents on nonlinear circuits

and ultrawideband systems. His funded projects are in the field of wearable
wireless sensor networks, solar energy systems, pulse neural networks, and
satellite systems. Currently, he is the Center Director of the Satellite Research
Center, Nanyang Technological University.

Hualiang Zhuang received the B.Eng. degree in
electrical engineering from Zhejiang University,
Zhejiang, China, and the M.Eng. degree in electrical
engineering from Nanyang Technological University,
Singapore. He is currently pursuing the Ph.D. degree
in electrical engineering with Nanyang Technologi-
cal University.

He is currently a Research Associate with Nanyang
Technological University. His current research inter-
ests include process control and neural networks.

8


