
 
Abstract— This letter presents an unconditionally stable 
alternating direction implicit finite-difference time-
domain (ADI-FDTD) method with 4th order accuracy in 
time. Analytical proof of unconditional stability and 
detailed analysis of numerical dispersion are presented. 
Compared to 2nd order ADI-FDTD and 6-steps SS-FDTD, 
the 4th order ADI-FDTD generally achieves lower phase 
velocity error for sufficiently fine mesh. Using finer mesh 
gridding also reduces the phase velocity error floor, which 
dictates the accuracy limit due to spatial discretization 
errors when the time step size is reduced further. 

 
Index Terms—Alternating direction implicit finite-
difference time-domain (ADI-FDTD), split-step approach, 
numerical dispersion, higher order ADI-FDTD 

I. INTRODUCTION 
ince the development of unconditionally stable alternating 
direction implicit finite-difference time-domain (ADI-

FDTD) method [1],[2], there has been considerable interest in 
improving its temporal accuracy. In [3],[4], some techniques 
have been introduced to achieve higher order temporal 
accuracy for various unconditionally stable methods including 
the split step (SS) approach. One such technique is based on a 
sequence of time stepping coefficients determined via a 
systematic procedure [5]. However, the actual updating 
procedures and numerical performance of higher order 
methods have not been discussed in detail. For instance, it is 
not clear how to incorporate the seven coefficients of [3, 
Table 1] in SS4-FDTD method to achieve 4th order accuracy 
in time (or one may need 9 steps in practice?). It is also not 
obvious about the order of 6-steps SS-FDTD approach 
proposed in [6], which was claimed to be of higher order 
accuracy. Moreover, the stability and numerical dispersion of 
various higher order methods remain to be ascertained and 
investigated further.  

In this letter, we present an unconditionally stable ADI-
FDTD method with 4th order accuracy in time. In Section II, 
the updating procedure of 4th order ADI-FDTD method is 
developed. Section III presents the analytical proof of 
unconditional stability and the detailed analysis of numerical 
dispersion. Comparisons of numerical phase velocity errors 
are made among 4th order ADI-FDTD, 2nd order ADI-FDTD 
as well as 6-steps SS-FDTD.  
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II. ADI-FDTD METHOD WITH 4TH ORDER 
ACCURACY IN TIME 

For simplicity, consider a 2D TM wave propagation in a 
lossless, isotropic and source-free medium with permittivity 
ε  and permeability µ . The conventional ADI-FDTD method 
calls for the following two steps as [1],[2] 
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where I is the 3 by 3 identity matrix,  
u= [ Ez   Hx   Hy ]T   (2a) 
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and nu , 1+nu  are the fields at integer time steps. It is well 
known that this method is second order accurate in time due 
to the presence of third order error terms )( 3tO ∆  in its 
overall updating procedure.  

To achieve 4th order accuracy in time, (1) can be extended 
into 6 steps as follows: 
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Here, mnu ,  represent the auxiliary fields at intermediate steps. 
The coefficients 0x  and 1x  are given by [5] 
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which have been determined such that  
12 10 =+ xx ,   02 3

1
3
0 =+ xx  (5) 

(all third order error terms will then be cancelled). Since the 
even order error terms are also zero, only the 5th order error 
terms )( 5tO ∆  onwards are present in (3) and thus it is 4th 
order accurate in time. 
 

III. STABILITY AND DISPERSION ANALYSIS 
Using the Fourier analysis in conjunction with second order 

spatial central difference on Yee cell, the updating procedure 
of (3) can be represented in matrix form as 
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where for 10 , xx=α , 
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Note that X, Y, Z are real, and all the eigenvalues have the 
magnitude of one. Thus, the ADI-FDTD of (3) with 4th order 
accuracy in time is proven to be unconditionally stable.  

Next we analyze the numerical dispersion relation of the 4th 
order ADI-FDTD, which can be derived as 

ZPt /)2/(sin 2 =∆ω  (8) 

Fig. 1 shows the phase velocity v normalized to µε/1=c  
versus propagation angle (in degrees). Uniform mesh size is 
adopted, and the cell per wavelength (CPW) is selected to be 
100. The time step size is specified relative to the Courant 
limit time step CFLt∆  via CFLtt ∆∆= /CFLN , where 
CFLN=6 for the present case. It is evident that the phase 
velocity error is lowest for the present 4th order ADI-FDTD. 
Note that although the SS-FDTD of [6] yields more accurate 
phase velocity compared to 2nd order ADI-FDTD, its temporal 
accuracy is only of second order. This can be ascertained by 
the presence of third order error terms )( 3tO ∆  in the overall 
updating procedure of [6].  

To investigate the numerical dispersion for other time step 
sizes, Fig. 2 plots the maximum normalized phase velocity 
error versus CFLN. It can be seen that the 4th order ADI-
FDTD outperforms the 2nd order one over the entire range of 
CFLN considered. For non excessive time step size, it also 
features lower phase velocity error than the SS-FDTD of [6].  

In Fig. 2, we also observe that when CFLN or t∆  is 
reduced further, there exists a phase velocity error floor for all 
methods. This error floor represents the minimum error that 
can be achieved by reducing the time step size. It depends 
solely on the mesh size and can be found from the numerical 
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Fig. 1. Normalized phase velocity versus propagation angle (in degrees). 
CPW=100 and CFLN=6. 
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Fig. 2. Maximum normalized phase velocity error versus CFLN. CPW=100. 
 
 



dispersion expression. To that end, we multiply (8) by 
2/ t∆µε , and take the limit as 0→∆t : 
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Upon some manipulation, (9) can be simplified as 
2222 )4/( yx VVc +=ω  (10) 

where )2/sin()/1( ξξ ξξ ∆∆= kV . It can be seen that (10) 
dictates the accuracy limit due to spatial discretization errors 
when the time step size is reduced further. By applying this 
equation, one can solve for the error floor in terms of CPW. 
For CPW=100, we obtain an error floor value of 410645.1 −× , 
which coincides with the level depicted in Fig. 2. Moreover, 
the error floor may be reduced by increasing CPW, or in other 
words, using finer mesh gridding.  

Fig. 3 shows the maximum normalized phase velocity error 
versus CPW for CFLN=2 and 4. It is evident that for 
CFLN=2, the phase velocity error of 4th order ADI-FDTD is 
the lowest throughout. For CFLN=4, it is still lowest for most 

CPW’s, except at the small CPW region, the error of 4th order 
ADI-FDTD may exceed that of 6-steps SS-FDTD. This 
implies that, to exploit the present ADI-FDTD with 4th order 
accuracy in time, sufficiently fine mesh should be adopted to 
avoid the error being overwhelmed by the coarse mesh. This 
is exemplified by the previous case when CPW=100, CFLN 
can be as high as 10 and the 4th order ADI-FDTD still 
outperforms. Besides phase velocity error, the anisotropy 
error defined as minminmax /)( vvv −  is also investigated, cf. 
Fig. 4. Again, the 4th order ADI-FDTD may achieve smaller 
anisotropy error with finer mesh gridding. Alternatively, to 
avoid excessive meshes, one may consider increasing the 
spatial accuracy from the present second order to higher order 
or parameter optimized ones as [7]-[9].  

 

IV. CONCLUSION 
This letter has presented an unconditionally stable ADI-

FDTD method with 4th order accuracy in time. Analytical 
proof of unconditional stability and detailed analysis of 
numerical dispersion have been presented. Compared to 2nd 
order ADI-FDTD and 6-steps SS-FDTD, the 4th order ADI-
FDTD generally achieves lower phase velocity error for 
sufficiently fine mesh. Using finer mesh gridding also reduces 
the phase velocity error floor, which dictates the accuracy 
limit due to spatial discretization errors when the time step 
size is reduced further. 
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Fig. 3. Maximum normalized phase velocity error versus CPW. CFLN=2,4. 
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Fig. 4. Anisotropy error versus CPW. CFLN=2,4. 
 
 


