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Abstract— This paper presents the architecture, algorithm and
VLSI hardware of image acquisition, storage and compression on
a single-chip CMOS image sensor. The image array is based on
time domain digital pixel sensor technology equipped with non-
destructive storage capability using 8-bit Static-RAM device em-
bedded at the pixel level. An adaptive quantization scheme based
on Fast Boundary Adaptation Rule (FBAR) and Differential
Pulse Code Modulation (DPCM) procedure followed by an on-
line Quadrant Tree Decomposition (QTD) processing is proposed
enabling low power, robust and compact image compression
processor. A prototype chip including 64 × 64 pixels, read-out
and control circuitry as well as the compression processor was
implemented in 0.35µm CMOS technology with a silicon area
of 3.2 × 3.0mm2. Simulation results show compression figures
corresponding to 0.75 Bit-per-Pixel (BPP), while maintaining
reasonable PSNR levels.

I. INTRODUCTION

Real time image acquisition and processing is becoming
a challenging task because of higher spatial and coding
resolution, which imposes very high bandwidth requirement.
The recent emergence of new applications in the area of
wireless video sensor network and ultra low power biomedical
applications (such as the wireless camera pill) have created
new design challenges in which the hardware is often con-
strained to take very little physical space and to consume
very little power. However, image compression remains the
most expensive hardware [1][2][3] in digital video camera.
This would limit the prospect of implementing low power
image acquisition and compression on a single chip. In order
to alleviate some of these problems, we reported a single
chip vision sensor based on Fast Boundary Adaptation Rule
(FBAR) followed by an on-line Quadrant Tree Decomposition
(QTD) processing [4] enabling low power and compact image
compression. The image is first acquired using a time domain
CMOS digital pixel sensor array followed by FBAR scheme
which permits to compress the data to 1 Bit-per-Pixel (BPP).
Further compression (0.6 − 0.8 BPP) is accomplished using
QTD algorithm. The scanning sequence in this work is based
on a Morton (Z) [5] scan strategy which is a quadrant or
window-based read-out featuring extremely compact hardware
implementation by bitwise address manipulation. However, the
transition from one quadrant to the next involves jumping to
a non-neighboring pixel resulting in spatial discontinuity. We

proposed a smooth boundary point propagation scheme but
at the expense of additional two 8-bit registers for each level
quadrant.

In this paper, we propose a second generation of image
compression system. Compared to the previous work, the 1-
bit FBAR algorithm is performed on the predictive error using
DPCM rather than the pixel itself. A new Hilbert scanning
technique [6] is used avoiding any spatial discontinuity in
the scanning sequence and maintaining block based scanning
strategy. This makes it quite suitable to both the FBAR and
QTD algorithm. Another significant improvement is related to
the QTD algorithm which saves silicon area by storing the
tree information in the DPS array. The remainder of the paper
is organized as follows. Section II introduces design of the
TFS-based DPS pixel. Section III introduces the algorithmic
considerations for the 1-bit FBAR algorithm combined with
the DPCM technique and the simulation results. Section IV
describes the imager architecture and its VLSI implementation.
Section V concludes this work.

II. TIME-TO-FIRST SPIKE DIGITAL PIXEL

The image array consists of 64×64 digital pixel sensors. As
shown by Fig. 1, each pixel includes a photodiode PD with its
its internal capacitance Cd, a reset transistor M1, a comparator
(M2-M6) and 8-bit SRAM, each of which is implemented by
9 transistors.
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Fig. 1. Pixel Schematic.

The pixel array is operated in two separate phases. The
first phase corresponds to the integration phase in which the
photodiode is first reset to V ddA. After that, the light falling
onto the photodiode discharges Cd, resulting in a decreasing
voltage V N across the photodiode node. The time required
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for V N to reach the threshold voltage Vref of the comparator
can be interpreted as the time-to-first spike, which is inversely
proportional to the photocurrent (Iph), given the assumption
of constant Iph and Cd. At this time, the ”SRAM WriteEn”
becomes invalid, therefore a time stamp provided by a global
timing unit (gray de-counter) is recorded into the on-pixel
SRAM. Actually, the output of the comparator serves as a
”Write-Stop” signal which prevents the SRAM from writing
new timing data and hence the last data recorded in the
SRAM is the timing stamp for that pixel. Once the integration
phase is completed, the pixel array can be interpreted as a
distributed static memory. Image processing can be performed
by scanning the array using row and column addressing
technique.

III. ALGORITHMIC CONSIDERATIONS

A. Adaptive quantization based on FBAR

The proposed adaptive quantizer can be specified by an
ordered set of boundary points y0 < y1 < · · · < yi−1 < yi <
· · · < yN−1 < yN delimiting N disjoint quantization intervals
R1, · · · , Ri, · · · , RN , with Ri = [yi−1, yi]. The quantization
process is a mapping from a scalar-valued signal x into one of
reconstruction intervals, i.e., if x ∈ Rj , then Q(x) = yj . This
Quantization process thus inevitably introduces quantization
error when the number of quantization intervals is less than
the number of bits needed to represent any element in a whole
set of data. The most commonly used distortion measure is the
rth power law distortion:

d (x, Q (x)) Dr ≡
N∑

i=1

|x − yi|r p(x)dx (1)

It has been shown that using Fast Boundary Adaptation Rule
[7] can minimize the r-th power law distortion, e.g. the mean
absolute error when r = 1 or the mean square error when
r = 2. At convergence, all the N quantization intervals Ri

will have the same distortion Dr(i) = Dr/N . This property
guarantees an optimal high resolution quantization. For a 1-
bit quantizer, there will be just one adaptive boundary point y
delimiting two quantization intervals, with R0 = [0, y] and
R1 = [y, 255]. The boundary point itself is taken as the
reconstructed value. At each time step, the input pixel intensity
will fall into either R0 or R1. The boundary point is then
shifted to the direction of the active interval by a quantity η.

The performance of the 1-bit FBAR quantizer is found
highly dependent on a particular choice for η [4]. We pro-
pose to make η adaptive using the following heuristic rule:
if the active quantization interval does not change between
two consecutive pixel readings, we consider that the current
quantizing parameters are far from the optimum and η is then
multiplied by Λ > 1; if the active quantization interval changes
between two consecutive pixel readings, we consider that the
current quantizing parameters are near the optimum and thus
η is reset to its initial value.
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Fig. 2. 1-bit Adaptive Q combined with DPCM.

B. Differential Pulse Code Modulation

In our proposed image compression scheme, the 1-bit adap-
tive FBAR is incorporated with the DPCM algorithm. The
main structure of the hybrid system is shown in Fig. 2. The
input signal to our system is the data from an image sensor.
Each pixel’s value is first compared with its predictive value
which is estimated by the equation:

BPP = Reg0 × 1.375 − Reg1 × 0.75 + Reg2 × 0.375 (2)

where Reg0, Reg1, Reg2 are three previously scanned pix-
els’ reconstructed value. The predictive value is then adjusted
by η depending upon the comparison result to obtain its
reconstructed value, which is then feed back to the predictor in
the next cycle. In this system, both the decoder and the encoder
are based on the same mechanism thus no side information is
need to be transmitted.

C. Hilbert scan

The adaptive quantizer explained earlier permits to build a
binary image on which quadrant tree decomposition (QTD)
can be further employed to achieve higher compression ratio.
The QTD compression algorithm is performed by building a
multiple hierarchical layers of a tree which corresponds to a
quadrant in the array. In the previous work [4], we built the tree
by scanning the array using the Morton (Z) [5] scan strategy as
shown by Fig. 3.(A). While it provides a simple mean to scan
the array in a block based approach, the transition from one
quadrant to the next involves jumping to a non-neighboring
pixel which will result in spatial discontinuity, which can be
larger and larger when scanning the array due to the inherent
hierarchical partition of the QTD algorithm. To address this
problem, we proposed a smooth boundary point propagation
scheme, at the expense of two additional 8-bit registers for
each level of quadrant. As shown in Fig. 3.(A), two registers
(A4, B4) are needed to store the boundary point for the 4× 4
quadrant level and two other registers (A8, B8) are needed to
store those related to the 8 × 8 quadrant level.

Hilbert scanning provides another interesting solution with-
out using the additional storage. As shown in Fig. 3.(B), the
scanning is also performed within multi-layers of quadrants
but always keeping spatial continuity when jumping from one
quadrant to another. It ensures minimal storage requirement
for the adaptive quantizer as the neighboring pixel is the one
just scanned. The implementation of Hilbert scanning can be
quite straightforward by using hierarchical address mapping
logic which will be explained in the next section.
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TABLE I

AVERAGE PERFORMANCE OF 20 TEST IMAGES UNDER DIFFERENT OPERATING MODES, NAMELY ADAPTIVE η RASTER SCAN (η-R), ADAPTIVE η MORTON

(Z) SCAN (η-MZ), ADAPTIVE η SMOOTH BOUNDARY MORTON (Z) SCAN (η-SMOOTHMZ), ADAPTIVE η HILBERT SCAN (η-HILBERT) AND ADAPTIVE η

WITH DPCM USING HILBERT SCAN (η-HILBERT+DPCM). M = PSNR
BPP

[dB/BPP ]. THE TABLE SHOWS THAT EACH MODE CAN ACHIEVE TO ITS

MAXIMUM PSNR USING A SPECIFIC VALUE OF η0 . THE η-HILBERT+DPCM MODE PRESENTS THE BEST PSNR AND BPP FIGURES WHEN η0=18.

Size of test images
Operation modes 64 × 64 128 × 128 256 × 256 512 × 512

PSNR BPP M η0 PSNR BPP M η0 PSNR BPP M η0 PSNR BPP M η0

η-R 21.15 1.07 19.79 21 22.42 0.97 23.05 20 24.01 0.93 25.95 16 25.93 0.91 28.52 12
η-MZ 21.48 0.97 22.15 18 22.82 0.89 25.64 16 24.32 0.84 28.78 13 25.90 0.85 30.55 11

η-SmoothMZ 22.37 0.96 23.37 17 23.83 0.90 26.51 14 25.49 0.86 29.79 12 27.45 0.89 30.76 9
η-Hilbert 22.77 0.98 23.11 18 24.26 0.93 26.05 14 26.05 0.88 29.70 12 28.11 0.99 28.27 7

η-Hilbert+DPCM 23.06 0.88 26.14 19 24.62 0.81 30.43 15 26.52 0.75 35.25 12 28.53 0.75 38.02 9
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Fig. 3. (A.)Smooth boundary point propagation scheme using Morton (Z)
scan. (B.)Hilbert scan patterns at each hierarchy for an 8 × 8 array.

D. Simulation Results

We have compared the performance of our proposed algo-
rithm with other operation modes over a set of test images. As
the performance of FBAR is highly dependent on the choice
of η, there exists an optimal η value for a particular image
and for each operation modes. For the set of test images, we
sweep the value of η from 5 to 35 to find the the optimal value
for each operation mode. The performance of each mode is
reported in Table I. We can note that using Morton (Z) scan
can achieve better performance than raster scan because it
is a block based strategy. Further improvement in PSNR of
about 1.5dB (512 × 512) can be achieved by using Smooth
Morton (Z) scan. Hilbert scan can easily achieve comparable
performance without additional storage requirement. Finally,
the best figures of PSNR and BPP are achieved using our
proposed hybrid system, combining DPCM with Hilbert scan.

IV. VLSI IMPLEMENTATION

A. Imager Architecture

Fig. 4.(A) shows the block diagram of a single chip CMOS
image sensor with the adaptive DPCM quantizer and the
QTD processor. The image array consists of 64 × 64 digital
pixel sensors. The pixel array is operated in two separate
phases. The first phase corresponds to the integration phase
in which the illumination level is recorded and each pixel
sets its own integration time which is inversely proportional
to the photocurrent. A timing circuit is added in our imager
in order to compensate for this non-linearity by adjusting the
quantization levels of a sampling counter. In our prototype,
a 16bit × 256word memory is used in order to apply more

compensation modes than the linear relationship, logarithmic
relationship, for instance. In the integration phase, the row
buffers drive the timing information in gray code format to
the array. After the longest permitted integration time, the
imager turns into the read-out mode. The row buffers are
disabled and the image processor starts to work. First, the
QTD processor will generate linear quadrant address which is
then translated into Hilbert scan address by the Hilbert Scanner
block. The address is decoded into “Row Select Signal (RSx)”
and “Column Select Signal (CSx)”. The selected pixel will
drive the data bus and its value will be first quantized by the
DPCM Adaptive Quantizer then the binary quantization result
will be compressed by the QTD processor.

B. Hilbert Scanner

Hilbert scanning is found to be composed by multiple levels
of four basic scanning patterns as shown in Fig. 5.

RR −RR −CC

0100 0100 0100 0100

10 11 10 11 10 11 10 11

CC

Fig. 5. Basic scanning patterns found in Hilbert scan.

They are denoted as RR, −RR, −CC, and CC respec-
tively. For example, RR represents a basic scanning pattern
featuring a relationship between its linear scanning sequence
and physical scanning address as following:

RR: (′b00) → (′b01) → (′b11) → (′b10),

RR −RR −CC

RR CC−RR −RRRR −CC−CC

−CC RR −RR −CC CC CC RR −RR

CC

CC

Fig. 6. Hierarchical Hilbert scanning sequence.

The whole array is then can be represented by hierarchies
of such basic scanning sequences. If we look at some inter-
mediate level, as shown by Fig. 6, if it is in the format of
RR, then its four children quadrants must be in the format
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Fig. 4. A.) Imager Architecture B.) Imager layout implemented in Alcatel 0.35 µm CMOS technology with main blocks highlighted.

of CC �→ RR �→ RR �→ −CC. Based on this nice
feature of Hilbert scanning, we can easily map the linear
quadrant address into Hilbert scanning address using very
simple hardware. First of all, we use a linear address to
segment the whole array into levels of quadrants. Each level
of quadrant is addressed by 2-bit of address. Then we map the
linear address into Hilbert address in a top-down approach. At
the highest quadrant level, the scanning sequence is predefined,
can be RR or CC. Assume that we now using RR, then
at the second highest level, the scanning type of the four
quadrants are CC �→ RR �→ RR �→ −CC. Depending
on the current linear quadrant address (first 2-bit of MSB),
we are must within one of them. Let’s further assume that
we are now in the fourth quadrant which in the format of
−CC. Then its four sub-quadrants must be in the format of
−RR �→ −CC �→ −CC �→ RR. Further more, we can also
determine which of them we are within now by looking at the
second 2-bit MSB of the linear address. As a result, the whole
process can be realized by a series of 2-bit address mapping
without any sequential logic.

C. VLSI Implementation

The single chip image sensor and compression processor
was implemented using 0.35µm AMI CMOS digital process
(1-poly 5 metal layers). Fig. 4.(B) shows the chip’s layout
with a total silicon area of 3.2× 3.0mm2. The 64 × 64 pixel
array was implemented using a full-custom approach. Each
pixel occupies an area of 39 × 39µm2 with a fill factor of
12%. The digital processing parts was synthesized from HDL
and implemented using automatic placement and routing tools.
The digital processor occupies an area of 0.25 × 2.2mm2.

In Table II, we compared the number of flip-flops used in
this processor compared to that reported in [4]. Significant
saving is achieved mainly by two approaches: 1) storing the
QTD tree information in the DPS array and 2) removing the
boundary point storage by using Hilbert scan.

TABLE II

NO. OF FLIP-FLOPS USED IN THIS WORK AND [4].

Function Block This work That of [4]
Adaptive η 9 9

DPCM 24 0
SmoothMZ 0 64

QTD 202 1407
HilbertScan 0 0

Total 235 1480

V. CONCLUSION

In this paper, a single chip CMOS image sensor with a
hybrid 1-bit FBAR quantizer combining DPCM algorithm
and QTD compression processor is presented. Hilbert scan
is employed to provide both spatial continuity and quadrant
based scan. The whole processor is implemented with small
hardware expense but achieves 0.75 BPP compression ratio
and 28.5 dB image quality.

ACKNOWLEDGMENT

This work was supported by a grant from the Research
Grant Council of Hong Kong (Ref.610405).

REFERENCES

[1] A. Olyaei and R. Genov, ”Mixed-Signal Haar Wavelet Compression
Image Architecture,” MWSCAS’05,Cincinnati, Ohio, 2005.

[2] Kawahito, et al., ”CMOS Image Sensor with Analog 2-D DCT-Based
Compression Circuits,” JSSC, Vol.32, No.12, pp.2029-2039, Dec. 1997.

[3] L. G. Chen, et al., “A lowpower 8×8 direct 2D-DCT chip design,” in J.
VLSI Signal Process., Vol.26, pp.319-332, 2000.

[4] S. Chen, et al., “Adaptive-Quantization Digital Image Sensor for Low-
Power Image Compression,” TCASI, Vol.54, Issue 1, pp.13-25, Jan. 2007.

[5] E. Artyomov, et al., “Morton (Z) Scan Based Real-Time Variable Reso-
lution CMOS Image Sensor,” IEEE Trans. On Circuits and Systems For
Video Technology, Vol.15, pp.947-952, Jul. 2005.

[6] Biswas, S., “Hilbert scan and image compression,” 15th International
Conference on Pattern Recognition, Vol.3, pp.207-210, 2000.

[7] D. Martinez, et al., “Generalized Boundary Adaptation Rule for Minimiz-
ing rth Power Law Distortion in High Resolution Quantization”, Neural
Networks, Vol.8, No.6, pp.891 -900, 1995.

4


