

 1

Feedforward Categorization on AER Motion Events

Using Cortex-Like Features in a Spiking Neural

Network

Bo Zhao, Member, IEEE , Ruoxi Ding, Student Member, IEEE , Shoushun Chen, Senior Member, IEEE , Bernabe Linares-Barranco, Fellow, IEEE , and Huajin

Tang, Member, IEEE

Abstract—This paper introduces an event-driven feedforward
categorization system, which takes data from a temporal contrast
address event representation (AER) sensor. The proposed system
extracts bio-inspired cortex-like features and discriminates differ-
ent patterns using an AER based tempotron classifier (a network
of leaky integrate-and-fire spiking neurons). One of the system’s
most appealing characteristics is its event-driven processing, with
both input and features taking the form of address events (spikes).
The system was evaluated on an AER posture dataset and
compared with two recently developed bio-inspired models.
Experimental results have shown that it consumes much less
simulation time while still maintaining comparable performance.
In addition, experiments on the Mixed National Institute
of Standards and Technology (MNIST) image dataset have
demonstrated that the proposed system can work not only on
raw AER data but also on images (with a preprocessing step
to convert images into AER events) and that it can maintain
competitive accuracy even when noise is added. The system
was further evaluated on the MNIST dynamic vision sensor
dataset (in which data is recorded using an AER dynamic vision
sensor), with testing accuracy of 88.14%.

Index Terms—Address event representation (AER), event
driven, feedforward categorization, MNIST, spiking neural
network.

I. INTRODUCTION

EUROMORPHIC engineering is a growing branch of

engineering that takes inspiration from biological neural

systems to optimize engineered systems. By incorporating

novel knowledge from neuroscience, researchers in

neuromorphic engineering aim to build electronic systems that

have the same efficiency as biological computation [1], [2].

Recent years have witnessed increasing efforts in event-driven

neuromorphic systems [3]–[7]. One desire behind these efforts

is to emulate the biological usage of the asynchronous sparse

event-driven signaling as a core aspect of the computational

architecture. Address event representation (AER) sensors

naturally provide a way to incorporate demand-based

computation. AER sensors have an output-by-demand nature.

They remove a lot of data redundancy in the scene, and

only output the relevant information (i.e., features) as

an asynchronous stream of digital events, which makes the

following processing systems able to be designed as fully event

driven. In particular, AER vision sensors enable pixel-parallel

image processing at the focal plane. Each pixel in the sensor

can individually monitor the relative change of light intensity,

and it will request to output an event if the change is

greater than a user-defined threshold. There are cases wherein

multiple pixels request to output events at the same time, and

therefore, we need asynchronous row and column arbitration

tree circuits to process the pixel requests and arrange the

output sequence in a fairly random manner [8]. Only one

pixel request is granted at a time. Once the arbitration process

is completed, the pixel address is sent out, and the pixel will

restart its operation. The output of AER vision sensors is a

stream of address events. These sensors are often categorized

as temporal contrast AER silicon retinas [9], [10].
Despite many institutions using the AER protocol,

interfacing hardware remains difficult and it requires a deep

understanding of all the components used. One drawback of

AER silicon retinas is the high cost of the silicon area per

pixel. Limited feature extraction can be carried out at the pixel

level [11], [12] and hence the output events are barely enough

for the direct input of classification algorithms. Additional

preprocessing, such as segmentation, resizing, repositioning,

and even more complicated high-level feature extraction, is

still needed. However, most existing algorithms are based

on conventional frame-driven image sensors. To adopt these

algorithms, a common practice (jAERViewer [13], for

example) is to divide events into fixed time slices (20 ms,

for example) and accumulate them into pseudopictures. Each

incoming event is associated with an address, which is used

to light the corresponding pixel in the picture. Fig. 1 shows a

space–time scatter plot of one piece of address events captured

by an AER vision sensor [14]. A person is performing stand-

up and sit-down actions in this recording. The lower part of

this figure shows several selected frames reconstructed from

 2

Fig. 1. Example of one piece of address events captured by an AER vision sensor. The bottom part shows some reconstructed frames by dividing events into
time slices and applying accumulation in each slice. We find that the human silhouette in some frames is incomplete or totally missing. This is a drawback
of frame-driven processing on motion events.

the address events. By inspecting these reconstructed frames,

we can easily find that the human silhouette in some frames

is incomplete or totally missing. The main difficulty arrives

from the asynchronous nature of motion with respect to the

time slice. A motion may fall into two time slices and neither

of the two pseudopictures tells the right story. In fact, this is a

common problem when using frame-driven image sensors for

motion processing.
To fully utilize the power of AER sensors, the concept

of event-driven processing should be applied to every signal

processing stage. For example, event-driven object tracking is

studied in [15] and [16]. In [15], an embedded vision system is

designed and combined with an AER vision sensor to achieve

real-time object tracking using an efficient event-driven

clustering algorithm. Delbruck and Lichtsteiner [16] adopt

a similar algorithm for tracking, and they further used the

tracking results to control a servo motor goalkeeper. Running

on a laptop computer, the system can track and block balls with

low latency (approximately 2.8 ms). In addition, the event-

driven convolution for feature extraction has been exploited

in [17]. AER 2-D convolution chips for neuromorphic spike-

based cortical processing have been designed to accelerate the

convolutions of programmable kernels over the AER visual

input. These convolution chips have been combined with

other AER processing blocks to build larger neuromorphic

systems [18], [19]. The convolution AER vision architecture

for real-time (CAVIAR) project [18] is such a massive neu-

romorphic vision system that it performs sensory, processing,

learning, and actuating in a row under the AER hardware

framework. The system senses the motion of objects with a

temporal contrast silicon retina. It performs feature extraction

through convolution processing and winner-take-all. Learning

chips based on spiking neurons are also included in CAVIAR

for spatiotemporal pattern classification. The system can

recognize and track a rotating dot of a certain size. Although

this application is simple, CAVIAR demonstrates the power

and potential of the promising AER technology. Moreover,

the event-driven convolution is also applied to convolutional

networks (ConvNets) in [19] to generate a frame-free

event-driven ConvNet for feature extraction and categorization

on AER visual events. The event-driven ConvNets have a

similar architecture with the conventional frame-driven

ConvNets [20], where convolution and subsampling modules

interlace. Due to the frame-free processing, event-driven

ConvNets have a significant improvement in terms of input-

output latency. However, the learning of the event-driven

ConvNets is based on mapping from frame-driven ConvNets

but not naturally spike-based learning.
This paper seeks to adopt event-driven processing at every

signal processing stage. We introduce an event-driven feed-

forward categorization system, which takes events from a

temporal contrast AER vision sensor. The sensor is equipped

with direct difference hardware in the pixel and outputs an

event if a threshold is reached [14]. The output data is a stream

of address events. Each event has an address and a time stamp;

the address indicates which pixel the event is from, and the

time stamp represents the event’s time of occurrence. Each

address event is sent in parallel to a battery of orientation

filters based on the Gabor functions [21], and the convolution

operation is performed on the fly to generate a batch of feature

maps (see Fig. 2 and Section II for more details). The feature

extraction unit is inspired by a recent hierarchical model of

object categorization in the primate visual cortex [22], [23].

Each neuron competes with other neurons located within its

receptive field, and it can only survive and reach the higher

layer if it wins a maximum (MAX) operation [24], [25].

In addition, we proposed an asynchronous motion symbol

detector to activate another stage of spike generation. The

dynamics of the aforementioned survival neurons, which repre-

sent the strength of features, go through a small set of neurons

that work in time-to-first spike (TFS) mode. The generated

spikes, again in the form of AER, are fed to a spiking neural

network, namely, tempotron [26] for classification. Developing

integrated spiking network models that include both encoding

and learning stages for rapid and efficient pattern recognition

has attracted increasing interests [27], [28] recently. The full

tempotron network is very large. However, due to the MAX

operation and the AER nature of the feature spikes, we can

achieve the same results as the full network using a very small

network that has only 100 inputs. This will tremendously

reduce the hardware cost. Our major contribution resides in

two areas: 1) an asynchronous motion symbol detector to

capture motion symbols and then trigger the classification and

2) a virtually fully connected tempotron network that could

greatly reduce the hardware cost.
The ultimate aim of this paper is to develop a real-time

human posture categorization system using an AER temporal

contrast vision sensor that does not produce intensity images

 3

Fig. 2. Architecture of the proposed categorization system. The system consists of several building blocks, namely, convolution and competition, feature
spike conversion, motion symbol detector, and tempotron [26] classifier. Each input event is projected onto a group of dynamic S1 feature maps through
event-driven convolution with a forgetting mechanism. S1 neurons compete with local neighbors through the MAX operation to strive for survival in C1 layer.
Survived C1 neurons represent some salient bar features. The motion symbol detector can detect a burst of events in a short time period and then take a
snapshot of the dynamic C1 feature maps. Survived C1 neurons at that snapshot go through a small set of TFS neurons to be converted into spikes, which
are further fed to a network of tempotron neurons for classification. We use the address of each feature spike to fetch its corresponding weight from the
weights LUT. The final categorization decision is made according to the output of tempotron neurons. The bottom right part of the figure shows the concept
of our feature extraction. One S1 map is shown at the bottom. The corresponding C1 map in the middle has only one survived neuron due to the MAX
competition. The neuron’s position is the same as that of the S1 peak. The survived C1 neuron represents a bar feature of a certain size and orientation at
that position.

but rather a train of spikes. In the application of assisted living,

due to privacy concerns, the elderly may be reluctant to be

monitored by conventional image sensors. The AER vision

sensor solves this problem since its event output protects the

privacy of the person being monitored.
The rest of this paper is organized as follows. Section II

describes the system architecture and Sections III–V illustrate

its building modules. The experimental results are reported

in Section VI. A discussion is provided in Section VII and the

conclusion is drawn in Section VIII.

II. SYSTEM ARCHITECTURE

Fig. 2 shows the architecture of the proposed system. One

appealing characteristic of our system is its fully event-driven

processing. Similar to most categorization systems, it can be

divided into two parts, namely, feature extraction and classifi-

cation. The classifier that we use is a spiking neural network

constructed with tempotron neurons, which can efficiently

learn and discriminate spatiotemporal spike patterns. The flow

of information processing is as follows.
1) Feature Map Construction and Neuron Competition:

Each address event from the AER vision sensor will be

projected onto a group of simple S1 filters. Each filter

models a neuron cell that has a certain size of receptive

field and responds best to a basic feature of a certain

orientation. The response of each S1 neuron is changing

dynamically due to the event-driven convolution as well

as a forgetting mechanism. Leakage is introduced to

eliminate the impact of very old motion events on

current response. Each S1 neuron competes with other

neurons that are located within its receptive field. It can

only survive and reach the higher layer C1 if it wins

the MAX operation. The survived C1 neurons represent

some salient bar features [24], [25].
2) Motion Symbol Detection and Feature Spike Generation:

Note that S1 and C1 maps are updated for each

incoming AER motion event. To avoid carrying out

classification on the feature maps all the time, a motion

symbol detector module is introduced in our system.

This module consists of a leaky integration neuron

and a peak detection unit. Each input event initiates

a postsynaptic potential (PSP) to this neuron. The

total potential is continuously monitored by the peak

detection unit. When a peak is detected, a pulse will

be triggered to turn ON the switches in Fig. 2. At that

moment, C1 feature maps are fed to a set of TFS

neurons, where C1 responses are converted into spikes.
3) Categorization by a Spiking Neuron Network: The

classifier that we use is a network of tempotron neurons.

In principle, we need all the C1 responses for

classification. The number of inputs of the tempotron

network is the same as the number of C1 responses.

Thanks to the MAX operation and the AER nature of the

feature spikes, we can achieve a virtually fully connected

system by physically activating only a very small subset

of the network. Only a small portion of neurons survive

in C1 feature maps after the MAX operation and

therefore, we only need to build a few TFS neurons for

the response-to-spike conversion. Each feature spike is

associated with an address, which can be used to access a

lookup table (LUT) and fetch the corresponding weight.

Note that, in our system, spikes are used in all the processing

stages. This is driven by a few design criteria: 1) to avoid

falling back to frame-driven processing; 2) to avoid processing

the dynamic responses all the time; and 3) to reduce the

resource requirements for hardware implementation.

III. FEATURE MAP CONSTRUCTION

AND NEURON COMPETITION

A. Related Works

Primates’ vision is extremely accurate and efficient in

object categorization. This is ascribed to the ventral pathway

processing in the visual cortex. It has been a hot topic for

decades to model the feature representations in the visual

cortex and design systems that mimic the cortical information

processing. Until today, our understanding of the visual cortex

has been boosted by massive research works in neurobiol-

ogy and neurophysiology. The current theory of the cortical

mechanism responsible for rapid categorization has been

pointing to a hierarchical and mainly feedforward organiza-

tion [29], [30]. This organization can provide hierarchical

features of increasing complexity and invariance to size and

position, making object categorization a multilayered and

tractable problem [31], [32].
Among many neurophysiologically plausible models of

information processing in the visual cortex, Hierarchical

Model and X (HMAX), proposed in [22], is one of the most

popular feedforward theories. HMAX extends the Hubel and

Wiesel [33] classical models of complex cells built from

simple cells. It summarizes the basic facts about the ventral

visual stream (V 1-V 2-V 4- I T). HMAX consists of a hierarchy

of S layers and C layers (S and C follow the notation of

Fukushima [34]). The S layer cells increase feature complexity

using linear weighted summation of the inputs, while C

layer cells increase invariance through the nonlinear MAX

operation.
The HMAX model was further extended in [23].

The whole feedforward architecture remained (S1-C1-S2-C2).

The S1 and C1 layers correspond to the simple and complex

cells in primary visual cortex V 1, while S2 and C2 are

roughly related to V 2 and V 4, respectively. The first two

layers of the Serre model are mostly consistent with the

original HMAX (differences exist in the adoption of Gabor

filters [21] rather than the difference of Gaussians [35]). The

last two layers (S2 and C2) are where Serre et al. [23]

have made significant modifications. Learning is introduced

4

TABLE I

PARAMETERS OF GABOR FILTERS

at stage S2. A number of patches are randomly extracted

from the C1 maps of the training images. Then for each

image, the Gaussian radial basis function [36] is applied to the

distance between C1 maps and patches, followed by a MAX

operation to generate the shift- and scale-invariant C2 features.

Promising results comparable with state-of-the-art computer

vision systems have been achieved in object recognition tasks

on natural images [23].

B. Proposed Cortex-Like Feature Extraction

Inspired by the aforementioned feedforward models of the

cortical information processing (HMAX and Serre model),

we propose a convolution-based network to extract features

from motion events. For the purpose of simplicity, we only

adopt a hierarchy of two layers (S1 and C1). Note that, in

our model, we use a different MAX operation in C1 layer.

The event-driven convolution with a forgetting mechanism

is introduced in the S1 layer for continuously event-driven

processing. The overall data flow can be summarized as

motion events → S1 maps → C1 maps.
Simple cells (S1) are used to build feature selectivity. This

is performed by convolving the input event with a network

of Gabor filters [21]. Each filter models a neuron cell that

has a certain size of receptive field and responds best to a

basic feature of a certain orientation. Considering both the

coverage of various sizes and orientations and the complexity

of implementing the algorithm into hardware, we tradeoff the

network to four scales (ranging from three to nine, with a step

length of 2) and four orientations (0°, 45°, 90°, and 135°).

The function of Gabor filter can be described as

2 2 2
G(x , y) = exp −

2σ 2
×cos

λ
X (1)

where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ .

The filter parameters (orientation θ , aspect ratio γ , effective

width σ , and wavelength λ) have been well tuned in pioneering

work [23], [37], and here we adopt a similar set of these

parameters. The filter parameters are listed in Table I.
The event-driven convolution is shown in Fig. 3. When an

input address event comes in, the convolution kernel is overlaid

onto the response map at the position specified by the input

event’s address. Each element of the convolution kernel is then

added to the corresponding original response. The response

map is thereby updated. In addition, to eliminate the impact

of very old events on the current response map, a forgetting

mechanism is adopted. Each pixel in the response map will

decrease (or increase) toward the resting potential (usually set

as zero) as time goes by. For implementation simplicity, we use

a constant linear leakage.

Fig. 3. Event-driven convolution with a forgetting mechanism. (a) Input
event comes in. (b) Convolution kernel is overlaid onto the response map at
the position specified by the event address. (c) Updated response map after
adding the convolution kernel to the map. (d) Decayed response map after
a while.

Fig. 4. MAX over local neighborhood. Neurons located in different-scale
S1 maps have different receptive fields, such as 3 × 3, 5 × 5, 7 × 7, and
9 × 9. Each neuron competes with all the other neurons located within its
receptive field. It can survive in C1 layer only when it is the MAX in this area.
The right 3-D figure shows an example of one S1 map, in which neuron A
will survive in C1 layer but neuron B will not.

It is in this way that we get 16 S1 convolution maps. For

a certain feature (say a bar), each neuron in the 16 maps

gives a response. C1 cells are obtained by performing the

MAX-like operation over simple S1 units. The MAX operation

is performed across the local neighborhood to find the center

of the feature. As shown in Fig. 4, the neurons located in

different-scale S1 maps have different receptive fields, such as

3 × 3, 5 × 5, 7 × 7, and 9 × 9. Each neuron competes with all

the other neurons located within its receptive field. It can only

survive and reach the C1 layer if it is the MAX in this area.
After the MAX operation, each survival neuron in C1 maps

represents a feature, i.e., a line segment with a certain size and

orientation (see the bottom right part of Fig. 2).
Note that in the proposed system, S1 and C1 are updated

together for each input event. This process is shown in Fig. 5

using a 3 × 3 receptive field as an example. Each input address

event from the sensor triggers the event-driven convolution

and MAX operation. The input event’s address specifies the

operational window (the 3 ×3 red dots in Fig. 5). The convo-

lution involves updating the leakage for these 3×3 S1 neurons

and then adding the kernel to the S1 map. After convolution,

each S1 neuron in the operational window (i.e., each red

dot) competes with its 3 × 3 local neighbors (more exactly,

3 × 3 − 1 neighbors), and will only be fed (written) to the

5

Fig. 5. Event-driven convolution and MAX operation using a 3×3 receptive
field as an example. The input event’s address specifies the operational window
(the 3 × 3 red dots), where the convolution and the MAX operation are
performed. The blue neurons need to be refreshed before the MAX operation.

C1 map if it is the maximum among its neighbors. Note that

the blue neurons in Fig. 5 need to be refreshed to make their

values up to date (i.e., to update their leakage) before the MAX

operation. This is because the lateral competition/inhibition

has to be applied to the responses of the same timing. It does

not make sense if a neuron compares its current response with

another neuron’s previous response.

IV. MOTION SYMBOL DETECTION AND

FEATURE SPIKE GENERATION

As mentioned above, in frame-driven sensors, a motion

may be wrongly segmented into different frames due to the

asynchronous nature of motion with respect to the time slice.

On the other hand, in the event-driven system, the C1 feature

maps are updated for each input event. Then when is a good

time for classification? Note that the time interval between two

consecutive events from the AER motion sensor can be very

small (100 ns or less depending on the handshaking speed of

the sensor). To avoid carrying out classification all the time,

we propose a time domain clustering algorithm and introduce

a motion symbol detector module to the system.
The word symbol is borrowed from the terms used in speech

recognition. The AER motion sensor only outputs a few noise

events when capturing a static scene, whereas it generates a

burst of output events when presented with moving objects.

Here, we use the word symbol to denote one slice from such

a burst of output events. The motion symbol detector module

consists of a leaky integration neuron and a peak detection

unit. As shown in Fig. 6(a), each input event contributes a

PSP to the neuron. For an input event received at time ti ,

the normalized PSP kernel K is defined as

K (t− ti)=V0 × exp
−(t − ti)

− exp
−(t − ti)

(2)
m s

where τm and τs denote the two decay time constants of

membrane integration and synaptic currents, respectively.

For simplicity, τs is set to be τm /4. V0 normalizes PSP so

that the maximum value of the kernel is 1.
The neuron’s total potential is then obtained by

superposition
_

V (t) = K (t − ti) + Vrest (3)

ti

_ _ _ _ __

τ τ

Fig. 6. Motion symbol detector. (a) Each input event generates a PSP.
The integration neuron’s total potential can then be obtained by superposition.
(b) Peak detection on the total potential. The potential at a certain time
compares with other potentials in its temporal search range. If it is the
maximum in the search range, it is considered as a peak; otherwise, it is not.

where Vrest is the resting potential of the neuron, which is

typically set as 0. A peak detection unit is thereafter applied

on the neuron’s total potential to locate temporal peaks.

The principle of peak detection is as follows. For a certain

timing t0, the potential at that timing is considered as a peak

if the following criterion is met:

V (t0) ≥ V (t), ∀ t ∈ [t0 − tSR/2, t0 + tSR/2] (4)

where tSR denotes the time span of the search range.

This means the potential at time t0 compares itself with all

the potentials within its search range [t0 − tSR/2, t0 + tSR/2].

If its potential is the maximum, it is then considered as a
peak. If we denote t0 + tSR/2 as tc (current timing), then the

potential at timing t0 = tc − tSR/2 is considered as a peak if

V (tc − tSR/2) ≥ V (t), ∀ t ∈ [tc − tSR, tc]. (5)

Fig. 6(b) shows two examples of peak detection. The top one
shows that V (t1) is not a peak since it is not the maximum

among its search range [t1 − tSR, t1], while the bottom one

V (t2) is considered as a peak since (5) is met.
When a peak is identified, a pulse will be triggered to

turn ON the switches in Fig. 2. At that particular moment,

C1 feature maps are fed to the following processing stages.

6

Note that to avoid the detection of very small peaks caused by

background noise events, a threshold should also be applied.

In addition, we can also add a refractory time to limit the

frequency of the output pulse, i.e., the motion symbol detector

will remain halted for a while after a pulse has been generated.

C1 feature maps at a certain moment selected by the motion

symbol detector will be fed forward to a set of TFS neurons.

Each TFS neuron is in charge of the conversion of one

response. All TFS neurons work in parallel and should be

triggered simultaneously. As stated in its name, each TFS

neuron generates only one spike. The higher the response,

the shorter the time to first spike. Let m × n denotes the

spatial resolution of the input AER motion events. After the

convolution and MAX operation, each C1 feature map has

the same size as the input resolution, and the number of all

the responses in the C1 layer is thus 4 × 4 × m × n (we use

4 × 4 filters). A fully parallel response-to-spike conversion

would require 4 × 4 × m × n TFS neurons, and thereby

lead to huge hardware resource usage. Fortunately, due to

the MAX surviving operation, only a small amount (refer to

Section VI-A for the detailed analysis) of neurons survive

in the C1 layer (i.e., most C1 responses equal to zero).

Instead of using all C1 responses, we only forward the survival

neurons’ responses (nonzero ones) together with their unique

addresses (positions within 16 C1 maps). After conversion, the

addresses of the original responses should be preserved and

fed forward together with the corresponding spikes. In this

way, the features are encoded back to AER spikes (also

called spatiotemporal spikes). Each spike has a time stamp

and an address. The time stamp is inversely proportional to

the strength of the C1 response, and the address indicates the

C1 neuron’s position. Thereafter, we can use a bio-inspired

spiking neural network named tempotron to make the
categorization decision.

V. CATEGORIZATION BY A SPIKING NEURAL NETWORK

In this section, we will illustrate how we perform classifi-
cation on extracted feature spikes using a network of spiking

neurons. Various models have been proposed in the literature

to describe the dynamics of a single spiking neuron, such as

the leaky integrate-and-fire (LIF) model [38], Hodgkin–Huxley

model [39], and Izhikevich model [40]. Among these models,

LIF has the simplest structure and thus has been widely used.

By combining multiple spiking neurons and storing weight

information in synapses, we can construct a spiking neural net-

work to learn and discriminate spatiotemporal spike patterns.

Experimental studies in neuroscience have revealed a phe-

nomenon, namely, spike-timing-dependent plasticity (STDP).

The synaptic strength will be regulated by the relative timing

of presynaptic and postsynaptic spike. Researchers have

observed a long-term potentiation of synaptic strength (when a

presynaptic neuron fires shortly before a postsynaptic neuron)

and a long term depression (when a presynaptic neuron fires

shortly after a postsynaptic neuron) [41]. STDP-based rules

have been studied in [41]–[43] for the unsupervised learning

of spike patterns. In addition to unsupervised STDP rules,

supervised learning schemes, such as tempotron [26] and
remote supervised method (ReSuMe) [44], have also been

Fig. 7. Dynamics and the learning rule of the tempotron neuron. (a) PSP
kernel. (b) and (c) Operations of tempotron using two spatiotemporal patterns.
The vertical thick bars stand for spikes and the dash curve beside each bar
denotes the PSP kernel generated by the corresponding spike. For pattern1 in
(b), the total potential crosses the threshold, which means the neuron would
fire for this input. If this is an error (the neuron should not fire for this
input), then we find all the spikes before tmax and decrease the weights of

corresponding afferent synapses. Pattern2 in (c) does not make the neuron
fire, if this is an error, the weights of those afferent synapses, which have
spikes before tmax will be increased. Note that the curve of weight change is

just the mirror of the PSP kernel.

widely exploited. Compared with ReSuMe, which specifies a

desired firing time, the tempotron learning rule only needs to

label the status of firing or not, and thus it is more suitable

for our real-world stimuli categorization tasks.
Tempotron is a model of supervised temporal learning that

allows a spiking neuron to efficiently discriminate spatiotem-

poral spike patterns. It utilizes spike timing information and

integrates PSPs from afferent spikes with different addresses.

These properties make tempotron by nature a perfect match

for our extracted AER feature spikes.

A. Tempotron Learning Rule

Tempotron uses the LIF neuron model. Each input spike

initiates a PSP, which has a fast-rising and slow-decaying

shape, as can be observed in Fig. 7(a). The neuron’s membrane

potential is the weighted summation of the PSPs from all the

input spikes
_ _

V (t) = ωi K (t − ti) + Vrest (6)

i ti

where ωi and ti are the synaptic efficacy (weight) and the

firing time of the i th afferent synapse, respectively. Vrest is the

resting potential of the neuron. K denotes the normalized PSP

kernel as defined in (2).
If the neuron’s potential is higher than a specified threshold,

the neuron will fire an output spike and then reset its potential

7

to the resting level. Fig. 7(b) and (c) shows the dynamics

and the learning rule of the tempotron neuron using two

sample spike patterns. In Fig. 7(b), the neuron fires since

the membrane potential caused by pattern1 exceeds the

threshold. After firing, the neuron shunts all the following

input spikes and the potential gradually decreases to the resting

level. In other words, the spikes arriving after the firing time

have no impact on the PSP anymore. In Fig. 7(c), the neuron

does not fire since the membrane potential fails to cross the

threshold.
The tempotron learning rule aims to train the weights so that

the output neuron can fire or not according to its class label.

If the neuron is supposed to fire (or not fire, on the other

hand) but it actually fails to do so (or does fire, vice versa),

then the weights should be modified in the following way.

First, we find the peak potential during the effective period

and label the corresponding time stamp as tmax. Second, we

update the weights using the following:
⎧
λ K (tmax − ti), if fail to fire

ti<tmax
1ωi = −λ K (tmax − ti), if fire wrongly (7)

ti<tmax
0, otherwise

where λ denotes the learning rate.

For example, in Fig. 7(c), the neuron fails to fire. If this is

an error, we need to increase the weights of those afferents

that have spikes arriving before tmax.

B. Virtually Connected Tempotron Network

In principle, we need all the C1 responses for classification.

In an N -class categorization task, we need N tempotron

neurons, with one for each category. Therefore, the tempotron

network has N outputs and 4 ×4×m ×n inputs, where m ×n

denotes the resolution of each C1 map and 4×4 represents the

number of C1 maps. The total number of weights (synapses)

is 4 × 4 × m × n × N . The size of the tempotron network is

quite large. However, thanks to the beautiful nature of the spa-

tiotemporal AER spikes and the MAX operation where only

very few neurons survive after competition, we can achieve a

virtually fully connected system by physically activating only

a very small subset of the network. We use a LUT to store all

the weights (Fig. 2). Each feature spike is associated with an

address, which can be used to access the LUT and fetch the

corresponding weight.
During the training process, for an N -class categorization

task, we label the N tempotron neurons using the one-

hot coding scheme. If a pattern belongs to the first class,

then the first tempotron neuron’s output is labeled 1 (which

means it should fire), and all the other neurons’ outputs are

labeled 0 (not fire). During testing, the decision making for

each input pattern is easy: just to check which neuron fires.

To further improve the performance, we can use multiple

neurons for each category [28]. Since the initial weights are

set randomly, these neurons will have different weights after

training. We then use the majority voting scheme to make the

final decision: to check which category has the largest number

of firing neurons.

⎪ ⎪ ⎨

⎪

 8

TABLE II

PARAMETERS FOR THE TEMPOTRON NETWORK

Fig. 8. Some reconstructed frames from our posture dataset. There are three
kinds of human actions, each row shows an action.

Note that throughout our experiments the timings of all

feature spikes fed to the tempotron network were normalized

into the range of [0, 1]. In other words, the total time window

of tempotron was set as T = 1. There was no time unit in our

tempotron network. The membrane time constant τm in the

tempotron was set as 0.1, the learning rate was set as λ = 0.1,

and the number of tempotron neurons for each category was

set as 10. These parameters are summarized in Table II.

VI. EXPERIMENTAL RESULTS

A. On AER Posture Dataset

We have evaluated the performance of the proposed

algorithm on real AER motion events captured from

our dynamic vision sensor. Our AER vision sensor uses

logarithmic response pixel circuits, in which the output voltage

is a logarithmic function of the amount of light striking a

pixel. In addition, the circuits need a threshold to generate

temporal difference motion events. The threshold is set to be

100 mV. We captured three human actions, namely, bending

to pick something up (B E N D), sitting down and standing

up (SI T ST AN D), and walking back and forth (W AL K).

Fig. 8 shows a few reconstructed sample images. Each row

corresponds to one action; images are reconstructed from

the AER motion events, using the aforementioned fixed time

slice approach with a frame interval of 20 ms.
Note that in the proposed system, we only focus on the

detection and recognition of abrupt action transitions. We do

not focus on the movements that happen at a constant speed

since they can be inferred from the last action transition.

The system performs recognition only when abrupt changes

of body movement occur, such as suddenly bending down,

sitting down, and suddenly changing the walking direction.

Compared with constant movements, abrupt changes tend to

generate more events in the sensor output, causing a burst

effect. In our system, we use a motion symbol detector to

detect such a burst of events (i.e., a motion symbol) generated

by abrupt changes, and then trigger the classification at those

moments.
1) Event-Driven Centroid Computation: The human’s posi-

tion may vary in the field of view, especially for the W AL K

action. In this case, position invariance is necessary for

the algorithm. This can be achieved by aligning the human

Fig. 9. Event-driven centroid calculation. Each incoming event initiates a
PSP kernel for the corresponding neuron. The vertical bars represent events,
and the fast-rising and slow-decaying curves depict PSP kernels. Using PSP
potential as the weight of each address, the centroid can be easily calculated
using the equation shown.

posture silhouette to the center of the scene using the centroid

information. The alignment process is simple. We can simply

offset the address of each incoming motion event before it

is fed to the S1 maps. An alternative way is to align the

address of C1 feature spikes. The latter method involves less

computation since the number of survived C1 neurons is very

small.
Fig. 9 shows the event-driven centroid calculation. Similar

to feature extraction, a map of leaky integration neurons are

built. Each incoming event initiates a PSP kernel in the neuron

specified by the event’s address. The PSP kernel is the same

as (2). Let ki denotes the PSP kernel of the neuron with

address xi , and let n denotes the number of neurons. Using

PSP potential as the weight of each address, we can easily

calculate the centroid address xc using the following:

n
xiki

xc =
i=1

. (8)

ki
i=1

This process can be visualized in Fig. 10. A person is

walking to the left and then back to the right side. The

middle and lower figures show the potential curve of the

motion symbol detector neuron and the event-driven centroid

calculation results, respectively. The top row shows the

images reconstructed at several selected timings. The green

dot highlights the centroid and the arrow indicates the moving

direction. We can observe that the calculated centroid follows

the human’s action quite well. Note that in this experiment,

we assume there is only one person in the scene. If more

people exist, we could resort to event-driven clustering

algorithms (e.g., methods presented in [15] and [16]) to

obtain the position of each cluster (person).
2) Parameters Selection: Although very few neurons

survive after MAX operation in C1, the number varies for

different input scenarios. For future hardware implementation

consideration, we need to fix the number. We define a rule

as follows: we first get the statistics of the survived neurons

in C1 layer (e.g., mean μ and standard deviation σ), and

then the number of feature spikes (as well the number of TFS

neurons) is determined by

M ≥ μ + 3 ×σ. (9)

 9

Fig. 11. Performance of the proposed algorithm on our posture dataset. All
testing actions are connected one by one into a continuous event stream and
then fed to the system for evaluation. We can see that the decisions made by
our algorithm (red circles) match very well with ground truth (blue line).

TABLE V

PERFORMANCE COMPARISON ON THE AER POSTURE DATASET

Fig. 10. Simulation results of event-driven centroid calculation on a stream
of address events. A human is first walking to the left and then back to the
right side. From bottom to top, the three rows, respectively, show the centroid
curves, the potential curve of the integration neuron in motion symbol detector,
and some images reconstructed at selected timing points. The green dot depicts
the calculated centroid and the arrow means the moving direction. We can
see that the centroid curves match the human action well.

TABLE III

NUMBER OF SURVIVED C1 NEURONS

TABLE IV

PARAMETERS FOR POSTURE DATASET

The statistics of the three posture groups are shown

in Table III.
We can see that the number of survived neurons in C1 layer

is small. According to (9), M ≥ 65 + 3 × 9 = 92 and

therefore, using 100 TFS neurons is enough.
There are several parameters in our algorithm that need to be

tuned according to specific applications. When using our AER

vision sensor to observe walking humans, a minimum time of

approximately 10–20 ms is needed to reconstruct a human-like

silhouette. Therefore, we set the membrane time constant τm

in the motion symbol detector as 20 ms. In addition, transition

actions like bending and sitting-down last no more than 1 s

during our data collection, thus the search range parameter in
the motion symbol detector is set to be tSR = 1 s. The leakage
rate in the event-driven convolution is set to be 1/τm = 50 s−1.
These parameters are summarized in Table IV. We also provide

the MATLAB codes of the proposed algorithm, which can be

accessed from our laboratory website [45].
3) Performance: The posture dataset consists of

191 B E N D, 175 SITSTAND and 118 W AL K actions.

We randomly pick out 80% of these actions for training and

the others for testing. By repeating this evaluation process ten

times, we get the average performance. For the training set,

we obtain a correct rate of 100%; while for the testing set, the

correct rate is 99.48% on average, with a standard deviation

of 0.35%. We then ran the algorithm on a continuous event

stream, which is combined from all the testing actions. The

result is shown in Fig. 11. The blue line represents the ground

truth of classification, and the red circles denote the decisions

made by our algorithm. We can observe that the decisions

match very well with the ground truth.
The proposed system was compared with two popular bio-

logically inspired algorithms: the original HMAX scheme [22]

and the model proposed in [23]. The MATLAB codes

of these two models can be downloaded from the Web.

For the original HMAX scheme, there are 256 C2 features.

For the Serre model, 1000 patches are randomly extracted

from the C1 layer of the training images and then used

for template matching in layers S2 and C2. This leads

to 1000 C2 features. Some of the patches extracted are

blank due to sparse input data, but the ratio is very small

(about 1.6%) and will not have a substantial impact on the

results. Both the HMAX and the Serre model use the linear

support vector machine (SVM) for classification. To perform

multiclass categorization on the three-class posture dataset, we

implemented the one-versus-all (OVA) SVM scheme using the

LIBSVM library [46]. Since both the HMAX and the Serre

model are designed to recognize 2-D frames/images instead

of events, our AER posture data cannot be used directly.

We use the motion symbol detector in our system to select

motion symbols. Each motion symbol is a piece of events

that took place before a peak timing (that is found by the

motion symbol detector). We reconstruct each motion symbol

into an image. The reconstructed images are then fed to the

HMAX and the Serre model for performance comparison. We

randomly pick out 80% of these images for training and the

others for testing. The testing results of these two models

(averaged from 10 runs) are shown in Table V, where they

are compared with the performance of the proposed algorithm.

In this table, we also report the simulation time taken by per

motion symbol (or per image) running on a workstation with

 10

TABLE VIII

PERFORMANCE ON THE MNIST-DVS DATASET

Fig. 12. Some sample images from MNIST hand-written digits dataset.

TABLE VI

PARAMETERS FOR MNIST DATASET

TABLE VII

PERFORMANCE ON MNIST DATASET WITH D IFFERENT NOISE DENSITY

two Xeon E5 2.4-GHz CPUs and 32-GB RAM. The original

HMAX scheme has the worst performance and the shortest

simulation time due to its relatively simple computation. The

proposed system has a performance that is comparable with

the Serre model, but its simulation time is approximately 50%

less than that of the Serre model.

B. On MNIST Image Dataset

We have further evaluated our algorithm on a standard hand-

written digit dataset Mixed National Institute of [47] that has

ten digits (0–9) and 70 000 images in total. Fig. 12 shows some

sample images of this dataset.
Our algorithm works on AER events instead of images and

therefore, we have to convert these pictures into events. We use

a basic thresholding method to convert gray level MNIST

images into binary images. The black pixels stand for the back-

ground and the white ones for the foreground. Address events

are generated from all foreground pixels (digits), assuming

that pixels fire at the same time and the events are driven out

following a random priority. Each foreground pixel generates

one event (note that for our algorithm, one event per pixel

is enough, but multiple events per pixel as in rate coding

also work fine); each image generates about 200 events. The

average length of the converted event stream is approximately

20 μs, with a mean interspike interval of 100 ns.
The membrane time constant τm and search range tSR in the

motion symbol detector are both set to be 20 μs. The leakage

rate in event-driven convolution is set as 1/τm = 5 ×104 s−1.

These parameters are summarized in Table VI.
The MNIST dataset has 60 000 images in the training set

and 10 000 images in the testing set. Our algorithm achieved

success rates of approximately 99.36% for the training set

and 91.29% for the testing set. To emulate the noise of the

AER sensor output, we also added salt and pepper noise to

the MNIST images before converting them into AER events.

The results are summarized in Table VII. One can see that

the proposed algorithm maintains competitive accuracy even

when noise is added.

TABLE IX

PARAMETERS FOR MNIST-DVS DATASET

Note that the proposed event-driven categorization system

is designed mainly for processing the motion events from the

AER temporal contrast vision sensor. The purpose of testing

the proposed system on the MNIST dataset is not to compete

with state-of-the-art algorithms but to demonstrate that the

proposed system can work not only on raw AER data but also

on images (with a preprocessing step to convert images into

AER events, but finding an optimized conversion method is

out of the scope of this paper). Since the algorithm is not

designed for the recognition of images, it has a relatively

lower performance than other highly optimized frame-driven

algorithms.

C. On MNIST-DVS Dataset

Our algorithm was also evaluated on the actual event-based

MNIST dataset (i.e., the MNIST-DVS dataset) [48].
The MNIST dynamic vision sensor (MNIST-DVS) dataset

consists of a set of dynamic vision sensor (DVS) recordings of

different handwritten digits. A total of 10 000 original 28×28

pixel handwritten digit images from the MNIST were enlarged

to three different scales (scale-4, scale-8, and scale-16) using

smoothing interpolation algorithms. Each scaled digit was

then displayed on a liquid crystal display monitor with slow

movements and a 128 × 128 pixel AER DVS [10] was used

to record the moving digit.
The proposed algorithm was evaluated on scale-4 of the

MNIST-DVS dataset. There are totally 10 000 recordings for

the scale-4 digits. Each recording has a time length about 2 s.

A digit in scale-4 roughly fits into a 28×28 patch. To provide

a proper 28×28 input scene, we used an event-driven cluster-

tracking algorithm [16] to track the moving digits from the

original 128 × 128 DVS recordings. The generated 28 × 28

event streams were then sent to our algorithm for evaluation.

90% of them were randomly selected for training and the

others were used for testing. This evaluation process was

repeated ten times to obtain the average performance. The

accuracy was 99.13% ± 0.02% for the training set and

88.14% ± 0.70% for the testing set. We also examined the

impact of the time length of recordings on the accuracy.

We evaluated 100, 200, and 500 ms and full length (about 2 s).

The results are listed in Table VIII. As expected, the accuracy

increases when longer recordings are used. The parameters

used for the MNIST-DVS dataset are shown in Table IX.

TABLE X

PERFORMANCE COMPARISON OF SVM AND TEMPOTRON ON C1 VALUES

VII. DISCUSSION

A. About Feature Spike Conversion

This paper aims to develop a spike-based categorization

framework that consists of an AER vision sensor and a

vision processing system. The AER events from the sensor

fit the spiking neurons, but they cannot be directly fed to

the classifier. Our sensor currently only performs pixel-level

motion detection. Due to the hardware limitation, no high

level feature extraction (such as corner and edge detection)

is performed in the sensor. Therefore, a feature extraction unit

is still required in the vision processing system.
In our case, convolution and MAX operation are used to

model S1 and C1 cells in the primary visual cortex. The C1

responses are converted into spikes through a set of TFS

neurons.
Converting C1 values into spikes can provide benefits for

the computation. To perform the comparison, we applied the

OVA multiclass SVM directly on C1 values, and compared

it with our method (i.e., C1 values → spikes → tempotron).

The results are shown in Table X. It can be seen that the

tempotron consumes much less simulation time than SVM

while still maintaining competitive accuracy.
Spike-domain computation is very efficient since the

computation only takes place when there is an input

spike, whereas in the conventional time-step approach, the

computation has to be performed at every time-step. In the

case of the tempotron, the computation is very simple.

A tempotron neuron’s membrane potential is updated at the

timing of each input spike. The total computation involved in

the tempotron network is linear with respect to the number

of input spikes and the number of tempotron neurons (see the

Appendix B for details). Also note that the time window T

is only a way of feature normalization during the conversion

from C1 responses to spike timings. This number has no

relationship with the computation latency of the classification.

B. About Peak Detection in the Motion Symbol Detector

The peak detection in the motion symbol detector introduces

a tSR/2 delay. If this delay is not affordable in a specific

application, this problem can be addressed by using the

thresholding method instead of the current peak searching.

When the total potential reaches the threshold, an ON pulse

is triggered. The peaks are where we are actually interested.

Using the thresholding method, we can approximately select

the timings that are close to the peaks. Thresholding can avoid

the delay, but its corresponding recognition performance is a

bit lower than that of peak detection, yet still comparable if the

threshold is properly tuned. The reason we use peak detection

11

instead of thresholding in the current system is that the peak

detection would convey our idea in a better way.

C. About Spatiotemporal Information in Feature Maps

In conventional frame-driven synchronous systems, recog-

nition is performed on every frame. Each frame contains

only spatial but little temporal information (light signal inte-

gration during the exposure time makes it a bit temporal

to a limited extent). For robust human action recognition,

longer temporal information is required. Jhuang et al. [49]

propose a biologically inspired action recognition system that

extends the C2 spatial shape features of Serre et al. [23] to

be spatiotemporal. The original 2-D Gabor filters are added

one more dimension (temporal) to their receptive fields and

therefore, the generated S1 (and also C1) maps are 3-D.

A set of spatiotemporal patches are randomly extracted from

the C1 layer of frames of training videos. Thereafter, S2 fea-

ture maps are calculated through template matching between

C1 maps and each patch. A global MAX operation across all

positions is taken for each S2 map to generate C2 units. The

spatiotemporal C2 features achieve very impressive results on

various action datasets. However, similar to the Serre model,

the algorithm proposed in [49] is designed for conventional

cameras.
Assume the frame rate of the camera is 30 frames/s, and

then each frame captures the information that happens

within 33 ms. Jhuang’s feature extraction algorithm

considers multiple (9) frames at a time to introduce

motion analysis. It processes the information that occurs

within 9 × 33 = 297 ms.
Our system is based on an AER DVS. Each pixel in the

sensor can monitor the relative change of light intensity in

real time (by direct light differencing circuits). There is no

exposure time involved and thus there is no signal integration

in the detection stage. Each address event from the sensor is

sent to a batch of Gabor filters, and convolution is performed

on the fly. The convolution response maps (S1) are updated for

each input event. In conventional frame-driven convolution, the

S1 maps are reset and recalculated for every frame. However,

in the event-driven case, the S1 maps cannot be reset. The

responses should be integrated all the time. We introduce a

leakage mechanism to forget the impact of very old address

events. Due to the nonresetting convolution and the leakage

mechanism, the generated S1 maps naturally contain temporal

information. The range of this temporal dimension can be

adjusted by varying the leakage rate. Therefore, in short, our

S1 maps do contain temporal information that is equivalent to

the concept of multiple frames, but in an asynchronous way.

VIII. CONCLUSION

This paper presents an event-driven feedforward categoriza-

tion system that processes data from an AER temporal contrast

vision sensor. Sparse features are extracted using hierarchical

maps of leaky integration neurons, which are inspired by a

model of object categorization in the primate visual cortex.

The features are then encoded into a limited number of spikes

through a set of TFS neurons. A virtually connected tempotron

network efficiently discriminates the spatiotemporal feature

spike patterns. Two types of event-driven coprocessing are

also explored, namely, the motion symbol detector and the

centroid calculation. The overall system has been evaluated

by extensive simulations and comparisons. The experimental

results have shown that the proposed event-driven system

reduces the computation (approximately 50% less in terms

of simulation time) and that it maintains competitive accuracy

even when noise is added.

APPENDIX A

COMPUTATION ANALYSIS OF THE EVENT-DRIVEN

CONVOLUTION AND MAX OPERATION

The computational process of the event-driven convolution

and MAX operation (for a 3 × 3 receptive field as shown in

Fig. 5) can be summarized as follows.
For each input address event, perform the following

operations.

1) Read 5 × 5 S1 values (the red and blue dots in Fig. 5)

from RAM into registers. Note that each S1 value

records not only the response but also the time of last

update. This involves 5 × 5 memory read access.
2) Calculate the time difference between the current time

(the timestamp of the input event) and each S1 neuron’s

last update time. This includes 5 ×5 subtractions.
3) Calculate the leakage for these 5 × 5 neurons by

multiplying each time difference with the constant

leakage rate. This involves 5 ×5 multiplications.
4) Subtract the leakage from the original responses.

This involves 5 ×5 subtractions.
5) Add the convolution kernel to the operational window

(the 3 × 3 red neurons in Fig. 5). This involves 3 × 3

additions.
6) MAX operation for each S1 neuron in the operational

window. Each neuron competes with its 3 × 3 − 1

neighbors. This step totally involves (3×3−1)×(3×3)

comparisons.
7) Write updated S1 values (responses as well as the update

time) into RAM. Write C1 values (i.e., S1 local MAX

if any, responses as well as the update time) into RAM.

This involves up to 5 ×5 + 3 ×3 memory write access.

The total computation involved for each input event is

therefore listed as follows.

• Number of memory access ≤ 5 × 5 + (5 ×5 + 3 × 3).

• Number of multiplication = 5 ×5.
• Number of addition/subtraction/comparison = 5×5+5×

5 + 3 ×3 + (3 × 3 − 1) ×(3 × 3).

To generalize it, let the receptive field be denoted as s × s

(s = 3, 5, 7, 9), the computation involved for each input event

is as follows.

• Number of memory access ≤

_
[(2s − 1)2 + (2s − 1)2 + s2]. s

• Number of multiplication = s [(2s − 1)2].

12

Fig. 13. PSP kernel of the tempotron. Difference of two exponential decays.

• Number of addition/subtraction/comparison

=
_

[(2s − 1)2 + (2s − 1)2 + s2 + (s2 − 1) × s2].

s

APPENDIX B

COMPUTATION ANALYSIS OF THE TEMPOTRON NETWORK

The computation of tempotron is simple. A tempotron

neuron is in fact a LIF neuron. Its membrane potential is

the integration results of each input spike. In other words,

each input spike updates the tempotron neuron’s potential.

The neuron’s potential is updated when and only when an

input spike comes in. The total computation of a tempotron

neuron is linear with respect to the number of input spikes.

In what follows, we analyze the computation involved in a

tempotron neuron.
The PSP kernel is the difference of two exponential decays,

as can be seen in (2) and Fig. 13. It is the difference

between a slower exponential decay (with a time constant of

τm = 0.1) and a faster exponential decay (with a time constant

of τs = τm/4 = 0.025). Note that V0 is a normalization

coefficient that makes the peak value of the final PSP kernel

to be 1.
The total potential of the tempotron neuron is the weighted

summation of the PSP kernels from all input spikes. Here,

the PSP kernel is the difference of two exponential decays.

For better illustration, let us first look at the case of a single

exponential decay PSP kernel

K1(1t) = V0 ×exp(−1t/τm).

Note that the weighted summation of exponentially decay-

ing PSPs is equivalent to implementing an exponential decay

directly on the neuron membrane potential. Therefore, the

update process of a tempotron neuron’s potential for each input

spike is as follows.

1) Calculate the time difference 1t between the current

time (i.e., the timestamp of the input spike) and the last

update time. This involves one subtraction. Note that

we also need to overwrite the last update time using the

current time, which is only an assignment and involves

no computation.
2) Refresh the neuron’s membrane potential by implement-

ing the exponential decay on it using the following:

V1 ← V1 ×exp(−1t/τm)

where V1 denotes the membrane potential that is cor-

responding to PSP kernel K1. Note that exp(−1t/τm)

can be precalculated and stored in a LUT. Assume that
the time resolution of the LUT is dt , the address that

is used to access the LUT is then 1t × (1/dt), where

(1/dt) is a precalculated coefficient. Therefore, this step

involves one LUT access and two multiplications (one

for the LUT address calculation and one for the potential

decay).
3) Add ωi × V0 to the neuron’s membrane potential

V1 ← V1 + ωi × V0

13

TABLE XI

COMPARISON OF HMAX-L IKE MODELS

AND THE PROPOSED ALGORITHM

where ωi is the weight associated with the channel

(address) of the input spike. This step involves one

multiplication and one addition.
4) For the second exponential decay PSP kernel K2(1t) =

V0×exp(−1t/τs), steps 2) and 3) need to be replicated.

If we put these two steps together, it will be

V2 ← V2 × exp(−1t/τs) + ωi × V0

where V2 is the membrane potential that is correspond-

ing to PSP kernel K2.
5) The final membrane potential of the tempotron neuron

is then V = V1 −V2. This step involves one subtraction.
6) In the end, we need to check whether the membrane

potential is larger than the threshold or not. This involves

one comparison.

To sum it up, using the difference of two exponential

decays as the PSP kernel, the computation for each input

spike is as follows.

• Number of LUT access = 1 × 2 = 2.

• Number of multiplication = (2 + 1) × 2 = 6.

• Number of addition/subtraction/comparison = 1 + 1 ×

2 + 1 + 1 = 5, where the ×2 is due to two exponential

decays.

Note that the peak of the final PSP kernel K does not happen

at the time of the input spike; instead it has a delay from the

input spike timing. This can be observed in Fig. 13. The PSP

peak does not happen at 1t = 0. We found that it roughly

occurs at 1t ≈ 0.462 × τm (for τs = τm/4). To obtain the

correct output (firing or not), we need to check the firing status

at the PSP peak time in addition to the input spike time. This

can be easily done by generating a dummy spike for each

input spike. The dummy spike has a timestamp of 0.462 ×
τm + t , where t denotes the input spike timing. For the dummy

spike, the computation does not involve membrane potential

increment, i.e., +ωi × V0 in step 3) and 4) is skipped. The

computation for each dummy spike is as follows.

• Number of LUT access = 1 × 2 = 2.

• Number of multiplication = 2 × 2 = 4.

• Number of addition/subtraction/comparison = 1 + 1

+1 = 3.

In our system, the number of spikes fed to tempotron is less

than 100. Let us use the worst case (i.e., 100 input spikes)

for the calculation. Note that each input spike also generates

a dummy spike. The computation involved in a tempotron

neuron is therefore listed as follows.
• Number of LUT access = (2 + 2) × 100 = 400.

• Number of multiplication = (6 + 4) × 100 = 1000.
• Number of addition/subtraction/comparison = (5 + 3) ×

100 = 800.

For a three-class categorization task, we need three

tempotron neurons for the one-hot coding scheme. In addition,

we use multiple neurons (10 in our experiment) for each

category. Therefore, there are 30 tempotron neurons in total.

The total computation involved in the classification is as

follows.
• Number of LUT access = 400 × 30 = 12 000.

• Number of multiplication = 1000 ×30 = 30 000.

• Number of addition/subtraction/comparison = 800×30 =

24 000.

Note that the total computation is linear with respect to

the number of input spikes and the number of tempotron

neurons. In addition to this, the final computation time depends

on how fast the hardware (CPU or ASIC/FPGA) performs

each addition/subtraction/comparison, multiplication, and LUT

access.
The current PSP kernel used in the tempotron neuron

(i.e., the difference of two exponential decays) models the

transmission delay from a presynaptic spike to the PSP.

Considering the transmission delay makes the neuron model

more biologically plausible. However, this delay can usually be

ignored in most practical engineering problems. That is, to use

only a single exponential decay PSP kernel. In that case, the

computation involved in a tempotron neuron for each input

spike will be even less, and no dummy spike is needed.

APPENDIX C

COMPARISON OF HMAX-LIKE MODELS
AND THE PROPOSED ALGORITHM

Compared with HMAX-like models (such as the Serre

Model), the proposed method has lower complexity. For

feature extraction, HMAX-like models have four layers of

processing, i.e., S1–C1–S2–C2. The computation of layers

S2 and C2 requires a large number of C1 patches to be

stored in memory and used for template matching. Our algo-

rithm only has the S1 and C1 layers. It does not need to

extract and store patches. In addition, it has fewer filters

in the S1 layer (4 scales × 4 orientations, compared with

16 scales×4 orientations in the Serre model). The comparison

is summarized in Table XI. As for the classifier, HMAX-

like models use SVM, whereas our algorithm utilizes a tem-

potron spiking neural network (which is much faster as shown

in Section VII-A).

APPENDIX D

SOME DESIGN CONSIDERATIONS

The proposed system is designed to process the continu-

ous event stream from an AER vision sensor. S1 and C1

are updated for each input event and the following part is

triggered when the motion symbol detector finds a peak. This

architecture is justified as follows.

A. S1 Must be Running All the Time Together

With the Motion Symbol Detector

Each neuron in the S1 layer is a Leaky Integration cell

(no fire), so is the neuron used in motion symbol detector.

Each incoming event is integrated immediately by all these

neurons (the S1 neurons and the neuron in motion symbol

detector) and then discarded. There is no need to store input

events in our system.
The potentials (responses) of these leaky integration neurons

are the integration results of past events. A burst of input

events (a motion symbol) will cause a peak potential in the

motion symbol detector. If the S1 integration begins after a

peak has been detected, it will be too late, since the events

have already passed.

B. C1 Can be Placed Before or After the Switches in Fig. 2

Placing C1 after the switches (i.e., triggering the MAX

operation only when the motion symbol detector finds a peak)

will reduce the computation for each event. In fact, this is what

we did in the MATLAB simulation of categorizing offline AER

data. However, this method will result in more computation

after peak detection. Note that in this method, the MAX

operation needs to be performed for whole-map S1 neurons.

Also note that in hardware implementations, S1 responses

typically need to be stored in RAMs instead of registers due

to the large amount of data they contain. Because of the huge

volume of RAM access involved, the MAX operation for

whole-map S1 neurons will therefore take a relatively long

period of time to compute, causing a relatively long delay

from peak detection to output decision.
On the other hand, placing C1 before the switches will

reduce the computation after peak detection. In this method,

the C1 layer is updated together with the S1 layer using the

aforementioned event-driven convolution and MAX operation,

which only affects a small window for each input event.

Note that the window MAX operation is performed directly

using the S1 responses that were already loaded into registers

from the RAM during the convolution. This avoids repeated

S1 RAM access. After peak detection, there is no longer any

need to perform a whole-map MAX operation; this method

therefore obviates the large amount of RAM access that would

be required in whole-map MAX operation, resulting in a

relatively short delay from peak detection to output decision.

The placing of C1 before or after the switches can also be

compared in terms of the total computation process from an

input event to an output decision (assuming the input event

turns the switches ON). The processes involved when placing

C1 before and after the switches are, respectively: event →

convolution → window MAX → spike conversion →

tempotron, and event → convolution → whole-map

MAX → spike conversion → tempotron. One can see that

placing C1 before switches will reduce the delay from the

input event to the output decision. Therefore, we consider it

14

preferable to place C1 before the switches and update C1,

together with S1, using the event-driven convolution

and MAX.

REFERENCES

[1] G. Indiveri, S.-C. Liu, T. Delbruck, and R. Douglas, “Neuromorphic

systems,” in Encyclopedia of Neuroscience. San Francisco, CA, USA:

Academic, 2009, pp. 521–528.
[2] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current

Opinion Neurobiol., vol. 20, no. 3, pp. 288–295, 2010.
[3] E. Chicca et al., “A multichip pulse-based neuromorphic infrastructure

and its application to a model of orientation selectivity,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 981–993, May 2007.
[4] R. J. Vogelstein, U. Mallik, E. Culurciello, G. Cauwenberghs, and

R. Etienne-Cummings, “A multichip neuromorphic system for spike-
based visual information processing,” Neural Comput., vol. 19, no. 9,
pp. 2281–2300, Jul. 2007.

[5] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Frontiers

Neurosci., vol. 5, p. 73, May 2011.
[6] T. J. Hamilton, C. Jin, A. van Schaik, and J. Tapson, “An active

2-D silicon cochlea,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 1,

pp. 30–43, Mar. 2008.
[7] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A matched silicon

cochlea pair with address event representation interface,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 54, no. 1, pp. 48–59, Jan. 2007.
[8] K. A. Boahen, “Point-to-point connectivity between neuromorphic chips

using address events,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal
Process., vol. 47, no. 5, pp. 416–434, May 2000.

[9] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 × 128 120 dB 15 μs

latency asynchronous temporal contrast vision sensor,” IEEE J. Solid-

State Circuits, vol. 43, no. 2, pp. 566–576, Feb. 2008.
[10] T. Serrano-Gotarredona and B. Linares-Barranco, “A 128, × 128 1.5%

contrast sensitivity 0.9% FPN 3 μs latency 4 mW asynchronous frame-
free dynamic vision sensor using transimpedance preamplifiers,” IEEE
J. Solid-State Circuits, vol. 48, no. 3, pp. 827–838, Mar. 2013.

[11] B. Zhao, X. Zhang, S. Chen, K.-S. Low, and H. Zhuang, “A 64, ×, 64
CMOS image sensor with on-chip moving object detection and local-
ization,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 4,
pp. 581–588, Apr. 2012.

[12] S. Chen, W. Tang, X. Zhang, and E. Culurciello, “A 64 × 64 pixels

UWB wireless temporal-difference digital image sensor,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 12, pp. 2232–2240,
Dec. 2012.

[13] Java AER Open Source Project. [Online]. Available: http://jaer.

wiki.sourceforge.net/, accessed Mar. 10, 2013.
[14] X. Zhang and S. Chen, “Live demonstration: A high-speed-pass asyn-

chronous motion detection sensor,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), May 2013, p. 671.
[15] M. Litzenberger et al., “Embedded vision system for real-time object

tracking using an asynchronous transient vision sensor,” in Proc. 12th

Signal Process. Edu. Workshop, Sep. 2006, pp. 173–178.
[16] T. Delbruck and P. Lichtsteiner, “Fast sensory motor control based on

event-based hybrid neuromorphic-procedural system,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), May 2007, pp. 845–848.
[17] R. Serrano-Gotarredona et al., “On real-time AER 2-D convolutions

hardware for neuromorphic spike-based cortical processing,” IEEE

Trans. Neural Netw., vol. 19, no. 7, pp. 1196–1219, Jul. 2008.
[18] R. Serrano-Gotarredona et al., “CAVIAR: A 45k neuron, 5M synapse,

12G connects/s AER hardware sensory–processing–learning–actuating
system for high-speed visual object recognition and tracking,” IEEE
Trans. Neural Netw., vol. 20, no. 9, pp. 1417–1438, Sep. 2009.

[19] J. A. Perez-Carrasco et al., “Mapping from frame-driven to frame-free

event-driven vision systems by low-rate rate coding and coincidence
processing. Application to feedforward ConvNets,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 11, pp. 2706–2719, Nov. 2013.

[20] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional net-
works and applications in vision,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), May/Jun. 2010, pp. 253–256.
[21] J. G. Daugman, “Uncertainty relation for resolution in space, spatial

frequency, and orientation optimized by two-dimensional visual cortical

filters,” J. Opt. Soc. Amer. A, vol. 2, no. 7, pp. 1160–1169, Jul. 1985.
[22] M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-

tion in cortex,” Nature Neurosci., vol. 2, no. 11, pp. 1019–1025, 1999.

[23] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust

object recognition with cortex-like mechanisms,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 29, no. 3, pp. 411–426, Mar. 2007.
[24] S. Chen, P. Akselrod, B. Zhao, J. A. Perez-Carrasco,

B. Linares-Barranco, and E. Culurciello, “Efficient feedforward
categorization of objects and human postures with address-event image
sensors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 2,
pp. 302–314, Feb. 2012.

[25] B. Zhao and S. Chen, “Realtime feature extraction using MAX-like

convolutional network for human posture recognition,” in Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS), May 2011, pp. 2673–2676.
[26] R. Gütig and H. Sompolinsky, “The tempotron: A neuron that

learns spike timing-based decisions,” Nature Neurosci., vol. 9, no. 3,

pp. 420–428, Feb. 2006.
[27] J. Hu, H. Tang, K. C. Tan, H. Li, and L. Shi, “A spike-timing-based

integrated model for pattern recognition,” Neural Comput., vol. 25, no. 2,

pp. 450–472, 2013.
[28] Q. Yu, H. Tang, K. C. Tan, and H. Li, “Rapid feedforward computation

by temporal encoding and learning with spiking neurons,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1539–1552, Oct. 2013.

[29] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human

visual system,” Nature, vol. 381, no. 6582, pp. 520–522, Jun. 1996.
[30] S. J. Thorpe and M. Fabre-Thorpe, “Seeking categories in the brain,”

Science, vol. 291, no. 5502, pp. 260–263, Jan. 2001.
[31] T. Serre and M. Riesenhuber, “Realistic modeling of simple and complex

cell tuning in the HMAX model, and implications for invariant object
recognition in cortex,” Dept. Brain Cognitive Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, Tech. Rep. AI Memo 2004-017/CBCL
Memo 239, Jul. 2004.

[32] T. Serre, A. Oliva, and T. Poggio, “A feedforward architecture accounts

for rapid categorization,” Proc. Nat. Acad. Sci., vol. 104, no. 15,

pp. 6424–6429, 2007.
[33] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex,” J. Physiol.,
vol. 160, pp. 106–154, Jan. 1962.

[34] K. Fukushima, “Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,”

Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980.
[35] D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc.

London Ser. B, Biol. Sci., vol. 207, no. 7, pp. 1160–1169, Jul. 1985.
[36] M. D. Buhmann, Radial Basis Functions. New York, NY, USA:

Cambridge Univ. Press, 2003.
[37] T. Serre, “Learning a dictionary of shape-components in visual cortex:

Comparison with neurons, humans and machines,” Ph.D. dissertation,
Dept. Brain Cognitive Sci., Massachusetts Inst. Technol., Cambridge,

MA, USA, Apr. 2006.
[38] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,

Populations, Plasticity, 1st ed. Cambridge, U.K.: Cambridge Univ. Press,

Aug. 2002.
[39] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-

brane current and its application to conduction and excitation in nerve,”

J. Physiol., vol. 117, no. 4, pp. 500–544, Aug. 1952.
[40] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans.

Neural Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.
[41] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike timing dependent

plasticity finds the start of repeating patterns in continuous spike trains,”

PLoS ONE, vol. 3, no. 1, p. e1377, 2008.
[42] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual

features through spike timing dependent plasticity,” PLoS Comput. Biol.,

vol. 3, no. 2, p. e31, Feb. 2007.
[43] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competitive STDP-

based spike pattern learning,” Neural Comput., vol. 21, no. 5,

pp. 1259–1276, May 2009.
[44] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural

networks with ReSuMe: Sequence learning, classification, and spike

shifting,” Neural Comput., vol. 22, no. 2, pp. 467–510, Feb. 2010.
[45] [Online]. Available: http://www.ntu.edu.sg/home/eechenss/Research/

2013-AER-System/code.zip, accessed Aug. 22, 2014.
[46] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vec-

tor machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,

pp. 27:1–27:27, Apr. 2011.
[47] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

15

[48] T. Serrano-Gotarredona and B. Linares-Barranco. The MNIST-

DVS Database. [Online]. Available: http://www2.imse-cnm.

csic.es/caviar/MNISTDVS.html, accessed Jul. 20, 2014.
[49] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, “A biologically inspired

system for action recognition,” in Proc. IEEE 11th Int. Conf. Comput.
Vis. (ICCV), Oct. 2007, pp. 1–8.

Bo Zhao (M’11) received the B.Eng. and M.Eng.
degrees in electronic engineering from Beijing
Jiaotong University, Beijing, China, in 2007 and
2009, respectively, and the Ph.D. degree in electrical
and electronic engineering from Nanyang Techno-
logical University, Singapore, in 2014.

He is currently a Research Scientist with the
Institute for Infocomm Research, Agency for Sci-
ence, Technology and Research, Singapore. His cur-
rent research interests include neuromorphic vision
processing, spiking neural networks, biologically

inspired object recognition, and very large scale integration circuits and
systems design.

Ruoxi Ding (S’13) received the B.S. degree in
electronic engineering from Sichuan University,
Chengdu, China, in 2013. He is currently pursuing
the M.Eng. degree with the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore.

His current research interests include neuromor-
phic vision processing, neural networks, machine
learning, and reconfigurable circuits and systems
design.

Shoushun Chen (M’05–SM’14) received the
B.S. degree from Peking University, Beijing, China,
in 2000, the M.E. degree from the Chinese Academy
of Sciences, Beijing, in 2003, and the Ph.D. degree
from the Hong Kong University of Science and
Technology, Hong Kong, in 2007.

He was Post-Doctoral Research Fellow with the
Department of Electronic and Computer Engineer-
ing, Hong Kong University of Science and Technol-
ogy, for one year after graduation. From 2008 to
2009, he was a Post-Doctoral Research Associate

with the Department of Electrical Engineering, Yale University, New Haven,
CT, USA. In 2009, he joined Nanyang Technological University, Singapore,
as an Assistant Professor.

Dr. Chen serves as a Technical Committee Member of Sensory Systems
of the IEEE Circuits and Systems Society, an Associate Editor of the IEEE
SENSORS JOURNAL, an Associate Editor of the Journal of Low Power Elec-
tronics and Applications, the Program Director (Smart Sensors) of VIRTUS
IC Design Centre of Excellence, and a regular reviewer for a number of
international conferences and journals, such as the IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION SYSTEMS, the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS-PART I, the IEEE TRANSACTIONS ON CIR-
CUITS AND SYSTEMS-PART II, the IEEE TRANSACTIONS ON BIOMEDICAL

CIRCUITS AND SYSTEMS, the IEEE TRANSACTIONS ON PATTERN ANALY-
SIS AND MACHINE INTELLIGENCE, Sensors, and the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY.

Bernabe Linares-Barranco (F’10) received the
B.S. degree in electronic physics, the M.S. degree
in microelectronics, and the Ph.D. degree from the
University of Seville, Seville, Spain, in 1986, 1987,
and 1990, respectively, and the Ph.D. degree from
Texas A&M University, College Station, TX, USA,
in 1991.

He has been with the Spanish Research Council,
Microelectronics Institute of Seville, Seville, Spain,
since 1991, where he is currently a Full Professor
of Research. He has been a Visiting Profes-

sor/Fellow with Johns Hopkins University, Baltimore, MD, USA, Texas
A&M University, College Station, TX, USA, and the University of
Manchester, Manchester, U.K. His current research interests include
address-event-representation (AER) very large scale integration, real-time
AER vision sensing and processing chips, memristor circuits, and extending
AER to the nanoscale.

Prof. Linares-Barranco has received two IEEE TRANSACTIONS Best Paper
Awards, and has been an Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS-PART II, the IEEE TRANSACTIONS ON NEURAL

NETWORKS, and Frontiers in Neuromorphic Engineering. From 2011 to 2013,
he was the Chair of the IEEE Circuits and Systems Society Spain Chapter.

16

Huajin Tang (M’01) received the B.Eng. degree
from Zhejiang University, Hangzhou, China, in
1998, the M.Eng. degree from Shanghai Jiao Tong
University, Shanghai, China, in 2001, and the
Ph.D. degree in electrical and computer engineering
from the National University of Singapore, Singa-
pore, in 2005.

He was a Research and Development Engineer
with STMicroelectronics, Singapore, from 2004 to
2006. From 2006 to 2008, he was a Post-Doctoral
Fellow with the Queensland Brain Institute, Univer-

sity of Queensland, Brisbane, QLD, Australia. He is currently a Research
Scientist and Leader of the Cognitive Computing Group with the Institute for
Infocomm Research, Singapore. He has authored one monograph (Springer-
Verlag, 2007) and over 30 international journal papers. His current research
interests include neural computation, neuromorphic systems, cognitive com-
puting, and neurorobotics.

Dr. Tang is an Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS and Editorial Board Member of
Frontiers in Robotics and AI. He serves as a Guest Editor of Neurocomputing
(2014) Special Issue on Brain Inspired Models of Cognitive Memory, and the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(2015) Special Issue on Learning in Neuromorphic Systems and Cyborg
Intelligence. He serves as an Organizing Committee Member of the 2014
Asia-Pacific Symposium of Intelligent and Evolutionary Systems and the
Program Chair of the 2015 IEEE International Conference on Cybernetics
and Intelligent Systems.

