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Abstract—Generalized formulations of fundamental schemes in [1], [5], [6] (see also those cited in the author’s previous
for efficient unconditionally stable implicit finite-difference time-  \works).
domain (FDTD) methods are presented. The fundamental The idea of ADI scheme that has been adapted in the

schemesconstitute a family of implicit schemesthat feature
similar fundamental updating structures, which are in simplest recent celebrated ADI-FDTD, can be traced back to the early

forms with most efficient right-hand sides. The formulations of classic works by Peaceman and Rachford [7]. Apart from
fundamental schemesare presented in terms of generalized the ADI scheme, many alternative implicit schemes have also

matrix operator equations pertaining to some classicalsplitting  peen introduced by researchers in applied mathematics to
formulae, including those of alternating direction implicit, locally deal with various parabolic, elliptic and hyperbolic partial

one-dimensional and split-step schemes. To provide further differential tems. Some of such schemes that are more
insights into the implications and significance of fundamental ! lal Systems. such s S

schemesthe analysesare also extendedto many other schemes Common and closely related to the present scope include
with distinctive splitting formulae. Detailed algorithms are des- locally one-dimensional (LOD) and Crank-Nicolson schemes
cribed for new efficient implementations of the unconditionally  [8]-[11]. These schemes have been adapted as well for FDTD
Zt‘ic?)";';”aeg‘t:i'\t/e'zs?l;'—d% r(;}e\fgﬂgig"’i‘rsnep?i%ﬂtzg:m;ﬂme&g'fgzgmgls' solutions of Maxwell's equations, leading to unconditionally
and new implementationsis carried out, which includes compari- stable LOD-FDTD method [12]'[1_3]' split-step FDTD e_lp-
sons of their computation costs and efficiency gains. ProaCh [14]-[15] and other Crank'N|CO|S_0_”'based approxima-
Index Terms—Finite-difference time-domain (FDTD) methods, tlontl,:nzthzds [15]' Most.(l)tf thesetlﬁncolndltl.onlal.ly Slt.aale FhDTD
unconditionally stable methods, implicit schemes, alternating metho S_ ave _een ul _UDon_ _e classica 'mP ICIt schemes
direction implicit (ADI) scheme, locally one-dimensional (LOD) Dy adopting their respective splitting formulae directly.
scheme, split-step approach, computational electromagnetics. Despite the successful adaptation of various classical
schemes, continuing efforts are underway to devise new stable
methods that are more efficient and simpler to implement.
I. INTRODUCTION Recently, a new efficient algorithm has been presented for

o . . the ADI-FDTD method [17]. The algorithm involves up-
_The finite-difference time-domain (FDTD) method has be,e(ﬁ'ating equations whose right-hand sides are much simpler
widely used to obtain the numerical solutions of Maxwell

nd more concise than the conventional implementation [3],

equations for investigating electromagnetic wave radiatitl)_%] This leads to substantial reduction in the number of
propagation and scattering problems [1]. For the corventio ithmetic operations required for their computations. While

expl|_c|t FDTD method [2],_the_ computational efﬁmg_ncy Sthe underlying principle of the new algorithm has helped
rgs_tncted _by t_he Courant-andnchs-Lewy (.CFL) Stab'.l'ty CONmake the ADI-FDTD simpler and more efficient, it actually
dition, which imposes a maximum constraint on the time st s greater significance in its own right. This paper aims to

S|zed§:§perlg|ng on thdgt_spat;lal ntwebslh TZIZD?I'SD To icre]mé)\;)e thzc larify and extend such principle to arrive at a series of new
condition, the unconditionally stable method based Ol iy algorithms for various other unconditionally stable

the alternating direction implicit (ADI) technique has beerﬂnplicit FDTD methods, including some of those mentioned

developed [3], [4]. The success of AD!'FDTD methqt_j ha bove. Moreover, it will be found that the resultant algorithms
brought about a resurgence (.)f interest in the unc_ond|t|ona Bnstitute a family of implicit schemes, all of which feature

s'FabIe schemes not only W'”‘”? th? electromagnetics COMMUrilar fundamental updating structures that are in simplest
nity, but also among other scientists and mathemat|C|ansf8FmS with most efficient right-hand sides

large. With its unconditional stability advantage, the ADI- The organization of this paper is as follows. Section II

FDTD method has been extensively analyzed, improved agpesents the formulations of fundamental schemes in terms

extended_ for many a_ppllcauons. Since the I|ter_ature_ in the ?generalized matrix operator equations pertaining to some
aspects is so voluminous, we could have easily missed %ttlé

many references that are not directly relevant. For mo
comprehensive survey, we refer the readers to the bibliograq

ssical splitting formulae, including those of ADI, LOD

d split-step schemes. To provide further insights into the

plications and significance of fundamental schemes, the

analyses are also extended to many other schemes with distinc-
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implementations of the unconditionally stable implicit FDTDit follows that v of (2a) is reducible to
methods, e.g. ADI-FDTD and LOD-FDTD. In Section 1V, a

comparative study of various implicit schemes in their original v = (I + EB) u® (4a)

and new implementations is carried out, which includes com- 2

parisons of their computation costs and efficiency gains. The —ou” — (I _ EB) u” (4b)

fundamental nature of new implementations will also become . 2

evident through the comparisons and discussions. =2u" —-v" 2. (4c)
Il. GENERALIZED FORMULATIONS Furthermore, upon recognizing (2by"*z of (2c) is also

In this section, we present the generalized formulations Eefdumble to

fundamental schemes for implicit finite-difference methods. el At il

Starting from some classical implicit schemes, their general- Vo= (I+ TA)U ’ (5a)

ized matrix operator equations are revisited and reformulated oyt _ (T EA ntd 5h

in the simplest and most efficient forms. These new forms —eu ( 2 )u (50)

feature convenient matrix-operator-free right-hand sides with —ou"ts _ v (5¢)
least number of terms, which will lead to coding simplification

in their algorithm implementations. For simplicity and claritywith (4c) and (5c), algorithm (2) becomes more efficient as
we omit the nonhomogeneous terms that appear merely as

vectors (without involving matrices). v = ou® — v 2 (6a)
At n+i _ . n
A. ADI (I - 7A)u b oy (6b)
The ADI scheme, originated by Peaceman and Rachford [7], viTE = outs vy (6¢)
is one of the most popular implicit finite-difference schemes in At 1 1
; ; . I- —B)u"t =v"fz, (6d)
use today. This scheme calls for generalized splitting formulae )
i the form h h I def f field bl
Through a simple re-definition of field variables
(1 — gA) uth = (I + gB)u“ (1a)
2 2 ~n __ n ~n+i n+i
At At ) " =2u", 0" =2u""?, (7
(1 — 73)11"+1 - (1 + 7A) untt, (1b)
. we may reduce the algorithm further into [17]
For many decades, such splitting formulae form the basis
of many other numerical methods, which include the recent vl = " — vy (8a)
unconditionally stable ADI-FDTD method [3], [4]. Note that 1 At )
the specific matrix operatord and B of [3], [4] (for 3-D (51— TA) "tz =y (8b)
Maxwell) are different from those of [7] (for 2-D parabolic), IR
vites =gtz —y" (8c)

even though they conform to the same generalized form (1).
In this section, we shall let these matrices be general but (11_ At )ﬁn+1 — it (8d)
would caution that one must choose their operators properly

for a particular scheme to stay unconditionally stable [16]1'his algorithm proceeds in terms @fs for its main iterations,

To implement the ADI algorithm, it is more convenient ©%nd only when the field output is required, one may retrieve

introduce auxiliary variables for denoting the right-hand sidqﬁe data from
of implicit equations. This allows us to rewrite the original

algorithm as u'tl = %ﬁ"“. 9
At
vt = (I + —B)u” (2a) . . o
2 Equations (8a)-(8d) constitute the most efficient ADI scheme
(I -~ EA) u'tE =y (2b) that has the simplest right-hand sides without involving any
2 explicit matrix operator. For nonzero initial fields, the algo-
vitE — (I + EA) u™ts (2c) rithm takes the input initialization
2
At At
(1 - 73)11"+1 — yti (2d) voi = (1 - 7B)uo. (10)

where thev's serve as the auxiliary variables. Note that such initialization will not degrade the accuracy of

If one exploits these auxiliary variables, the original algos 5 <.heme since it simply corresponds to (3) with= 0

rithm above can be modified into one of the more efficienj, (2d) with n — —1. Furthermore, (3) along with (7)-

scheme. In particular, based on (2d) at one time step backwa(%) are just (2a)-(2b) or (la). Hence the equivalence of

Vi = (I— EB) " 3) both present and original (generalized) Peaceman-Rachford
2 ’ schemes becomes evident here.



B. LOD1/SS1 In line with the previous subsection, the algorithm imple-

The LOD scheme, introduced in the early Russian literatuf@entation can be made much simpler along with improved
(cf. [8], [10]), is another classical scheme that has bedfficiency by resorting to

used extensively. This scheme calls for generalized splitting 1 At el .
formulae in the form (51 - gA)V T=u (17a)
At At 1 1
(I - 7A)11"+% - (I n 7A) u” (11a) T R (17b)
1 At 3 1
At At - = nty — gtz
(- 5Bpe = (1 e G-z
;D nt+2 _ ont2 _ ntl (17d)
Such splitting formulae have been adopted to develop the u =V u
rec_ent unconditionally stable LOD-FDTD method [12] and (11_ EA)VnH — gt (17e)
split-step approach [14]. WheA andB do not commute, the 2 8
scheme is accurate to first order in time. Thus, the resultant 't =yt gt (17%)
LOD-FDTD method and split-step approach may be denoted
by LOD1 and SS1 respectively. Again, we have the right-hand sides of these equations cast

For most efficiency, the original LOD scheme can b# the most convenient matrix-operator-free form. However,
modified into simplest form with matrix-operator-free rightsince there are three implicit equations to be dealt with, the

hand sides. From (11a), we have scheme still involves more arithmetic operations than those
At ) At having merely two implicit equations with matrix-operator-
n+s __ n . .
(I - TA)H 7 = (I + TA)U (12a) free right-hand sides.
At
—ou" — (1 — —A) u". (12b)
_ _ _ 2 D. LOD2
This can be manipulated readily to give )
At An alternative LOD-FDTD method denoted by LOD2 has
(1 _ —A) (un+% + u") =2u"” (13) been presented, which does not exhibit the non-commutativity
2 _ . error and preserves the second-order temporal accuracy [13].
Wh_ere the vector terms in bracket may be denoted by auxiliggy essence, the main iterations proceed with two updating
variable procedures in the same way like LOD1, cf. (11a)-(11b).
vitE = uts 4 oun (14) However, the time indices are associated with advancement

Similar manipulation applies to (11b) which leads to auxiliarngg/SEgz fromn +1/4 10 n +3/4 and fromn + 3/4 to

variablev™t!. Combining all auxiliary and field variables, we

i At : At
arive at (1-S-a)umtt = (1+ At (18a)
1 At il " 2 2
(51 — IA)V 2 =1 (153) At . At 5
1-5B)u' 't = (1+ 5B )unt, 18b
uttE =yt g (15b) ( g o) TRt (18b)
1 At ntl il To relate the fields to those normally at integer time steps,
(51- 5 B)vi ! —urt (15¢) e OIS " :
2 4 such association will prompt for additional processing for the
utl =yl _ognts (15d) input field data
' ir right- i i At At
In these equations, all the_lr right-hand sides are seen to be in (I B —B)ui _ (I i —B)uo (19)
the most convenient matrix-operator-free form. Furthermore, 4 4

there is no special input initialization required and the outpuls \well as for the output field data
field solution is directly available from (15d).

At At L

- n+l _ _ - n+1lx
C. sS2 (1+ 5 B)u*! = (1- TB)utt. (20)
~ While the former SS1 approach is only first-order accuraigote that the input processing is to be invoked only once at
in time, the general split-step approach actually permits simpige beginning, while for the output processingaat 1, it may
extensions to achieve higher-order temporal accuracy [1fe performed separately and independently in parallel without
Consider the split-step approach of second-order accurgfgrupting the main iterations. Furthermore, one often does not
denoted by SS2. It is based on the Strang splitting formulaged to frequently output all field components, except probably
[9] and involves three updating procedures one or two of interest at few desired observation points after

At ntl At " certain (fairly long) interval periodically.
(I N TA weor= (I * TA)U (162) " The LoD2 algorithm above, with its facilitation for paral-
At nid At il lel/reduced/infrequent output processing, has been found to
(I_ TB)U LT (I+ TB)U ! (16D) be more efficient than those of ADI and SS2 methods in
(I B EA) a = (I i EA) ate (16¢) their original |mpleme_ntat|_0_ns [13]. To improve the efﬁmency
4 4 further, we perform simplifications like previous subsections



to arrive at matrix-operator-free right-hand sides for the mapoint using the scheme with splitting formulae (cf. generalized

iterations as matricization of D’Yakonov or Beam-Warming scheme)
1 At 3 1 At At At
—I—- —A)v"tT =y"*1 21a - = * = = = n
(2 ] )vg ul (21a) (1 - A)u (I+ . A) (I+ > B)u (25a)
n+s _ o nt+s _ ontt At
u 4 =V 4 u 4 (Zlb) (I _ _B) un+1 — u*' (25b)
11 A B n+1i _ n+% 21 2
(5 7)Y -u (21)  such scheme may be reduced to an efficient one with the
a T — yntli _ogntd (21d) iterations algorithm read as
n __ ..n n—1i
If desired, similar simplifications may be performed for the vi=uiove s (26a)
input processing (11 _ EA) R (26b)
2 4
1 At
(51 — ?B)vi _— (22a) VIE = ynth yn (26¢)
T—vyi_qy 22b L At n+tl _ gntd
u v u (22b) (21 1 B)u vi'T2 (26d)
and output processing along with input initialization
1 At 1 1 1 At
- =" n+1 _ n+1l+ -5 — (1= 0
(21+ - B)v un i (23a) V3 (21 : B)u. 27)
1
utt =yt gt (23b) Notice that the form of (26) is just that of (8), while noting

. . - also the relation
Equations (21a)-(21d) constitute the most efficient LOD2

scheme which is comparable to that of (8a)-(8d). ut = 2vte, (28)
Another illustration is the splitting formulae (cf. generalized

E. Fundamental Implications and Significance matricization of 2D Douglas-Gunn scheme or delta formula-

It turns out that the new algorithm implementations prei©™)

sented above represent some very fundamental ones for im- At . "

plicit finite-difference methods. As is evident from (8) and (I B TA) Au’ = At(A + B)u (292)

(15) or (21), these schemes merely involve similar updating B g - "

structures, namely implicit updating with (simplest) matrix- (I 2 B) Au=Au (29b)

operator-free right-hand sides and explicit updating via sub- u"t = u" + Au. (29¢c)

traction of two vectors. Their main slight difference might just hi b di h . fund |
be the sequence of implicit and explicit updatings. Moreové?‘,ga'n’ this C"?:P ”e turne mtg t_i previous fundamenta
one may convert from one scheme to another simply by prop%ﬁheme’ specifically (7)-(10) and wit

initialization and swapping the roles of field and auxiliary Au* = "3 — g» (30a)
variables. For instance, treating” as the field variables 1

(uncontaminated to second order) in (15) and using Au = 5(13"“ - ﬁ")- (30b)

u" = (11 T EB)VH (24) Meanwhile, the fundamental scheme of (15a)-(15b) forms
2 4 the basis of simplification for many split-step methods of

to initialize its iterations, one may obtain the*+! field so- highe_r orderacc_uracy in_[14]. This will Ieaq to theirco_nvenient
lutions from (15c¢) that correspond to the**! field solutions alg(_)rlthms all with matrlx-operator_-free right-hand sides fol-
from (8)-(9). Such interesting but subtle link between LODBPWING the same way that underpins (15¢)-(15d), (17a)-(17f)
and ADI schemes has been pointed out earlier [18]. Througfd (21)-(21d), etc. Even for the classical Crank-Nicolson
the fundamental schemes herein, the link becomes particulat§"€me having the original unfactorized form
obvious with their similar updating structures and with the At ntl At "
aid of variables that are otherwise not defined in the original [ T 9 (A + B)] uo = [I + o (A + B)] u’, (31)
schemes, e.gv is not directly seen in (11). - . . .

The implications of the fundamental schemes above arge may based on similar manipulation to devise
actually more far-reaching. In partlc_ular_, we n_ot_e that many [11 _ E(A n B)]u’”% - (32a)
other classical and recent non-dissipative splitting schemes, 2 4
such as D’Yakonov scheme, delta formulation, Crank-Nicolson ant!
direct-splitting method etc. may be cast into the same sim-
plest form of (8) featuring matrix-operator-free right-hand his obviously constitutes the simpler algorithm than that of
sides. Such analyses when extended to these schemes thighoriginal scheme.
distinctive splitting formulae, will give further insights into It should be mentioned that the extent of simplification
the significance of fundamental schemes. Let us illustrate tl@iad actual improvement of computation efficiency for various

=u"tz —u" (32b)



fundamental schemes depend much on the particular maguation (8b) may find more convenience through implicit
operators and algorithm implementation details (to be depdating

scribed next). Although the scope of this paper is mainly about
the unconditionally stable implicit FDTD methods in elec-

tromagnetics, it is evident that all fundamental schemes dis- 2
cussed can be extended readily to many other finite-difference
schemes in computational physics, even conditionally stable or )
parabolic/elliptic ones, etc. Some numerical methods that bear ZET®
resemblance to the schemes above such as implicit integrations

or iterative solutions of certain control problems may be madellowed by explicit updating
simpler and more efficient in the similar manner.

IIl. EFFICIENT IMPLEMENTATIONS

In this section, we describe the detailed algorithms for
new efficient implementations of the unconditionally stable

1 ~ntt  bd o~ ntl

- =0 "TT = e 4+ bO, b (38a)

1 ~pt+ L bd ~nt+l n n

1 ~n+1i bd 2 ~nt+l n n

. - DO — e vouhy,  (380)
A0YE = opn 4+ o, BN E (39a)
AR = on + do, BN (39b)
70 — ot 4 dp, Ente (39¢)

implicit FDTD methods based on the fundamental schemegiiar arguments apply to equations (8c) and (8d), where the
For simplicity, consider the lossless isotropic medium withy mear is implemented directly as

permittivity e and permeability.. The splitting matrix opera-

tors of Maxwell's equations may be selected as 6?% _ ~g+% —el, E=my2 (40a)
1 ntl ~ o+l "
0 0 0 0 20, O while the latter comprises implicit updatin
A=lo o 0 0o 0 0 (33) P P ApEaing
10 0 %895 0 0 0 lE;erl o %83E~1;1+1 _ eg*% _ bazh;“r% (41a)
L9, 0 0 0 0 0 % b2d 1 1
0 0 0 0 =a o0 gE T = GO = ey b0, hlT (41b)
0 0 0 0 0 =1y, 1o\ bd_y= 1 " L
0 0 0 %18y 0 0 §E?+ - ?ayE?+ =e; 2 —bOyhs 2, (41c)
B=19 0o =9 0o o o | ©G9
w Yy .. .
771@ 0 0 0 0 0 and explicit updating
-1
L0 S0 0 0 0 0 A = opmtE _ gg, Bt (42a)
v_vheream_, 8@!, 0, are the spatial_diﬁgrence opera_tors for the g+l _ 2hZ+% 4o En (42b)
first derivatives alongz, y, z directions respectively. The v ) z
vector components of field and auxiliary variables can be H L = onntr - d&IE;}“. (42c)
written as
~ When the difference operators above represent specifically
Ex EI €z the second-order central-differencing operators on Yee cells,
By ~Y €y equations (37)-(42) correspond to the efficient algorithm de-
u= 1132 , = B, , V= ZZ (35) lineated in [17]. In particular, the solutio»"fg+1 from (41)
HI gﬂﬁ h”” cpincides WithE§|"+1 from [17, eqn. (11)], while the solution
Hy Hy hy HZ*! from (42) is half of Hy "™ from [17, eqn. (12)]. The
N z N reason for such magnetic field relation is that certain variables
For convenience, we also introduce the notations and coefficients in (37)-(42) have been re-scaled in the cor-
responding auxiliary and explicit updating equations of [17].
— ﬁ’ d— ﬁ (36) This helps save the scaling of final magnetic field solution that
2¢ 2p is otherwise necessary, cf. (9). Moreover, additional savings of
operations can be achieved by combining (39) and (40b) as
A. ADI o i
Let us illustrate the implementation of fundamental ADI ha = hi +d0.Ey " (43a)
scheme (8). While equation (8a) can be implemented directly h2+% =h"+ do, B2 (43Db)
as n+i ~ L
R . hz * =h} +do,Er 2. (43c)
eg = B — 6275, E=ux,y,2 (37a)
n n—3 B When the final magnetic field data is not needed frequently,
he =H¢ —he *, £=1,y,2, (37b) (42) and (37b) (at + 1 time step) may also be combined for



higher efficiency:

Rl = pitE gy, Bt (44a)
Bt = BT do, Bt (44b)
Bt = BV g, Bt (44c)

As before, there are many choices for the difference oper-
ators in equations (45)-(50). For being more specific in the
next section, we select the second-order central-differencing
operators on Yee cells. To minimize the number of for-loops
in the previous algorithm, some of their updating equations
may be incorporated in the same loops. Moreover, when the

Other implementation details may be referred to [17] includinguxiliary magnetic variables:,: are not to be output, the
for-looping, tridiagonal system solving, memory reuse etc. [BXplicit updating equations (46) and (47b) can be combined

actuality, there are many possibilities as far as detailed i read

plementations_ are con_cerned,_ suc_h_ as differept_definiti(_)n and ot i_ H;z+4 + do, €n+4 (51a)
scaling of variables, different implicit and explicit updatings, s d sl s d
different difference operators, e.g. higher order, parameter Hy *=Hy, *"+doge; * (51b)
optimized, compact_etc. [19]-[22]. The updating equz'_;\tions 0" %7H;z+4 +do, €n+4’ (51c)
presented above still leave much room and generality for
exploring into these possibilities. while (49) and (50b) become
n+13 n+3 n+l3
B. LOD2 Hy =H; " —doye: (52a)
1 n na1l
For subsequent discussions and comparisons, we also de- HZ]H‘* =H, i doe H (52b)
scribe the algorithm implementation of fundamental LOD2 H;Hrli _ Hn+4 — 4o, n+1—' (520)

scheme (21) in more detail and yet general. Adopting the same

notations of (33)-(36), equation (21a) may be split into impliciMeanwhile, to minimize the memory storage requirement,

updating some of the variables may occupy the same memory spaces.
1 n+4 bd ., n+4 4l 4l For instance, one can choose to reuse the spaces of those
56 3 =E; ' 4+b0,H. (452)  variables grouped within curly braces &= .y, 2):
1 E) bd n+ n+l n+l n n I n n n
2 +3 82 1 :Ey T4 po,H, R (45b) {E +4’ £+1 +1 } { +3 E +4}
n+i nt+1i n+1 n+3 n+3
%€Z+%__32 mH_ ErtT g, HI (45¢) {H T hy T T (T HT)
and explicit updating In a computer program, _these VQriabIes could just share_ the
s il ot d same names to be assigned with new values successively.
hetT = 2HTT 4 do, ey * (46a) Note that in conjunction with (51)-(52), one may absdrb
n+2 n+i n+3 altogether and reuse thié. spaces.
hy " =2Hy "+ dOye: (46b) Following the similar arguments as above, the detailed
Wt —omt T 4 ag,ent (46c) algorithms for the fundamental LOD1/SS1 and SS2 schemes
. - may be written and coded with reference to (15) and (17)
while (21b) is directly accordingly.
n+3 n+3 n++
E ' t=e¢ *—E; " {=umy2 (47a)
nt2 ntd n+ IV. DIscussiONS ANDCOMPARISONS
He'"=he "—H, ", {=u,y,z (47b)

Likewise, equation (21c) consists of implicit updating

% ntlE —82 P Er _pe.HI T (48a)
% ntli bd82 nHE gttt pe,HITT (48b)
%e? i _ 3@3 T B _po,HITY (480)
and explicit updating

R ot g, et (49a)
RV ot g ent (49b)
RoTYE ot gy, et (49c)

whereas (21d) is simply
E;Hl_ = 2+1 Eg+%, E=ux,y,2 (50a)
Hg+1_ = hn+1 Hg+%, E=ux,y, 2. (50b)

Having systematically addressed various implicit schemes
and their new algorithm implementations, we are now ready
to make a comparative study. Of particular interest are the
computation efficiency gains as compared to the original
schemes, or more specifically over the prevailing ADI-FDTD
implementation [3], [4]. Furthermore, the fundamental nature
of new algorithm implementations, as has been pointed out
in Section II-E, will become evident once again through the
comparisons and discussions.

In what follows, we acquire the floating-point operations
(flops) count for the main iterations of ADI, LOD1/SS1, SS2
and LOD2 schemes. Based on the right-hand sides (RHS) of
their respective updating equations using second-order central-
differencing operators, cf. Sections Il and Ill, the number
of multiplications/divisions (M/D) and additions/subtractions
(A/S) required for one complete time step are determined.
Each complete step comprises two/three procedures whose
implicit and explicit updating codes are assumed to have been
arranged in order to achieve minimum number of for-loops.



TABLE |
COMPARISONS OFUNCONDITIONALLY STABLE FDTD METHODS WITHSECOND-ORDERSPATIAL CENTRAL DIFFERENCE

Scheme ADI LOD1/SS1 SS2 LOD2
Algorithm Original New Original New Original New Original New
Main Iterations 1) (8) (11) (15) (16) a7) (18) (21)
Equations Input - (1), (10) - - - - (19) 22)
Output - ) - - - - (20) (23)
n+1 antt n+1 untt n+1 u:j: nt+1l 11”7L1i
Field Aray 1 | 4 vn u vl it Vgl u it yntli
u o u n u" 1 u" uti ol
Memory u ) u ot % unti
n+g 1 3 ntg 3
Field Array 2 | n+3 Em% ant: szig 3:+ ER e antd 321%
vi'T32 u”
Implicit M/D 18 6 18 6 27 9 18 6
AIS 48 18 24 18 36 27 24 18
Explicit M/D 12 6 6 6 9 9 6 6
AIS 24 12 24 12 36 18 24 12
M/D 30 12 24 12 36 18 24 12
Total AIS 72 30 48 30 72 45 48 30
M/D+AIS 102 42 72 42 108 63 72 42
Efficiency RHS 1 2.43 1.42 2.43 0.94 1.62 1.42 2.43
gain Overall 1 1.83 1.29 1.83 0.86 1.22 1.29 1.83
For-Loops 12 12 18 12
Temporal Accuracy Second-Order First-Order Second-Order Second-Order

It is also assumed that all multiplicative factors have beén contrast to the 108 flops required when using its original
precomputed and stored, while the number of electric andplementation.

magnetic field components in all directions have been takengazsed on the flops count reduction for the right-hand
to be the same. Our results are summarized in Table |, whiglges of updating equations, Table | has listed the efficiency
lists the flops count for both original and new algorithm imgains over the conventional ADI-EDTD method. The new
plementations of each scheme. For convenience, the pertaimilddamental ADI, LOD1/SS1 and LOD2 schemes all feature
equations involved in the main iterations are also indicateghe same efficiency gain of 2.43 with their same reduced total
along with those that may be needed for input initialization anghps count. Since there is also the cost for solving tridiagonal
output processing. When there is no input or output equatig)stems, we estimate abdiVv flops for a system of ordeN
shown, it means that no special input or output treatmegking precomputed bidiagonally factorized elements. Taking
is required for the particular implementation. For the maighis cost into account, all these new implementations still
iterations variables, their memory storage requirements a{gnjeve an overall efficiency gain of 1.83 in flops count reduc-
also specified in Table I. By properly reusing the spaces §fn over the conventional ADI-FDTD. It is interesting to find
those variables grouped within the same table entity, only twRat even for the SS2 scheme with three updating procedures,
field arrays need to be allocated for all. Note that judicioype gverall efficiency may still be higher (gain 1.22) by
reuse of memory space is important so that the iterations do pRfng the new algorithm implementation. Note that although
often invoke virtual memory (e.g. via hard disk). Otherwiseye have carefully taken into account various flops count, there
they may lead to slower computations than those iteratiogg| exist other factors that may affect the actual computation
with more flops but do not need virtual memory. efficiency. These factors are often dependent on the particular

From Table I, it is clear that the total flops count (M/D+A/S)computer platform, hardware configuration, operating system,

for all implicit schemes has been reduced considerably usiﬁf_?;mp"er software, program code arrangement, etc. [23].

the new implementations as compared to the original coun-Besides the flops count, the for-loops count is also given in
terparts. Most notably, the conventional ADI-FDTD methodable I. Each for-loop is to perform the whole sweep.of, &
based on (1) takes 102 flops [3], [4], whereas the new oHfedices alongr, y, z directions for one field component. For
based on (8) merely takes 42 flops, cf. Section I1I-A (assumifpth original and new implementations of ADI, LOD1/SS1
no need for frequent output of magnetic field data). Noticd"d LOD2 schemes, there are 12 for-loops for all updating
that the LOD1/SS1 and LOD2 schemes, which take 72 flog§luations in both procedures. For the SS2 scheme, there are
in their original implementations [13], also take the same 4P8 for-loops altogether corresponding to its three updating
flops using the new algorithms, cf. Section III-B. MoreoveRrocedures. Meanwhile, the order of temporal accuracy is
the number and type of flops for respective implicit andlso summarized for various implicit schemes in Table I. As
explicit updatings are seen to be identical for all these nefentioned in Section II-E, even though the LOD1/SS1 scheme
implicit schemes. This is simply a manifestation of theifs only first-order accurate in time, it may be converted to other
aforementioned fundamental updating structures, which can¥demes of second-order accuracy by exploiting their similar
found to take 21 flops per updating procedure. Applying suddndamental updating structures.

argument for the SS2 scheme with three updating proceduresilthough not included in Table I, many other implicit

it is easy to deduce that its new algorithm will take 63 flopsschemes discussed in Section II-E can be found to take the



same reduced flops count (42) and the same for-loops coust D. Poljak, Time Domain Techniques in Computational Electromagnetics
(12) when using the new implementations with (33)-(36).  (Boston: WIT Press, 2004).

This i . . db h Il simol h 6] N. V. Kantartzis and T. D. TsiboukisHigher-Order FDTD Schemes for
IS Is anticipate ecause they all simply converge to t Waveguide and Antenna Structurg®an Rafael: Morgan and Claypool,

same fundamental schemes with matrix-operator-free right- 2006).

hand sides just like those addressed in the table, even thou[jih D. Peaceman and H. Rachford Jr., “The numerical solution of parabolic

N o T d elliptic differential equations,). Soc. Ind. Appl. Mathvol. 3, no. 1,
their original splitting formulae are distinctive, cf. (25)-(30). 33. ;8_'21'0 1|9595r‘en lal equations. Soc. Ind. Appl. Matiwol. 3, no

Here again the significance of these fundamental schemgs Ye. G. D'Yakonov, “Some difference schemes for solving boundary

accrues when one is equipped with a general methodical Eg%t?alems,”U.S.S.R. Comput. Math. and Math. Phyl. 3, pp. 55-77,
approach for Improving the computation eff|C|ency of thelr[9] G. Strang, “On construction and comparison of difference schemes,”

original counterparts. Moreover, their updating structures that SIAM J. Numer. Analvol. 5, pp. 506-516, 1968.

. . Partial Differential Equations(New York: Wiley, 1980).
the basis and benchmark for construction and development[pj] J. W. ThomasNumerical Partial Differential Equations: Finite Differ-

future implicit schemes, e.g. with nea and B or different ence Method¢§New York: Springer-Verlag, 1998).
time-stepping procedures, etc. [12] J. Shibayama, M. Muraki, J. Yamauchi and H. Nakano, “Efficient
implicit FDTD algorithm based on locally one-dimensional scheme,”
Electron. Lett, vol. 41, no. 19, pp. 1046-1047, Sep. 2005.
V. CONCLUSION [13] E. L. Tan, “Unconditionally Stable LOD-FDTD Method for 3-D
Maxwell's Equations,”|EEE Microw. Wireless Comp. Lettvol. 17,
This paper has presented the generalized formulations of no. 2, pp. 85-87, Feb. 2007.

;o e i~k14] J. Lee and B. Fornberg, “A split step approach for the 3-D Maxwell’s
fundamental schemes for efficient unconditionally stable inf: equations”J. Comput. Appl. Math vol. 158, pp. 485-505. 2003,

plicit FDTD methods. The formulations have been presentg] w. Fu and E. L. Tan, “Development of split-step FDTD method with
in terms of generalized matrix operator equations pertaining higher order spatial accuracylectron. Lett. vol. 40, no. 20, pp. 1252-

. L o 1254, Sep. 2004.
to classical Spllttlng formulae of ADI, LOD and Spllt step 16] G. Sun and C. W. Trueman, “Efficient Implementations of the Crank-

schemes. To provide further insights into the implications ~ Nicolson Scheme for the Finite-Difference Time-Domain Method,”
and significance of fundamental schemes, the analyses have IEEE Trans. Microwave Theory Techol. 54, no. 5, pp. 2275-2284,

: ot : May 2006.
also been extended to many other schemes with distinct E. L. Tan, “Efficient Algorithm for the Unconditionally Stable 3-D ADI-

splitting formulae. It has been noted that all the fundamental” FpTp Method,” IEEE Microw. Wireless Comp. Leftvol. 17, no. 1,
schemes feature similar fundamental updating structures that pp. 7-9, Jan. 2007.

are in simplest forms with most efficient right-hand sided!®l A R. Gourlay and A. R. Mitchell, "The equivalence of certain alternat-
ing direction and locally one-dimensional difference methodSIAM

Detailed algorithms have been described for new efficient ; Numer. Anal.vol. 6, pp. 37-46, 1969.
implementations of the unconditionally stable implicit FDTD19] W. Fuand E. L. Tan, “Stability and Dispersion Analysis for Higher Order

+ .~ 3-D ADI-FDTD Method,” IEEE Trans. Antennas Propagatvol. 53,
methods based on the fundamental schemes. A comparative ;" - 11, pp. 3691-3696, Nov. 2005,

study of various implicit schemes in their original and newo] w. Fu and E. L. Tan, “A Parameter Optimized ADI-FDTD Method
implementations has been carried out, which includes com- Based on the (2,4) StencillEEE Trans. Antennas Propagatol. 54,

; ; ; s ; no. 6, pp. 1836-1842, Jun. 2006.
parisons of their computation costs and efficiency gains. [21] W. Fu and E. L. Tan, “A compact higher-order ADI-FDTD method.”

The fundamental schemes presented in this paper will be of Microwave Opt. Technol. Leftvol. 44, no. 3, pp. 273-275, Feb. 2005.
much usefulness and significance not only in electromagneti] M. Wang, Z. Wang and J. Chen, “A parameter optimized ADI-FDTD

but also in many other areas that may be adopting various moeégo"'”'EEE Antennas. Wireless Propagat. Lettol. 2, pp. 118-121,

classical ImplICIt schemes. With their SimpleSt forms featuringg] G. Sun and C. W. Trueman, “Suppression of Numerical Anisotropy and
the most efficient right-hand sides, these fundamental schemes Dispersion With Optimized Finite-Difference Time-Domain Methods,”
will lead to coding simplification and efficiency improvement 'Z%%E.Trans' Antennas Propagatol. 53, no. 12, pp. 4121-4128, Dec.
in algorithm implementations. Furthermore, their fundamen-

tal updating structures invite further investigations into their

properties and subsequent extensions for their applications.

They will also serve aptly as the basis and benchmark for

construction and development of future implicit schemes.
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