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Abstract—Event-driven visual sensors have attracted interest from a number of different research communities. They provide visual

information in quite a different way from conventional video systems consisting of sequences of still images rendered at a given “frame

rate.” Event-driven vision sensors take inspiration from biology. Each pixel sends out an event (spike) when it senses something

meaningful is happening, without any notion of a frame. A special type of event-driven sensor is the so-called dynamic vision sensor

(DVS) where each pixel computes relative changes of light or “temporal contrast.” The sensor output consists of a continuous flow of

pixel events that represent the moving objects in the scene. Pixel events become available with microsecond delays with respect to

“reality.” These events can be processed “as they flow” by a cascade of event (convolution) processors. As a result, input and output

event flows are practically coincident in time, and objects can be recognized as soon as the sensor provides enough meaningful

events. In this paper, we present a methodology for mapping from a properly trained neural network in a conventional frame-driven

representation to an event-driven representation. The method is illustrated by studying event-driven convolutional neural networks

(ConvNet) trained to recognize rotating human silhouettes or high speed poker card symbols. The event-driven ConvNet is fed with

recordings obtained from a real DVS camera. The event-driven ConvNet is simulated with a dedicated event-driven simulator and

consists of a number of event-driven processing modules, the characteristics of which are obtained from individually manufactured

hardware modules.

Index Terms— Feature extraction, convolutional neural networks, object recognition, spiking neural networks, event-driven neural

networks, bioinspired vision, high speed vision

1 INTRODUCTION

IN 2006, Delbrück et al. [1], [2] presented the first event-
driven dynamic vision sensor (DVS) inspired by Kramer’s

transient detector concept [3]. This was followed and
improved by other researchers [4], [5]. The DVS presents
a revolutionary concept in vision sensing as it uses an
event-driven frameless approach to capture transients in
visual scenes.

A DVS contains an array of pixels ði; jÞ where each pixel
senses local light Iij and generates an asynchronous
“address event” every time light changes by a given relative
amount C > 1 (if light increases: when IijðtÞ=IijðtoÞ ¼ C, or
if light decreases: when IijðtÞ=IijðtoÞ ¼ 1=C). The “address
event” consists of the pixel coordinates ðxij; yijÞ and sign sij
of the change (increment or decrement). This “flow” of
asynchronous events is usually referred to as “address event
representation” (AER). Every time a DVS pixel generates
such an event, the event parameters ðxij; yij; sijÞ are written
on a high speed asynchronous digital bus with nanosecond
delays. A DVS pixel typically generates one to four events
(spikes) when an edge crosses it. DVS output consists of a
continuous flow of events (spikes) in time, each with
submicrosecond time resolution, representing the observed
moving reality as it changes, without waiting to assemble or
scan artificial time-constrained frames (images).
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As an illustration, Fig. 1 shows the event flow generated 
by a DVS when it observes a black 400-Hz rotating disk 
with a white dot. On the right, events are represented in 3D 
coordinates ðx; y; tÞ. When a pixel senses a dark-to-bright 
transition, it sends out positive events (dark dots in Fig. 1), 



and when it senses a bright-to-dark transition, it sends out a
negative event (gray dots in Fig. 1). Appendix 1, which can
be found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.71, ex-
plains the operation of a typical DVS camera in more
detail. The flow of events generated by a DVS can be
captured with an event logger board [6], [7], and written on
a file with corresponding time stamps. This file contains a
list of signed time-stamped events ðt; x; y; sÞ.

Recorded time-stamped events can be processed offline
to perform filtering, noise removal, shape detection, object
recognition, and other operations. However, it is more
desirable to develop event-driven processing hardware to
process events as they are generated by the DVS, without
time stamping them, and to operate in true real time. For
example, some event-driven convolution processors have
recently been reported for performing large programmable
kernel 2D convolutions on event flows [8], [9], [10].
Appendix 2, available in the online supplemental material,
briefly explains the operation of a typical AER program-
mable kernel convolution chip. One very interesting
property of this event-driven processing is what we call
here “pseudosimultaneity” or “coincidence” between input
and output event flows. This concept is illustrated with the
help of Fig. 2. A vision sensor is observing a flashing
symbol that lasts for 1 ms. The sensor then sends its output
to a five-layer convolutional neural network for object
recognition, as shown in Fig. 2a. In the case of conventional
frame-driven sensing and processing, the sequence of
processing results would be as depicted in Fig. 2b.
Assuming sensor and each processing stage respond in
1 ms, the sensor output image would be available during
the next millisecond after the flash. Then, each sequential
stage would provide its output 1 ms after receiving its
input. Therefore, recognition (last stage output) becomes
available 6 ms after the symbol flashed. Fig. 2c shows the
equivalent when sensing and processing with event-driven
hardware. Pixels in the sensor create and send out events as
soon as they sense a light change, with microseconds delay
[1], [2], [4], [5]. This way, the sensor output events at xo are,
in practice, simultaneous to the flashing symbol in reality.
The first event-driven stage processes events as they flow
in, with submicrosecond delays [8], [9], [10], [11]. As soon as
sufficient events are received representing a given feature,
output events will be available. Thus, the output feature

event flow at x1 is, in practice, coincident with the event
flow at xo. The same happens for the next stages. Therefore,
recognition at x5 becomes available during the first
millisecond, as soon as the sensor provides sufficient events
for correct recognition.

This pseudosimultaneity or coincidence property becomes
very attractive for event-driven processing systems com-
prising a large number of cascaded event-driven processors
with or without feedback, as the overall output can be
available as soon as sufficient meaningful input events are
provided. This contrasts strongly with state-of-the-art
frame-driven vision sensing and processing, where images
are first detected by a camera and then transferred to an
image processor.

In this paper, we focus on vision systems comprising an
event-driven sensor and a large number of event-driven
processing modules used to perform object recognition
tasks.1 To do so, we will concentrate on a particular type of
bioinspired vision processing structures called convolu-
tional neural networks (ConvNets) [12]; reported ConvNets
operate based on frame-driven principles and are trained by
presenting them with a database of training static images
(frames). On the other hand, training of event-driven
processing modules is still an open research problem. Some
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Fig. 1. Example illustration of DVS camera output event flow when

observing a black rotating disk with a white dot, rotating at 400 Hz.

Fig. 2. Illustration of pseudosimultaneity or coincidence property in a
multilayer event-driven processing system. (a) Vision system composed
of vision sensor and five sequential processing stages, like in a
ConvNet. (b) Timing in a frame-constraint system with 1-ms frame time
for sensing and per stage processing. (b) Timing in an event-driven
system with microsecond delays for sensor and processor events.

1. As discussed in Appendix 2, available in the online supplemental
material, with present day technology, it is feasible to develop compact
hardware with thousands of event-driven convolution modules [28].



preliminary and highly promising work on this can be
found in the literature [19], [20]. However, its application to
large-scale systems is presently not practical. Therefore, in
this paper, we present an intermediate solution. First, we
build a database of training images (frames) by collecting
events from a DVS camera during fixed time intervals.
Second, we train a frame-driven ConvNet with this
database to perform object recognition. Third, we map the
learned parameters of the frame-driven ConvNet to an
event-driven ConvNet, and finally, we fine-tune some extra
available timing-related parameters of the event-driven
ConvNet to optimize recognition. To do this process, we
provide a methodology for mapping the properly trained
frame-driven ConvNet into its corresponding event-driven
version. We will then illustrate this with two example
ConvNet exercises: one for detecting the angle of rotated
DVS recordings of walking human silhouettes, and the
other for recognizing the symbols of poker cards when
browsing the card deck in about 1 second in front of a DVS.

The paper is structured as follows: The next section
discusses timing differences between vision in frame-driven
and event-driven representations. Section 3 presents the
mapping method from a frame-driven system neuron to an
event-driven system neuron. Sections 4 and 5 present two
example ConvNet systems that use DVS recordings from
real DVS retina chips. In Section 4, the example targets a
problem where the time constants of the observed world are
similar to those we humans are used to, while the
experiment in Section 5 illustrates the situation for higher
speed observed realities where DVS performance is pushed
to its limits. Finally, Sections 6 and 7 present some
discussions and the conclusions.

2 TIMING IN FRAME-DRIVEN VERSUS EVENT-DRIVEN

VISION REPRESENTATION

In a frame-driven visual processing system “reality” is
sensed as binned into time compartments of duration Tframe.
The implicit assumption is that the time constant �reality

associated with the changes in “reality” is larger than Tframe

or, at most, similar. If �reality is much larger than Tframe

(reality moves slowly), then many subsequent video frames
would be quite similar and redundant. An image capturing
and processing system working on a frame by frame basis
would repeat complex image processing and recognition
algorithms over a similar input, wasting computing
resources. If �reality is much smaller than Tframe (reality
moves very fast), then subsequent video frames would be
considerably different, making it difficult or impossible to
track objects (for example, many flies in a box). Optimally,
one would desire to adjust Tframe to be close to �reality so that
subsequent frames are different enough to justify the
computing resources employed, but still similar enough to
be able to track changes.

In an event-driven vision sensing and processing system,
frames need not be used. For example, in event-driven
temporal contrast retina sensors (DVS), pixels generate
output events representing “moving reality” with time
constants that adapt naturally to �reality. In the particular
case of feedforward multilayer ConvNets, subsequent
layers extract visual features that are simple and short

range in the first layers and progressively become more and
more complex and longer range in subsequent layers until
specific full-scale objects are recognized. Typically, first
layers extract edges and orientations at different angles and
scales, using short range but dense projection fields
(receptive fields). Subsequent layers group these simple
features progressively into gradually more sophisticated
shapes and figures, using longer range but sparser projec-
tion fields. Here, we assume that the processing time
constants associated with the first feature extraction layers
are faster than those associated with later layers. This way,
early feature extraction layers would be short range both in
space and time, while later feature grouping layers would
be longer range also in both space and time. Note that this
makes a lot of sense, since simple features (such as short
edges) need to be sensed instantly, while for recognizing a
complex shape (like a human silhouette) it would be more
efficient to collect simple features during a longer time to be
more confident. For example, if we observe a walking
human silhouette, at some instants we may not see a leg or
an arm, but if we see them at other instants we know they
are there. Consequently, in a frame-free event-driven
sensing and processing system, we have the extra feature
of adapting the time constant of each processing layer
independently. This provides extra freedom degrees to
optimize overall recognition, which is not directly available
in frame-driven recognition systems.

At present, however, frame-driven vision machine learn-
ing algorithms are much more developed than their event-
driven counterparts. For example, over the last few decades,
powerful and highly efficient training algorithms have
been developed and applied for frame-driven ConvNets,
making them practical and competitive for a variety of real-
world applications [12], [13], [14], [15], [16], [17], [18]. Some
researchers are presently exploring the possibility of
training event-driven systems with promising results [19],
[20], [21]. But this field is still under development.

In the next section, we describe a method for mapping
the parameters of a properly trained frame-driven neuron
into the equivalent event-driven frame-free parameters. We
then illustrate this by applying it in ConvNet visual
recognition systems that use real recordings from a frame-
free event-driven DVS retina chip.

3 GENERIC MAPPING METHODOLOGY

3.1 Frame-Driven Individual Neuron

Fig. 3 shows the computational diagram of a typical neuron
in a frame-driven representation system. Input signals yi
come from the ith neuron of the receptive field RFj of
neuron j, weighted by synaptic weights wij. Input signals yi
belong to range ½0; Ai� or ½�Ai;Ai�. Let us call y ¼ ŷA so that
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Fig. 3. Conventional individual neuron used in frame-driven systems by
freezing time during each frame and resetting its state for each frame.



ŷ is normalized to unity. The state xj of neuron j is reset for
each frame, and computed for its receptive field for the
present frame as

xj ¼
X
i2RFj

yiwij ¼
X
i2RFj

Aiŷiwij ¼ ARFj x̂j;

x̂j ¼
X
i2RFj

ŷiwij;
ð1Þ

where we have assumed that all Ai coefficients are the same
for all neurons i of the RFj receptive field Ai ¼ ARFj . After
this, the neuron state goes through a sigmoidal function
hð�Þ, which we may define as2 [22]

yj ¼ hðxjÞ ¼ Aj tanh ðSjxjÞ ¼ Aj tanh ðSjARFj x̂jÞ;
ŷj ¼ tanh ðSjARFj x̂jÞ:

ð2Þ

We can describe this using only normalized variables as

ŷj ¼ ĥðx̂jÞ;
x̂j ¼

X
i2RFj

ŷiwij;
ð3Þ

with ĥðzÞ ¼ tanhðSjARFjzÞ ¼ ð1=AjÞhðz=ARFjÞ. A piecewise-

linear approximation of ĥð�Þ can be defined as

hpwlðxÞ ¼
x if jxj � 1
x=jxj if x � 1:

�
ð4Þ

Fig. 4 shows the three nonlinear functions hðxÞ, hpwlðxÞ, and

ĥðxÞ for S ¼ 2=3 and Aj ¼ ARFj ¼ 1:7159.

3.2 Event-Driven Individual Neuron

Fig. 5 shows a schematic computational diagram of an
event-driven (spiking signal) neuron. In this case, time
plays a crucial role as opposed to the previous case where
time is frozen during all computations corresponding to a
frame. Now, the neural state x0j evolves continuously with
time. Fig. 5 represents state x0j as being held in a box,
while the elements capable of altering it have been drawn
with arrows pointing toward this box. These elements are:

1) synaptic connections, 2) leak, and 3) a “reset and
refractory” (R&R) element.

Presynaptic neurons belonging to the receptive field
send spikes in time. In general, spikes carry a positive or
negative sign, and synaptic weights also have a positive or
negative sign. In certain implementations (such as biology),
positive and negative events (spikes) are separated into
separate paths. Our analyses are not affected by how this is
implemented physically. Each presynaptic spike will con-
tribute to a certain increment or decrement �x0 in the
neuron state x0j proportional to the corresponding synaptic
weight jw0ijj. The neuron state x0j will accumulate all these
contributions over time, and at a given instant may have a
positive or negative accumulated value.

Fig. 6 shows an example of neural state evolution and
spike production. Let us define a characteristic time TCj for
neuron j. A neuron can be considered a specific feature
detector for the collection of spatiotemporal input spikes it
receives. For example, neurons in cortex layer V1 spike
when they detect sequences of spikes from the retina
representing edges at specific scales, orientations, and
positions, within a characteristic time interval. A neuron
at a higher layer may be specialized in detecting specific
shapes, like an eye, nose, and so on. Such a neuron would
generate spikes when the collection of input spikes from
prior neurons represents a collection of edges and shapes
that when put together during a characteristic time interval
resemble an eye, nose, and so on. In Fig. 6, we have
represented TCj as a characteristic time during which
neuron j receives a meaningful collection of spikes
(representing the specific feature of neuron j) that produce
a systematic increase in its state. Every time the state x0j
reaches one of the thresholds �xthj, the R&R element will
reset the state to its resting level xrest while also guarantee-
ing a minimum separation between consecutive spikes TRj

,
called the “refractory time” of this neuron. This refractory
effect is equivalent to the saturation function hð�Þ in the
frame-driven system as it limits the maximum output spike
event rate.

If all neurons i of the receptive field of neuron j have the
same characteristic time TCi and/or refractory time TRi

, we
can define the “characteristic time gain” of neuron j as

g�j ¼ TCj=TCi ; ð5Þ

and the “refractory time gain” of neuron j as

gRj ¼ TRj
=TRi

: ð6Þ

We will use these definitions later.
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Fig. 4. Comparison between the three nonlinear functions hðxÞ, hpwlðxÞ,
and ĥðxÞ.

Fig. 5. Computational block diagram of event-driven neuron.

2. LeCun [22] suggested setting A ¼ 1:7159 and S ¼ 2=3 to optimize
learning speed and convergence in ConvNets.



Neurons will not accumulate all historic incoming
spikes contributions (similarly, in the frame-driven case,
neurons ignore information from previous frames). Since a
neuron is interested in grouping lower level features from
previous neurons during a characteristic time TCj , its state
x0j is subject to a continuous leak that will drive its value
toward xrest with a characteristic leak time constant. Fig. 6
shows a linear leak for the neuron state, with a leak rate of
value LRj ¼ jxthj=TLj j.

3.3 Encoding in Frame-Free Event-Driven
Systems—Low-Rate Rate Coding or
Coincidence Processing

In traditional frame-driven neural computing systems,
neuron states and neuron output values are usually repre-
sented with floating-point precision. In some specialized
accelerated hardware implementations, 8-bit signed integer
representation is used [23]. Still, this representation presents
a high dynamic range since the ratio between the full range
and the smallest step is 28 ¼ 256. Note that in a recognition
system, the output of a neuron is not required to present
such a high dynamic range because it only has to signal
whether a feature is present or at the most provide a relative
confidence that could be provided with coarse steps. For
example, in a face detection application, we would not
expect it to be critical whether the neurons detecting the
nose can use just five values ½0; 0:25; 0:50; 0:75; 1:0� to give
their confidence, or can use 256 steps in the range ½0; 1�. A
higher dynamic range might be necessary to represent the
visual input. Commercial video, photography, and compu-
ter screens normally use 8-bit to represent luminance.
However, we will assume that our event-driven visual
sensors include a preprocessing step (such as spatial or
temporal contrast) that significantly reduces the dynamic
range of the signals provided by their pixels. For example, a
pixel in the temporal contrast DVS retina we have used
normally provides between one to four spikes when an
edge crosses it.

In the following mathematical developments for map-
ping from the frame-driven domain to the event-driven
domain, we will consider that an intensity value in the

former is mapped to a spike rate in the latter. Obviously,
rate coding is highly inefficient for high dynamic ranges
such as 8 bit, because a neuron would need to transmit
256 spikes to represent a maximally meaningful signal.
Although the following mathematical developments have
no restrictions in terms of dynamic range, we will always
keep in mind that we will in practice apply it to low
dynamic range signals. We call this “low-rate rate coding,”
and the maximum number of spikes a neuron will transmit
during its characteristic time constant will be kept relatively
low (for example, just a few spikes, or even as low as one
single spike). This maximum number of spikes is TCj=TRj

.
Time TRj

is the minimum interspike time needed to signal
the presence of a feature, while TCj is the characteristic time
during which this feature might be present during a
transient. Thus, let us call “persistency” pj of neuron j the
maximum number of spikes that can be generated by a
transient feature during time TCj

pj ¼ TCj=TRj
: ð7Þ

Using all the above concepts and definitions, let us now
proceed to mathematically analyze the event-driven neuron
and propose a mapping formulation between frame-driven
and event-driven neuron parameters.

3.4 Mathematical Analysis of Event-Driven Neurons

With reference to Fig. 6, let us consider the situation where
neuron j becomes active as it receives a collection of
properly correlated spatiotemporal input spikes during a
time TCj . These represent the feature to which neuron j is
sensitive. In this case, the collection of spikes will produce a
systematic increase in neuron j’s activity x0j during time TCj ,
resulting in the generation of some output spikes, as
illustrated in Fig. 6. If the output spikes are produced with
interspike intervals larger than the refractory period TRj

,
then the number of spikes nj produced by neuron j during
time TCj satisfies3
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Fig. 6. Illustration of a typical state evolution and spike production sequence for a spiking neuron with leak and refractory period.

3. Here, we are assuming a positive increase in the state (x0j > xrest),
reaching the positive threshold and producing positive output events. The
analysis is equivalent for the generation of negative events.



nj
TCj
¼

�P
i2RFj niw

0
ij

�
��xLj

xthjTCj
; ð8Þ

where �xLj is the loss of neural activity x0j due to a leak. We

may safely assume that during a systematic neural activity

build up that produces output events, a leak does not drive

the activity down to the resting level xrest, nor does it

produce a change of its sign. Under this assumption,

LRj ¼
j�xLj j
TCj

¼
xthj
TLj

: ð9Þ

If the systematic activity build up is sufficiently fast, then

the neuron activates its refractory mode and will not allow

interspike intervals shorter than TRj
, or equivalently

nj
TCj
� 1

TRj

ð10Þ

as is illustrated in Fig. 6 for the second and third spikes

produced by neuron j during time TCj . To take this into

account, the right-hand side of (8) needs to saturate to

1=TRj
. This can be expressed as

nj
TCj
¼ 1

TRj

hpwl

�P
i2RFj niw

0
ij

�
��xLj

xthj

TRj

TCj

 !
� 1

TRj

; ð11Þ

where hpwlð�Þ saturates to “1” and is as defined in (4). Using

(7) and (9), (11) becomes

nj
pj
¼ hpwl

X
i2RFj

ni
pj

w0ij
xthj

0
@

1
A� �j

0
@

1
A; ð12Þ

where �j ¼ TRj
=TLj . Noting that �j will usually tend to be

much smaller than unity and that nj=pj 2 ½�1; 1�, we can

establish a parallelism between bottom (2) and (12) by

means of the following mapping:

ŷj $
nj
pj
; ŷi $

ni
pi
;

wij $
w0ij
xthj

pi
pj
¼
w0ij
xthj

gRj

g�j
;

ĥð�Þ $ hpwlð�Þ:

ð13Þ

Note that the kernel weights w0ij used for the event-driven

realization are simply scaled versions of those trained in the

frame-based version wij. Table 1 summarizes the different
event-driven neuron parameters discussed. As we will see
in the rest of the paper, when applying this mapping to
ConvNets we will use the same mapping for all neurons in
the same ConvNet layer.

It is interesting to highlight that in a frame-driven
system, neuron states x̂j can be interpreted as showing how
much they have changed during the frame time Tframe after
being reset, and this frame time can in turn be interpreted as
the “characteristic time” TC of all neurons in the system.
When mapping from a frame-driven description to an
event-driven one, all neurons could therefore be made to
have identical timing characteristics. However, as we will
see later on, neurons in different ConvNet layers will be
allowed to have different timing characteristics to optimize
recognition performance and speed.

4 EVENT-DRIVEN CONVNET FOR HUMAN

SILHOUETTE ORIENTATION RECOGNITION

As an illustrative example of scenes moving at speeds we
humans are used to, we trained a frame-driven version of a
ConvNet to detect the orientation of individual human
walking silhouettes. We used a 128� 128 pixel DVS camera
[5] to record event sequences when observing individual
people walking. Fig. 7 shows some ðx; yÞ rotated sample
images obtained by collecting DVS recorded events during4

80 ms. White pixels represent positive events (light changed
from dark to bright during these 80 ms), while black pixels
represent negative events (light changed from bright to
dark). One person walking generates about 10-20 keps (kilo
events per second) with this DVS camera. From these
recordings, we generated a set of images by collecting
events during frame times of 30 ms. From these recon-
structed images, we randomly assigned 80 percent for
training and 20 percent for testing learning performance.
Each 128� 128 pixel reconstructed image was down-
sampled to 32� 32 and rotated 0, 90, 180, or 270 degrees.

The training set images were used to train the frame-
driven six layer feedforward ConvNet shown in Fig. 8.
Table 2 summarizes the number of feature maps (FMs) per
layer, FM size, kernels size, total number of kernels per
layer, total weights per layer, and how many weights are
trainable. The first layer C1 performs Gabor filtering at
three orientations and two scales, and its weights are not

6

TABLE 1
Summary of Event-Driven Neuron Parameters

Fig. 7. Example snapshot images obtained by histogramming events
during 80 ms and rotating the ðx; yÞ addresses.

4. Recordings were made by connecting the DVS camera via USB to a
laptop running jAER [25]. jAER is an open software for managing AER
chips and boards, recording events, playing them back, and performing a
variety of processing operations on them. Appendix 3, available in the
online supplemental material, gives a brief overview of jAER.



trained. S layers perform subsampling and subsequent C
layers perform feature extraction and grouping. The last
layer (C6) is not a feature extraction layer, but a feature
grouping layer. It performs a simple linear combination of
the outputs of the previous layer. The top three neurons in
layer C6 recognize a human silhouette rotated 0;þ=� 90, or
180 degrees. The bottom neuron (noise) is activated when
the system does not recognize a human silhouette. Each
output neuron fires both positive and negative events,
depending on whether it is certain the desired pattern is
present or it is certain it is not present.

The weights from the frame-driven system were then
mapped to an event-driven version by using the transfor-
mations in (13). Note that in a feedforward ConvNet, all
neurons in the same layer operate with identical spatial
scales (kernel sizes and pixel space sizes). Here, we will
enforce that neurons in the same layer operate with
identical temporal scales too, so that each layer extracts
spatiotemporal features of the same scales. In Table 1, we
would therefore replace index j with the layer number
index n, and index i with the previous layer index n� 1. We
also chose wij ¼ w0ij in (13), which enforces gRn

¼ xthng�n .
However, (5)-(7) and (13) offer a high degree of freedom

to map parameters. We first followed the heuristic rationale
outlined below, but afterward we ran simulated annealing
optimization routines to adjust the different parameters for
optimum performance.

The temporal patterns generated by the 128� 128 DVS
camera when observing walking humans are such that a
minimum time of about 10-20 ms (about 100-600 events) is
needed to reconstruct a human-like silhouette.5 We there-
fore set the “refractory time” of the last refractory layer (C5)
as TR5

	 10 ms. On the other hand, the persistency of a
moving silhouette is on the order of 100 ms (collecting
events for over 100 ms fuzzyfies the silhouette). Thus,
TC5
	 100 ms. For layer C1, short-range edges can be

observed with events separated about 0.1 ms in time. We
therefore set TR1

	 0:1 ms. For layer C3, we chose an
intermediate value TR3

	 0:5 ms. For the thresholds, we
picked a value approximately equal to twice the maximum
kernel weight projecting to each layer. For the leak rates,
we picked an approximate ratio of 2:1 between consecutive
layers, so that the last layer C6 has a leak rate of 1 s�1. With

these criteria, and considering that gRn
¼ xthng�n , the

resulting list of parameters describing the event-driven
system is shown in Table 3.

Despite this heuristic method of obtaining a set of timing
parameters for the six layer event-driven ConvNet, we also
used optimization routines to optimize these parameters for
best recognition rate, as mentioned in the next section and
described in detail in Appendix 5, available in the online
supplemental material.

4.1 Results

For testing the event-driven system, we used new record-
ings from the 128� 128 pixel DVS camera observing
people. These recordings were downsampled to the 32�
32 input space.

To run the simulations on these recordings, we used the
address-event-representation event-driven simulator
AERST (AER Simulation Tool) [24]. This simulator is briefly
described in Appendix 4, available in the online supple-
mental material. It uses AER processing blocks, each with
one or more AER inputs and one or more AER outputs.
AER outputs and inputs are connected through AER point-
to-point links. Therefore, the simulator can describe any
AER event-driven system through a netlist of AER blocks
with point-to-point AER links. A list of DVS recordings is
provided as stimulus. The simulator looks at all AER links
and processes the earliest unprocessed event. When an AER
block processes an input event, it may generate a new
output event. If it does, it will write a new unprocessed
event on its output AER link. The simulator continues until
there are no unprocessed events left. At this point, each
AER link in the netlist contains a list of time-stamped
events. Each list represents the visual flow of spatiotempor-
al features represented by that link. The resulting visual
event flow at each link can be seen with the jAER viewer.
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Fig. 8. ConvNet structure for human silhouette orientation detection.

TABLE 3
Parameters Adjusted by Heuristic Rationale

TABLE 2
ConvNet Structure

5. A retina with higher spatial resolution (256� 256 or 512� 512)
multiplies the number of events produced (by 4 and by 16, respectively) for
the same stimulus, but the events would still be produced during the same
10-20-ms time interval. Therefore, we conjecture that increasing spatial
resolution reduces recognition time because the 100-600 events for first
recognition would be available earlier.



Fig. 9 shows the netlist block diagram of the event-driven

ConvNet system simulated with AERST. It contains
19 splitter modules, 20 AER convolution modules, and

10 subsampling modules. In AERST, the user can describe
modules by defining the operations to be performed for

each incoming event and include nonideal effects such as
characteristic delays, noise and jitter, limited precision, and

so on. We described the modules using the performance

characteristics of already manufactured AER hardware
modules, specifically, available splitter and mapper mod-

ules implemented on FPGA boards [6], [9], and dedicated
AER convolution chips with programmable kernels [8], [10],

[11]. A splitter module replicates each input event received
at each of its output ports with a delay on the order of 20-

100 ns. Subsampling modules are implemented using
mappers. They transform event coordinates. In this parti-

cular case, the mappers are programmed to replace each
input event coordinate ðx; yÞ with ðbx=2c; by=2cÞ, where

operand bzc is “round to the lower integer.” This way, all
events coming from a 2� 2 square of pixels are remapped

to a single pixel. Convolution modules describe AER
convolution chip operations with programmable kernels.

Convolutions are computed and updated event by event, as
described in Appendix 2, available in the online supple-

mental material.
Using the parameters in Table 3, we tested the

performance of the event-driven ConvNet in Fig. 9 when
fed with event streams of DVS captured walking human

silhouettes rotated 0, 90, 180, and 270 degrees. Each input
stream segment consists of 2k events, and their ðx; yÞ
coordinates are consecutively rotated 0, 90 or 270, and
180 degrees. Fig. 10 shows input events as small black dots.

Output events are marked either with circles (“upright” or
0 degree), crosses (“horizontal,” or 90 and 270 degrees), or

stars (“upside down” or 180 degree). Fig. 10b shows a zoom
out for the first transition from horizontal to upside down,

where the recognition delay is 17 ms. Average recognition
delay was 41 ms, and the fastest was 8:41 ms. The overall

recognition success rate SR for this stream was 96.5 percent,

computed as the average of the success rate per category
SRi. For each category i, its success rate is computed as

SRi ¼
1

2

pþi
pþi þ p�i

þ
p�j6¼i

pþj6¼i þ p�j 6¼i

!
; ð14Þ

where pþi (p�i ) is the number of positive (negative) output
events for category i when input stimulus corresponds to
category i, and pþj6¼i (p�j6¼i) are the positive (negative) output
events for the other categories. In a perfect recognition
situation, p�i ¼ 0 and pþj6¼i ¼ 0.

The parameters in Table 3 were assigned by intuition.
Appendix 5, available in the online supplemental material,
describes the results obtained when using a simulated
annealing optimization procedure to optimize these para-
meters. The resulting optimized parameters are not too
different from the ones obtained by intuition, and
the recognition rate varied within the range 97.28 to
99.61 percent.

To compare recognition performance with that of a
frame-driven ConvNet realization, we used the same
sequence of events and built sequences of frames using
different frame reconstruction times. Each frame was fed to
the frame-driven ConvNet. Table 4 shows, for each frame
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Fig. 9. Schematic block diagram used in simulator AERST.

Fig. 10. Recognition performance of the event-driven ConvNet in Fig. 8.
Small black dots correspond to input events, circles are output events
for “upright” orientation (0 degrees), crosses for “horizontal” orientation
(90, 270 degrees), and stars for “upside down” (180 degrees). (a) 7 sec
recording of 20 consecutive orientations, (b) zoom out of 40 ms showing
a recognition delay of 17 ms.



reconstruction time, the total number of nonempty frames
(some frames were empty because the sensor was silent
during these times) and the percent of correctly classified
frames. As can be seen, the success rate changes with frame
reconstruction time and seems to have an optimum in the
range 50-75 ms frame time.

5 EVENT-DRIVEN CONVNET FOR POKER CARD

SYMBOL RECOGNITION

In this section, we illustrate the method with a second
example, more oriented toward high speed sensing and
recognition. A video illustrating this experiment is available
in the online supplemental material. Fig. 11a shows an
individual browsing a poker card deck. A card deck can be
fully browsed in less than 1 second. When recording such a
scene with a DVS and playing the event flow back with
jAER, one can freely adjust the frame reconstruction time
and frame play back speed to observe the scene at very low
speed. Fig. 11b illustrates a reconstructed frame when
setting frame time to 5 ms. The DVS had 128� 128 pixels. A
poker symbol fits well into a 32� 32 pixel patch. We made
several high speed browsing recordings, built frames of 2
ms time, and cropped many versions of poker symbols of
size 32� 32 pixels. We selected a set of the best looking
frames to build a database of training and test patterns. The
topological structure of the frame-driven ConvNet used for
recognizing card symbols was identical to the one described
in the previous section.

The trained frame-driven ConvNet was mapped to an
event-driven version by using the same sets of learned
kernel weights and adjusting the timing parameters to the
higher speed situation. To provide a proper 32� 32 pixel
input scene, we used an event-driven clustering-tracking
algorithm [26] to track card symbols from the original 128�
128 DVS recordings from the instant they appeared until
they disappeared. Such time intervals typically ranged from
about 10-30 ms per symbol and the 32� 32 crop could
contain on the order of 3k to 6k events. We sequenced
several of these tracking crops containing all symbols and
used the sequences as inputs to the event-driven ConvNet.
We then tested the event-driven ConvNet with the event-
driven AER simulator used in Section 4 and used the same
Matlab simulated annealing routines to optimize timing
parameters. Table 2 in Appendix 5, available in the online
supplemental material, shows the optimized parameters
and performance results of several optimizations after
running simulated annealing. The recognition success rate,
measured by (14), varied between 90.1 and 91.6 percent.

To compare the recognition performance with that of a
frame-driven ConvNet realization, we used the same input
event recordings to generate frames with different frame
times, from 1 to 10 ms. Then, we exposed the originally
trained frame-driven ConvNet to these new frames and
obtained the recognition rates shown in Table 5. As can be
seen, there is an optimum frame time between 2 and 3 ms.

Fig. 12 shows an example situation of the output
recognition events of the event-driven ConvNet while a
sequence of 20 symbol sweeps was presented. The con-
tinuous line indicates which symbol was being swept at the
input, and the output events are represented by different
markers for each category: circles for “club” symbol, crosses
for “diamond” symbol, inverted triangles for “heart”
symbols, and noninverted triangles for “spade” symbols.
Fig. 13 shows the details of the 14 ms sequence of the fourth
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TABLE 4
Performance of Frame-Driven Realization

of the Human Silhouette Orientation Detection ConvNet

Fig. 11. Fast browsing of a poker card deck. (a) Picture taken with a
frame-driven camera. (b) jAER image obtained by collecting events
during 5 ms.

TABLE 5
Performance of Frame-Driven Realization

of the Poker Card Symbol Recognition ConvNet

Fig. 12. Recognition performance of the poker card symbol recognition
ConvNet.



“heart” symbol input in Fig. 12. Fig. 13 contains 14 columns.
Each corresponds to building frames using the events that
appeared during 1 millisecond at some of the ConvNet
nodes. Background gray color represents zero events
during this millisecond, brighter gray level means a net
positive number of events per pixel, while darker gray level
means a net negative number of events per pixel. The
numbers on the top left of each reconstructed frame indicate
the total number of events present for all pixels in that
feature map during that millisecond. Each row in Fig. 13
corresponds to one ConvNet node or feature map. The top
row corresponds to the 32� 32 pixel input crop from the
DVS retina. The next six rows correspond to the six
subsampled feature maps of the first convolution layer,
namely layer S2 14� 14 pixel outputs. The next four rows
correspond to the 5� 5 feature map outputs of layer S4. The
next eight rows show the single pixel outputs of layer C5,
and the last four rows correspond to the four output pixels
of layer 6, each indicating one of the four poker symbol
categories. We can see that at the output layer C6 nodes,
there is sustained activity for the third row (which

corresponds to category “heart”) between milliseconds 6
and 12, which is when the input symbol appeared more
clearly. During these 6 ms, there were four positive output
events for this category, which we artificially have binned
into 1 ms slots.

To better illustrate the timing capabilities of multilayer
event-driven processing, we selected a 1 ms cut of the input
stimulus sequence in Fig. 13. We ran again the simulation
for this 1 ms input flash and obtained the results shown in
Fig. 14. There are five time diagrams in Fig. 14. The top
diagram represents a ðy; timeÞ projection of the DVS retina
events. Positive events are represented by circles and
negative events by crosses. On top of each diagram, we
indicate the total number of events in the diagram. The
second diagram corresponds to the events in Feature Map 2
of Layer S2. The next diagram represents the events for
Feature Map 3 of Layer S4. The next diagram shows the
events of all eight neurons in Layer C5, and the bottom
diagram shows the events of all neurons in the output
Layer C6. We can see that the neuron of category “heart” in
Layer C6 provided one positive output event. Fig. 14
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Fig. 13. Image reconstruction for event flows at different ConvNet stages during a 14 ms heart symbol card browsing. Images in this figure are

built by collecting events during 1 ms. Event flows are continuous throughout the full 14 ms shown, but are artificially grouped in 1 ms bins. Time

advances from left to right in steps of 1 ms. Images in the same column use events collected during the same ms. Horizontal rows correspond to

one single feature map output. The top row is a 32� 32 pixel crop of the DVS output tracking a 14 ms heart symbol sweep through the screen.

The next six rows correspond to Layer S2 subsampled 14� 14 pixel feature maps. The next four rows correspond to Layer S4 subsampled 5� 5

pixel feature maps. The next eight rows correspond to Layer C5 single pixel features. The bottom four rows correspond to the Layer 6 outputs

corresponding to the four recognition symbols.



illustrates nicely the “pseudosimultaneity” property or coin-
cidence processing of event-driven multilayer systems. As
soon as one layer provides enough events representing a
given feature, the next layer feature map tuned to this
feature fires events. This property is kept from layer to
layer so that output recognition can be achieved while the
input burst is still happening.

To characterize the internal representations and dy-
namics of this event driven network, we show in
Appendix 7, available in the online supplemental material,
reverse correlation reconstructions for the last layers with
down to 0.1-ms time windows.

6 DISCUSSION

Event-driven sensing and processing can be highly efficient
computationally. As can be seen from the previous results
(for example, Fig. 14), recognition occurs while the sensor
is providing events. This contrasts strongly with the
conventional frame-driven approach, where the sensor
first needs to detect and transmit one image. In commercial

video, frame rate is Tframe ¼ 30-40 ms. Assuming instanta-
neous image transmission (from sensor to processor) and
instantaneous processing and recognition, the output
would therefore be available after Tframe of sensor reset
(the sensor is reset after sending out a full image). In
practice, real-time image processors are those capable of
delivering an output at frame rate, that is, after a time Tframe

of the sensor making an image available or, equivalently,
after 2� Tframe of sensor reset.

Another observation is that in a frame-driven multi-
convolution system like the one shown in Fig. 9, the
operations in layer n cannot start until operations in layer
n� 1 have concluded. If the system includes feedback
loops, then the computations have to be iterated several
cycles until convergence for each frame. However, in the
event-driven approach, this is not the case. A DVS camera
(or any other event-driven sensor) produces output events,
while “reality” is actually moving (with microseconds delay
per event). These events are then processed event by event
(with delays of around 100 ns). This effectively makes input
and output event flows simultaneous (we have called this
pseudosimultaneity or coincidence property throughout the
paper), not only between the input and output of a single
event processor but for the full cascade of processors, as in
Fig. 9. Furthermore, if the system includes feedback loops,
this coincidence property is retained. Recognition delay is
therefore not determined by the number of layers and
processing modules per layer, but by the statistical
distribution of meaningful input events generated by the
sensor. Improving the sensor event generation mechanism
would thus in principle improve the overall recognition
performance and speed of the full system (as long as it does
not saturate). For example, improving the contrast sensitiv-
ity of a DVS would increase the number of events generated
by the pixels for the same stimulus. Also, increasing spatial
resolution would multiply the number of pixels producing
output events. This way, more events would be generated
during the same time, and the “shapes critical for
recognition” would become available earlier.

System complexity is increased in a ConvNet by adding
more modules and layers. This makes it possible to increase
both the “shape dictionary” at intermediate layers and the
“object dictionary” at the output layers. However, in an
event-driven system, increasing the number of modules per
layer would not degrade speed response as long as it does
not saturate the communication bandwidth of the inter-
module links.

This is one issue to be careful with in event-driven
systems. Event traffic saturation is determined by the
communication and processing bandwidth of the different
AER links and modules, respectively. Each channel in
Fig. 9 has a limited maximum event rate communication
bandwidth. Similarly, each module also has a maximum
event processing rate. Module (filter) parameters therefore
have to be set in such a way that maximum communication
and processing event rate is not reached. Normally, the
event rate is higher for the first stages (sensor and C1), and
decreases significantly for later stages. At least this is the
case for the feedforward ConvNets we have studied.
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Fig. 14. Events versus time for a simulation that uses as stimulus a
1 ms “heart” symbol cut of that in Fig. 13. Positive events are drawn
with circles, while negative events use crosses. (a) 1-ms event flash
from DVS 32� 32 crop. (b) Events at second feature map FM2 of
Layer S2. (c) Events at FM3 of Layer S4. (d) Events at all eight single
pixel FMs of Layer C5. (e) Events at all four outputs of Layer C6.
Layer C6 produces only three events during this 1-ms “heart” flash.
From these three events, only one is positive corresponding to the
correct “heart” category.



One very attractive feature of event-driven hardware is
its ease of scalability. Increasing hardware complexity
means connecting more modules. For example, with
present day high-end ASIC technology, it is feasible to
place several large size (64� 64 or 128� 128) ConvModules
(about 10) on a single chip, together with companion
routers (to program connectivity) and mappers. An array of
10� 10 of these chips can be put on a single PCB, hosting
on the order of 1k ConvModules. And then, many of these
PCBs could be assembled hierarchically. Several research
groups are pursuing this type of hardware assembly
goal [27], [28], [30], [45], [52], [53]. In Appendix 6, available
in the online supplemental material, we compare in more
detail frame versus event-driven approaches focusing on
hardware aspects.

Regarding the sensor, we have focused our discussions

on the DVS camera. However, there are many reported

event-driven sensors for vision and audition. Just to

mention a few, there are also plain luminance sensors [31],

time-to-first spike coded sensors [32], foveated sensors [33],

spatial contrast sensors [34], [35], combined spatiotemporal

contrast sensors [36], [37], and velocity sensors [38], [39].

One of the limitations of event-driven hardware com-

pared to frame-driven equipment is that hardware time

multiplexing is not possible. For example, present day

hardware implementations of frame-driven ConvNets [40]

extensively exploit hardware multiplexing by fetching

intermediate data in and out between processing hardware

and memory. This way, arbitrarily large systems can be

implemented by trading off speed. This is not possible in

event-driven hardware as events need to “flow” and each

module has to hold its instantaneous state.

Another disadvantage of event-driven systems, at least at

present, is the lack of efficient, fast training. Spike-time-

dependent plasticity (STDP) [41] seems to be a promising

unsupervised learning scheme, but it is slow and requires

learning synapses with special properties [42]. Other

research efforts are dedicated to algorithmic solutions for

supervised STDP type learning [19], [20], [21]. However, at

the moment, this field is still quite incipient.

Nevertheless, event-driven sensing and processing has

many attractive features, and research in this direction is

certainly worth pursuing.

7 CONCLUSIONS

A formal method for mapping parameters from a frame-

driven (vision) neural system to an event-driven system has

been presented. Given the extra timing considerations in

frame-free event-driven systems, extra degrees of freedom

become available. This mapping was illustrated by applying

it to example ConvNet systems for recognizing orientations

of rotating human silhouettes and fast poker card symbols

recorded with real DVS retina chips. The recordings were

fed to a hierarchical feedforward spike-driven ConvNet that

included 20 event-driven convolution modules. The systems

were simulated with a dedicated event-driven simulator.

The results confirm the high speed response capability of

event-driven sensing and processing systems as recognition

is achieved while the sensor is delivering its output.
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Acosta-Jiménez, T. Serrano-Gotarredona, and B. Linares-Barranco,
“An Event-Driven Multi-Kernel Convolution Processor Module
for Event-Driven Vision Sensors,” IEEE J. Solid-State Circuits,
vol. 47, no. 2, pp. 504-517, Feb. 2012.

[12] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard,
W. Hubbard, and L.D. Jackel, “Backpropagation Applied to
Handwritten Zip Code Recognition,” Neural Computation, vol. 1,
no. 4, pp. 541-551, 1989.

[13] K. Chellapilla, M. Shilman, and P. Simard, “Optimally Combining
a Cascade of Classifiers,” Proc. Document Recognition and Retrieval
13, p. 6067, 2006.

[14] R. Vaillant, C. Monrocq, and Y. LeCun, “Original Approach for
the Localisation of Objects in Images,” IEE Proc. Vision, Image, and
Signal Processing, vol. 141, no. 4, pp. 245-250, Aug. 1994.

12



[15] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic Face Detection
and Pose Estimation with Energy-Based Models,” J. Machine
Learning Research, vol. 8, pp. 1197-1215, May 2007.

[16] C. Garcia and M. Delakis, “Convolutional Face Finder: A Neural
Architecture for Fast and Robust Face Detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1408-
1423, Nov. 2004.

[17] F. Nasse, C. Thurau, and G.A. Fink, “Face Detection Using GPU
Based Convolutional Neural Networks,” Proc. 13th Int’l Conf.
Computer Analysis of Images and Patterns, pp. 83-90, 2009.

[18] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A.
Bissacco, H. Adam, H. Neven, and L. Vincent, “Large-Scale
Privacy Protection in Google Street View,” Proc. IEEE Int’l Conf.
Computer Vision, 2009.

[19] S.M. Bohte, J.N. Kok, and H. La Poutre, “Error-Backpropagation in
Temporally Encoded Networks of Spiking Neurons,” Neurocom-
puting, vol. 48, pp. 17-38, 2003.

[20] O. Booij et al., “A Gradient Descent Rule for Spiking Neurons
Emitting Multiple Spikes,” Information Processing Letters, vol. 95,
no. 6, pp. 552-558, 2005.

[21] F. Ponulak and A. Kasinski, “Supervised Learning in Spiking
Neural Networks with ReSuMe: Sequence Learning, Classifica-
tion, and Spike Shifting,” Neural Computation, vol. 22, no. 2,
pp 467-510, Feb. 2010.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

[23] C. Farabet, B. Martini, P. Akserod, S. Talay, Y. LeCun, and E.
Culurciello, “Hardware Accelerated Convolutional Neural Net-
works for Synthetic Vision Systems,” Proc. IEEE Int’l Symp.
Circuits and Systems, pp. 257-260, 2010.

[24] http://aerst.wiki.sourceforge.net, 2013.
[25] http://jaer.wiki.sourceforge.net, 2013.
[26] T. Delbrück and P. Lichtsteiner, “Fast Sensory Motor Control

Based on Event-Based Hybrid Neuromorphic-Procedural Sys-
tem,” Proc. IEEE Int’l Symp. Circuits and Systems, pp. 845-848, 2007.

[27] S. Joshi, S. Deiss, M. Arnold, J. Park, T. Yu, and G. Cauwenberghs,
“Scalable Event Routing in Hierarchical Neural Array Architecture
with Global Synaptic Connectivity,” Proc. Int’l Workshop Cellular
Nanoscale Networks and Their Applications, Feb. 2010.
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