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PI/PD/PID tuning rules for IPTD (integral plus time delay) processes and their realized GPM (gain and phase 
margins) 

—The paper [2] derives PI/PD/PID tuning formulas with a specified GPM as well as the formulas for estimating the 
GPM attained by a given PI/PD/PID controller for an IPTD process. It provides general analytic solutions for the PID 
tuning problems. In this supplementary material, we apply the GPM formulas to calculate the GPM achieved by each 
relevant PI/PD/PID tuning rule that has been collected in the book [1]. 

Consider the system that can be described by the following equations and Fig. 1. 
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Fig. 1. Control system loop. 

The tables basically come from the book [1], pages 76-82 and 259-261. The newly-added columns are marked in grey 
color, which give the “ mA  rank No.” and GPM for each of the PI/PD/PID tuning formulas, respectively. The “ mA  rank 
No.” is defined as the position of mA  of a tuning formula where the mA ’s of all the tuning formulas in the class of PI or 
PD or PID tuning are sorted in an increasing order of their values. For example, if there are totally four PI tuning formulas 
leading to mA  values {4, 2.5, 5, 1.6}, then their mA  rank No.’s are {3, 2, 4, 1} respectively. The GPM values are 
calculated by the function “margin” of MATLAB R2006a. Such calculations are feasible since for the control system as 
described above, if its PI/PD/PID parameters are expressed in the form of the PI/PD/PID tuning formulas [2], the 
GPM-PI/PD/PID formulas [2] indicate that its GPM will be of constant values, regardless of the process parameters mK  
and mτ  (Refer to the MATLAB codes presented after the tables for the details of such calculations.). 

Among the PI, PD and PID tuning rules collected in [1], there are respectively 25, 1 and 11 of them within the same 
framework as that of the tuning formulas derived in [2]. The other 15, 1 and 3 formulas which do not belong to the same 
framework have been omitted from the following tables. Fig. 2-4 illustrate the comparisons between the estimated GPM 
and the numerically obtained true GPM values. Comparisons on the crossover frequencies are presented in these figures. 
As we can see, the proposed GPM-PI/PD/PID formulas achieve satisfactory accuracy in estimating GPM and the 
crossover frequencies. For the PID tuning rules listed in Table 3, their respective values of the scalar (: )d ik T T= ’s are 
presented in Fig. 5, confirming that they are within the common range of (0,  0.5]k ∈ . 

Note: i) For the PI case, the GPM values are only calculated for the rules with : 1m iTθ τ= <  for ensuring the 
existence of positive β ’s [2]. ii) The two PI tuning rules marked with yellow color are found to be questionable: the 
former one turns out to be unable to give a stable system (The original reference of this rule is however out of our reach.); 
the latter one gives effective tuning formulas yet inaccurate formulas for estimating GPM. We demonstrate for the former 
case the divergence of an exemplary system response in Fig. 6. For the latter case, the observation is verified by GPM 
calculated by the GPM-PI formula. iii) In Table 3, we find that it is hard to obtain the effective gain margins of three PID 
tuning formulas (marked in light-blue color), which all hold negative phase margins. Although MATLAB can give 
numerical results of them, the obtained gain margins appear to be not reliable: we solve the original GPM equations 
numerically and find that the results are sensitive to the initial searching point and cannot attain a consistent but reliable 
solution. Due to this reason, these three cases have been omitted in the later figures. 
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Table 1. PI tuning rules for IPTD processes and their realized GPM (25 rules in total, with 44 sets of particular 
GPM) 

mA  rank No. Rule cK  iT  Comment GPM, ( ,  )m mA φ

  Process reaction 

6 
Ziegler and Nichols 

(1942). 
Model: Method 2 

0.9

m mK τ
 3.33 mτ  Quarter decay ratio (1.47, 18.25 )°  

16 
0.6

m mK τ
 2.78 mτ  Decay ratio = 0.4 (2.09, 23.18 )°  

10 
0.87

m mK τ
 4.35 mτ  

Decay ratio is as small as 
possible 

(1.60, 24.19 )°  

 

Two constraints 
method – Wolfe 

(1951). 
Model: Method 2 

Minimum error integral (regulator mode). 

15 

Åström and 
Hägglund (1995) – 

page 13. 
Model: Method 1 

0.63

m mK τ
 3.2 mτ  

Ultimate cycle 
Ziegler-Nichols equivalent 

(2.07, 26.06 )°  

30 
Hay (1998) – page 

188. 
0.42

m mK τ
 5.8 mτ  Model: Method 3 (3.43, 43.26 )°  

  Minimum performance index: regulator tuning 

5 
Minimum IAE – 

Shinskey (1988) – 
page 123. 

0.9524

m mK τ
 4 mτ  Model: Method 1 (1.44, 19.42 )°  

7 
Minimum IAE – 

Shinskey (1994) – 
page 74. 

0.9259

m mK τ
 4 mτ  Model: Method 1 (1.48, 20.53 )°  

1 

Minimum ISE – 

Hazebroek and Van 

der Waerden (1950). 

1.5

m mK τ
 5.56 mτ  Model: Method 2 (0.96, -3.34 )°  

20 
0.5264

m mK τ
 4.5804 mτ  

Process output step 
load disturbance 

(2.66, 36.51 )°  

18 

Minimum ITAE – 
Poulin and 

Pomerleau (1996). 
Model: Method 1 

0.5327

m mK τ
 3.8853 mτ  

Process input step load 
disturbance 

(2.56, 32.79 )°  

  Minimum performance index: other tuning 

41 
Skogestad (2001). 
Model: Method 1 

0.28

m mK τ
 7 mτ  max 1.4M =  (5.24, 47.48 )°  

31 
Skogestad (2003). 

Model: Method 1 
0.404

m mK τ
 7 mτ  max 1.7M =  (3.63, 47.05 )°  
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21 
Skogestad (2001). 
Model: Method 1 

0.49

m mK τ
 3.77 mτ  max 2.0M =  (2.77, 32.82 )°  

  Direct synthesis: time domain criteria 

27 
0.487

m mK τ
 8.75 mτ  (3.06, 48.49 )°  

-- 

Tyreus and Luyben 
(1992). 

Model: Method 1 or 
9 0.31 uK  2.2 uT  

Max closed loop log 

modulus = 2dB ; CLT  = 

10mτ  -- 

23 
Fruehauf et al. 

(1993). 
0.5

m mK τ
 5 mτ  Model: Method 2 (2.83, 38.87 )°  

9 
Rotach (1995). 

Model: Method 5 
0.75

m mK τ
 2.41 mτ  

Damping factor for 
oscillations to a 

disturbance input = 0.75. 

(1.58, 15.67 )°  

4 0.9588 m mK τ  3.0425 mτ  CLT  = mτ  (1.34, 14.17 )°  

17 0.6232 m mK τ  5.2586 mτ  CLT  = 2 mτ  (2.29, 36.47 )°  

28 0.4668 m mK τ  7.2291 mτ  CLT  = 3 mτ  (3.15, 46.28 )°  

34 0.3752 m mK τ  9.1925 mτ  CLT  = 4 mτ  (3.98, 52.08 )°  

38 0.3144 m mK τ  11.1637 mτ  CLT  = 5 mτ  (4.80, 55.96 )°  

43 

Cluett and Wang 
(1997). 

Model: Method 1 

0.2709 m mK τ  13.1416 mτ  CLT  = 6 mτ  (5.61, 58.75 )°  

2 
Chidambaram and 

Sree (2003). 
Model: Method 1 

1.1111

m mK τ
 4.5 mτ  -- (1.26, 14.02 )°  

42 
0.23

m mK τ
 2.914 mτ  -- (5.54, 25.00 )°  

37 

Huba and Žáková 
(2003). 

Model: Method 1 0.281

m mK τ
 3.555 mτ  -- (4.77, 31.32 )°  

-- ( )
1

m CL mK T τ+
 ( )24 CL mTξ τ+  

Suggested 
0.7ξ = or 1 -- 

25 

Skogestad (2003), 
(2004b). 

Model: Method 1 0.5

m mK τ
 8 mτ  

‘good’ robustness 

CL mT τ= , 1ξ =  
(2.96, 46.86 )°  

  Direct synthesis: frequency domain criteria 

14 
Chidambaram 

(1994), Srividya 
and Chidambaram 

0.67075

m mK τ
 3.6547 mτ  Model: Method 6; mA  = 2 (2.00, 28.01 )°  
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(1997). 

-- p

m mA K

ω
 ( )

1

0.5p p mω π ω τ−
-- -- 

 Representative results 

8 0.942 m mK τ  4.510 mτ  mA  = 1.5; mϕ  = 22.5°  (1.48, 21.70 )°  

13 0.698 m mK τ  4.098 mτ  mA  = 2; mϕ = 30°  (1.97, 29.51 )°  

26 0.491 m mK τ  6.942 mτ  mA = 3; mϕ = 45°  (2.99, 45.00 )°  

35 

Gain and phase 
margin – Kookos et 

al. (1999). 
Model: Method 1 

0.384 m mK τ  18.710 mτ  mA = 4; mϕ = 60°  (4.00, 59.94 )°  

22 
Cheng and Yu 

(2000). 
Model: Method 1 

0.5236 m mK τ  8 mτ  mA  = 2.83; mϕ = 46.1°  (2.83, 46.11 )°  

1

m m

x

K τ
 2 mx τ  -- -- 

-- 

Representative 
coefficient values 

GPM in the “<> “ are the ones given by the rule “O’Dwyer 
(2001a)”, presented in the book [1]. 

 1x  2x  ,  m mA φ< >  ( ,  )m mA φ  

3 0.558 1.4 1.5,  46.2< ° >  (1.26,  3.15 ) °  

11 0.484 1.55 2.0,  45.5< ° >  (1.72,  7.68 )°  

24 0.458 3.35 3.0,  59.9< ° >  (2.89,  30.28 )°  

33 0.357 4.3 4.0,  60.0< ° >  (3.89,  36.95 )°  

39 

O’Dwyer (2001a). 
Model: Method 1 

0.305 12.15 5.0,  75< ° >  (4.97,  57.31 )°  

  Robust 

1 m mx K τ  
2 mx τ  -- 

-- 

1x  2x  -- 

29 0.45 11 20% uncertainty in process parameters (3.35, 52.51 )°  

32 0.39 12 30% uncertainty in process parameters (3.88, 55.36 )°  

36 0.34 13 40% uncertainty in process parameters (4.47, 57.59 )°  

40 0.30 14 50% uncertainty in process parameters (5.07, 59.30 )°  

44 

Ogawa (1995). 
Model: Method 1; 

Coefficients of cK  

and iT  deduced 

from graphs 

0.27 15 60% uncertainty in process parameters (5.65, 60.59 )°  

-- 
Smith (2002). 

Model: Method 1 
1

m mK τ
 

mτ  -- -- 

  Other methods 

19 
Penner (1988). 

Model: Method 1 
0.58

m mK τ
 10 mτ  

Max. closed loop gain 
=1.26 

(2.59, 46.65 )°  
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12 
0.8

m mK τ
 5.9 mτ  

Max. closed loop gain = 
2.0 

(1.81, 31.47 )°  

Table 2. PD tuning rules for IPTD processes and their realized GPM (1 rule in total, with 3 sets of particular 
GPM) 

mA  rank No. Rule cK  dT  Comment GPM, ( ,  )m mA φ

  Minimum performance index: servo tuning 

1 m mx K τ  
3 mx τ  

-- 

Coefficient values 

--  

1 1.03 0.49 Minimum ISE (1.52, 51.95 )°  

2 0.96 0.45 Minimum ITSE (1.70, 54.61 )°  

3 

Visioli (2001). 
Model: Method 1 

0.90 0.45 Minimum ISTSE (1.81, 57.49 )°  

Table 3. PID tuning rules for IPTD processes and their realized GPM (11 rules in total, with 29 sets of particular 
GPM) 

mA  rank No. Rule cK  iT  dT  Comment GPM, ( ,  )m mA φ  

  Process reaction 

3 
Ford (1953). 

Model: Method 3 
1.48

m mK τ
 2 mτ  0.37 mτ  Decay ratio 2.7:1 (1.23, 16.06 )°  

0.94

m mK τ
 2 mτ  0.5 mτ  Model: Method 1 (1.80, 32.60 )°  

11 
Åström and 

Hägglund (1995) – 
page 139. 

Ultimate cycle Ziegler-Nichols equivalent 

20 
Hay (1998) – page 

188. 
0.4

m mK τ
 3.2 mτ  0.8 mτ  Model: Method 3 (2.96, 44.33 )°  

-- 10.0 0.55 mτ  0.1m mK τ =  (*, 48.05 )− °  

-- 4.0 0.30 mτ  0.2m mK τ =  (*, 21.19 )− °  

-- 2.5 0.25 mτ  0.3m mK τ =  (*, 5.35 )− °  

8 2.0 0.25 mτ  0.4m mK τ =  (1.57, 5.40 )°  

9 1.8 0.25 mτ  0.5m mK τ =  (1.73, 12.53 )°  

7 

Hay (1998) – page 
199. 

Model: Method 1; 

,c dK T  deduced 

from graphs 

1.8 

23.2 m mK τ  

0.25 mτ  0.6m mK τ =  (1.55, 15.73 )°  

  Minimum performance index: regulator tuning 
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1 m mx K τ  
2 mx τ  3 mx τ  -- 

-- 

Coefficient values 

1 1.37 1.49 0.59 Minimum ISE (1.16, 27.82 )°  

2 1.36 1.66 0.53 Minimum ITSE (1.23, 26.55 )°  

4 

 
Visioli (2001). 

Model: Method 1 

1.34 1.83 0.49 Minimum ISTSE (1.28, 26.32 )°  

 Minimum performance index: other tuning 

1 m mx K τ  
2 mx τ  3 mx τ  

Coefficient values 

-- -- 
-- 

1x  2x  3x  maxM  ( ,  )m mA φ  

29 0.139 76.9 0.346 1.1 (12.71, 79.43 )°  

28 0.261 23.3 0.365 1.2 (6.72, 71.09 )°  

25 0.367 12.2 0.378 1.3 (4.76, 64.13 )°  

22 0.460 7.85 0.389 1.4 (3.79, 58.04 )°  

21 0.543 5.78 0.400 1.5 (3.21, 53.09 )°  

18 0.616 4.58 0.410 1.6 (2.83, 48.88 )°  

17 0.681 3.82 0.418 1.7 (2.56, 45.28 )°  

16 0.740 3.28 0.426 1.8 (2.35, 42.07 )°  

14 0.793 2.89 0.434 1.9 (2.20, 39.29 )°  

13 

Åström and 
Hägglund (2004). 
Model: Method 1 

0.841 2.61 0.440 2.0 (2.07, 36.92 )°  

  Direct synthesis 

15 
0.74

m mK τ
 12.2 mτ  0.41 mτ  (2.31, 58.11 )°  

0.47 uK
 3.05 uT  0.10 uT  

OS (step input) < 
10%; Minimum IAE 
(disturbance ramp). 

-- 
-- 

Leonard (1994). 
Model: Method 1 

,u uK T  deduced from graph 

1 m mx K τ  
2 mx τ  3 mx τ  4CL mT x τ=  -- 

Coefficient values -- 

1x  2x  3x  4x  ( ,  )m mA φ  

12 0.9588 3.0425 0.3912 1 (1.86, 36.91 )°  

19 0.6232 5.2586 0.2632 2 (2.91, 46.17 )°  

23 0.4668 7.2291 0.2058 3 (3.83, 51.83 )°  

24 0.3752 9.1925 0.1702 4 (4.69, 55.70 )°  

26 0.3144 11.1637 0.1453 5 (5.53, 58.52 )°  

27 

Cluett and Wang 
(1997). 

Model: Method 1 

0.2709 13.1416 0.1269 6 (6.35, 60.66 )°  

6 
1.21

m mK τ
 1.60 mτ  0.48 mτ  -- (1.45, 24.33 )°  

-- 

Rotach (1995). 
Model: Method 5 

Damping factor for oscillations to a disturbance input = 0.75. 
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5 
Chidambaram and 

Sree (2003). 
1.2346

m mK τ
 4.5 mτ  0.45 mτ

 Model: Method 1 (1.37, 36.53 )°  

10 
Sree and 

Chidambaram 
(2005b). 

0.896

m mK τ
 2.5 mτ  0.55 mτ  Model: Method 1 (1.76, 41.32 )°  

* The MATLAB codes for calculating the GPM are as follows. 

a) The PI case: let the PI parameters be 

1
2,  .c i m

m m

k
K T k

k
τ

τ
= =  (1) 

The codes for deriving the realized GPM are as follows: 
   s=tf('s'); 
   Kp=100; Tau=0.2; % Kp and Tau can be arbitrary positive real numbers, which also applies to the PD/PID cases. 
   Kc=k1/(Kp*Tau); Ti=k2*Tau; 
   sys=Kc*Kp*(1+s*Ti)*exp(-s*Tau)/(s^2*Ti); 
   [A_m, Phi_m, Wp, Wg]=margin(sys) % Note that the gain and phase crossover frequencies in MATLAB 

% are defined reversely as those in the normal control theory, 
% i.e., Wp, Wg in control theory are Wg, Wp in MATLAB, respectively. 

b) The PD case: let the PD parameters be 

1
2,  .c d m

m m

k
K T k

k
τ

τ
= =  (2) 

The codes for deriving the realized GPM are: 
   s=tf('s'); 
   Kp=100; Tau=0.2; 

Kc=k1/(Kp*Tau); Td=k2*Tau; 
   sys=Kc*Kp*(1+s*Td)*exp(-s*Tau)/s; 
   [A_m, Phi_m, Wp, Wg]=margin(sys) 

c) The PID case: let the PID parameters be 

1
2 3,  ,  .c i m d m

m m

k
K T k T k

k
τ τ

τ
= = =  (3) 

The codes for deriving the realized GPM are: 
   s=tf('s'); 
   Kp=100; Tau=0.2;  
   Kc=k1/(Kp*Tau); Ti=k2*Tau; Td=k3*Tau; 
   sys=Kc*Kp*(1+s*Ti+s^2*Ti*Td)*exp(-s*Tau)/(s^2*Ti); 
   [A_m, Phi_m, Wp, Wg]=margin(sys) 
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Fig. 2. The realized GPM of the PI tuning formulas in Table 1: comparisons between the GPM numerically obtained by MATLAB 
function “margin” (taken as the true GPM) and those estimated by the GPM-PI formula [2]. The relative estimation error (R.e.e.) is 
defined as R.e.e. := (the estimated value - the true value) / the true value. 
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Fig. 3. The realized GPM of the PD tuning formulas in Table 2: comparisons between the GPM numerically obtained by MATLAB 
function “margin” (taken as the true GPM) and those estimated by the GPM-PD formula [2]. R.e.e. is defined the same as that in Fig. 2. 
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Fig. 4. The realized GPM of the PID tuning formulas in Table 3: comparisons between the GPM numerically obtained by MATLAB 
function “margin” (taken as the true GPM) and those estimated by the GPM-PID formula [2]. R.e.e. is defined the same as that in Fig. 2. 
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Fig. 5. The values of scalar k ’s ( : d ik T T= ) used in the PID tuning formulas in Table 3. 
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Fig. 6. Step response of an exemplary PI control system: the IPTD process is 0.2( ) 100 s
pG s e s−=  and the controller is tuned by the 

rule “Minimum ISE – Hazebroek and Van der Waerden (1950)” as presented in Table 1. The divergent response indicates the instability 
of the rule, justifying its realized gain margin of 1mA < . 
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