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Cascading failures and epidemic dynamics, as two successful application realms of network science, are usu-
ally investigated separately. How do they affect each other is still one open, interesting problem. In this letter, we
couple both processes and put them into the framework of interdependent networks, where each network only
supports one dynamical process. Of particular interest, they spontaneously form a feedback loop: virus propaga-
tion triggers cascading failures of systems while cascading failures suppress virus propagation. Especially, there
exists crucial threshold of virus transmissibility, abovewhich the interdependent networks collapse completely.
In addition, the interdependent networks will be more vulnerable if the network supporting virus propagation
has denser connections; otherwise the interdependent systems are robust against the change of connections in
other layer(s). This discovery differs from previous framework of cascading failure in interdependent networks,
where better robustness usually needs denser connections.Finally, to protect interdependent networks we also
propose the control measures based on the identification capability. The larger this capability, more robustness
the interdependent networks will be.

PACS numbers: 89.75.-k,64.60.aq,05.45.-a

I. INTRODUCTION

During the past years, complex networks have proven to be
a successful tool in describing a large variety of real-world
complex systems, ranging from biological, technological,so-
cial to information, engineering, and physical systems [1,2].
The investigations of the structure and dynamics of complex
networks have triggered enormous interests, and a lot of re-
markable results have been achieved [3–10]. However, vast
majority of existing works mainly focus on single networks
that are isolated from each other, despite of the fact that many
real-world networks usually interact with and depend on each
other. In 2010, Buldyrev et al. [11] proposed a new model
of networks, so-called interdependent networks, and devel-
oped theoretical framework to study the cascading failures
of interdependent systems caused by random node removal.
Surprisingly, they found that systems made of interdependent
networks would be intrinsically more fragile than each iso-
lated component. After that, much research attention moves
to more complicated yet more realistic multilayer networks,
mainly including interdependent networks [12–16], intercon-
nected networks [17–21] and multiplex networks [22–25].

Cascade of failures, as one of the hottest research topics in
network science, has attracted great attentions after the semi-
nal idea of Buldyrev [12–16, 26–31]. For example, Parshani
et al. explored the influence of degree correlation on the ro-

bustness of interdependent networks to cascading failures, and
found that the systems become more robust when they share
higher inter-similarity [13]. By mapping the random attack
to the targeted attack problem, Huang et al. evaluated the
cascading failures in interdependent networks under an ini-
tial targeted attack [28]. Shao et al. developed a theoretical
framework for understanding the cascade process of failures
in interdependent networks with a random number of support
and dependence relationships [29]. Refs. [30, 31] showed
that when a small fraction of autonomous nodes were prop-
erly selected, the nature of the percolation transition changed
from discontinuous to continuous fashions and the cascading
failures could be largely suppressed.

Epidemic dynamic [4], as another rapidly developing re-
search area in network science, is broadly used to mimic
many real propagation processes, such as disease in human
contact networks [32, 33], information and rumor in social
networks [34], and virus in computer or communication net-
works [35, 36]. Understanding the epidemic spreading pro-
cesses is thus crucial for developing efficient methods to ei-
ther prevent propagation of disease, rumor and virus, or ac-
celerate information dissemination. At present, the most
popular models to describe the propagation of epidemic in-
clude susceptible-infected (SI) model, susceptible-infected-
susceptible (SIS) model, and susceptible-infected-recovered
(SIR) model [4]. Like other dynamic processes upon networks
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[25], the recent concerns of epidemic spreading also extend
from single networks to multilayer networks [17, 18, 24, 34].

In spite of great progress of recent years, cascading failures
and epidemic dynamics are usually considered as two irrele-
vant research topics and studied separately. However, in many
real world systems, cascading failures and epidemic dynamics
often influence and interact with each other. For example, the
virus propagation on communication network not only causes
node failure or load redistribution of communication network,
but also triggers the collapse of other related networks like
power grid due to the interdependency relationships between
them, thus resulting in cascading failures in interdependent
systems. The cascade of failure on other networks in turn
enables more nodes or fragmentation to be removed in com-
munication network, which thus suppresses the propagation
of the virus. In particular, if the virus is not completely sup-
pressed, it will lead to new cash of nodes and thus triggers
successive cascading failures in the interdependent networks.
Compared with the existing researches on the robustness of
interdependent networks, the above case introduces a novel
and much more severe attack method for interdependent net-
works.

Aim to this issue, here we develop a new framework where
the virus propagation could induce cascading failures and cas-
cading failures are able to suppress virus propagation (i.e.
forming feedback between cascade dynamics and epidemic
dynamics). By means of numerous simulations, we will inves-
tigate the interplay of both processes in interdependent scale-
free (SF) networks [37], and explore the robustness of inter-
dependent networks under this novel setup.

II. MODEL

Before defining the detailed model, we first survey the gen-
eral cascading failures of interdependent networks and the
SIR dynamics which we use as the paradigmatic example for
the collapse process of interdependent systems under attack of
the spread of virus.

The general cascading failures in interdependent networks
were first proposed in Ref. [11], where there are two net-
works A and B with the same size ofN nodes, then both of
them are coupled via one-to-one interdependence. If node Ai

(Bi , i = 1, 2, . . . ,N) stops function owing to attack or failure,
its inter-layer counterpart Bi (A i) becomes nonfunctional as
well. When some nodes on network A (hereafter A-nodes)
are removed, the nodes of network B (hereafter B-nodes) that
connect to the nonfunctional A-nodes will also be removed
(because of the dependence between both networks), which
further prunes connections of these B-nodes with the giant
component of network B. Subsequently, A-nodes that connect
to the non functional B-nodes will stop function and cut their
connections with the new giant component of network A (only
the nodes that belong to the giant component of network re-
main functional). These cascade processes repeat until no A-
nodes and B-nodes could be removed.

SIR model [4], as one of the most fundamental and im-
portant paradigms of epidemic dynamics, classifies the net-
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FIG. 1: A schematic illustration of CF-VP model in interdependent
networks. Green nodes represent the functional nodes, while grey
nodes represent the removed nodes. Each stage is composed oftwo
substages (see the number in the brackets): disease spreading process
and cascade process. Besides, redλ means the successful propaga-
tion of virus, while black is the opposite case.

work nodes into three states: susceptible (S), infected (I), or
recovered or removed (R). Susceptible nodes are free of epi-
demic and can get infection via direct contacts with infected
counterparts. Infected nodes are assumed to carry the disease
and pass it towards susceptible nodes. Recovered (removed)
state means the nodes recovered (died) from the disease so
that these nodes neither diffuse the infection nor be infected
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FIG. 2: Fraction fI of infected nodes versus the time stage. The
solid and dash lines represent results on network A of interdependent
systems and single-layer networks, respectively. The interdependent
networks are SF networks with sizeN = 2,000 and same average
degree〈kA〉 = 〈kB〉 = 4 (black), 6 (blue), 8 (green), and 10 (red). The
transmissibility probability isλ = 0.5.

again. In addition, classic SIR model considers discrete time
process: at each time step, the infected node can infect its sus-
ceptible neighbors with transmission rateλ, and then becomes
recovered or removed state with recovery rateδ.

Now, we turn to our model: cascading failure and disease
spreading are coupled via interdependent networks, namely,
the interplay between cascading failures and virus propaga-
tion (CF-VP for short) in interdependent networks. Given the
same interdependent networks as Ref. [11], we give two ad-
ditional hypotheses: 1) only one network (e.g. network A)
supports the propagation of virus; 2) the time scale of cas-
cading failures is much smaller than that of virus propagation,
so that virus propagation can repeat until there is no failure
node in the systems. Moreover, our model also considers dis-
crete time-step: each time stage contains the virus propagation
process and one general cascading failure process. Initially,
one random chosen A-node is infected by the virus, then the
infected node propagates the virus: it infects its susceptible
neighbors with probabilityλ, and then becomes removed state
with probabilityδ (without loss of generality, we useδ = 1).
In particular, if the removed nodes are assumed to be nonfunc-
tional, a general cascading failure process will be triggered in
interdependent networks and more nodes may be pruned. If
there still exist infected nodes in the networks after the cascad-
ing process, a new virus propagation process and the subse-
quent triggered cascading failure will repeat until no infected
nodes exist in the network.

To get a better understanding, Fig. 1 provides a schematic
example for this novel CF-VP model. Assume A2 being ini-
tially infected, it can infect its neighbors with probability λ.
After the spreading process of stage 1, A2 and A3 become
removed node and infected node respectively. Due to interde-
pendence, node B2 will be nonfunctional, which subsequently
causes node B1 to be removed since it does not belong to the
giant component of network B. Similarly, A1 is removed be-
cause of the removal of B1. The first stage ends. Now there

exists a new infected node A3, it can bring infection to its
neighbors A4 and A5. Since A3 becomes nonfunctional soon,
new cascade process is triggered: B3 is removed due to losing
dependent counterpart; A4 is removed because of separation
from the giant component of network A, which in turn causes
B4 nonfunctional. In stage 3, even if A5 fails to infect its
neighbor, itself and its partner B5 will also be nonfunctional
due to the state transition I→R of A5. Because no giant com-
ponent exists, A6 and B6 are finally removed and the systems
are completely collapsed. From this illustration, it is clear that
the virus propagation causes cascading failures, while thecas-
cading failures suppress the virus propagation: S-state node
A1 and I-state node A4 are isolated owing to the cascading
failures.

III. RESULTS
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FIG. 3: The sizeG of the remaining giant component of network
A versus the transmissibility probabilityλ. The interdependent net-
works are SF networks with average degree〈kB〉 = 8, 〈kA〉 = 4
(squares), 6 (triangles), 8 (circles), 10 (diamonds), and 16 (stars),
respectively. The inset features how the thresholdλc changes as a
function of〈kA〉.

Results of computation simulations are obtained on inter-
dependent scale-free (SF) networks with average degree〈kA〉

and 〈kB〉 of networks A and B. In each CF-VP process, we
assume that, initially, only one randomly chosen node is in-
fected on network A. What we are interested is the robustness
of interdependent networks against CF-VP process, which is
measured by the sizeG of the remaining giant component of
network A when CF-VP ends. Here, it is worth mentioning
that CF-VP model finally generates the identical size of the
remaining giant component on networks A and B.

Fig. 2 shows the evolution of virus on network A with the
proposed CF-VP model, which is featured by the solid lines.
To take a direct comparison, we also add the traditional case
of virus propagation on single-layer networks (dash lines,i.e.
without the interplay of cascading failure and virus propaga-
tion). It is obvious that though the fraction of infected nodes
in both scenarios is almost identical at the early stages, the fol-
lowing trend becomes greatly different. Comparing with tra-
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FIG. 4: The sizeG of the remaining giant component of network A
versus transmissibility probabilityλ. The interdependent networks
are SF networks with average degree〈kA〉 = 8, 〈kB〉 = 4 (squares),
6 (triangles), 8 (circles), 10 (diamonds), and 16 (stars), respectively.
The inset features how the thresholdλc changes as a function of〈kB〉.

ditional case, CF-VP model not only makes infection reach an
peak faster, but also impedes the total infection risk. In fact, it
is easy to elucidate these phenomena. At the early stages, only
a small fraction of nodes are infected and removed, the inter-
dependent networks are not broken and most nodes are still
functional. Thus, the virus propagates on network A almost
as on single-layer networks. But with continual propagation
of virus, the triggered cascading failures cause more nodes
be removed and make interdependent networks collapse into
the unconnected fragments. In particular, many infected and
susceptible nodes are also removed due to the cascading fail-
ures, which in turn leads to the effective suppression of virus
propagation (also see Fig. 1). With the CF-VP framework,
the role of feedback loop becomes clear: virus propagation
induces cascading failure, while cascading failure suppresses
virus propagation.

Besides, another interesting observation from Fig. 2 is that,
similar to traditional case, the spreading scale of virus islarger
in network A with denser connections (i.e. the larger the av-
erage degree, more obvious the infection peak will be), which
makes the total transmission become easier. Due to feedback
loop (refer to Fig. 1), this should in turn cause larger-scale cas-
cading failures in interdependent systems and make systems
more vulnerable to CF-VP model, which we will systemati-
cally discuss in what follows.

To explore the influence of CF-VP model on the robust-
ness of interdependent networks, we focus on two opposite
cases. The first case is to fix the average degree of network
B (〈kB〉) yet vary the average degree of network A (〈kA〉); an-
other case is to fix〈kA〉 yet vary〈kB〉 (Indeed, there exists the
third case: keep〈kA〉 and 〈kB〉 equal, i.e. 〈kA〉 = 〈kB〉, and
simultaneous changing, like Fig. 2. But here we do not plot
the curves of this case, which will be explained soon). Inter-
estingly, such a change that seems trivial will lead to greatly
different outcomes. First, irrespective of which case, increas-
ing λ makesG become smaller, namely, fast propagation of
virus will trigger larger, stronger crash of systems. In partic-

ular, there exists the critical threshold of virus transmissibil-
ity, λc, above which the remaining giant component will be
null. From Fig. 3, we can see thatλc becomes smaller with
the increment of〈kA〉, which means that denser connections
of network A where virus spreading takes place will acceler-
ate the propagation of virus and thus the progress of cascad-
ing failures in systems. At variance, the change of〈kB〉 has
no obvious impact on the thresholdλc (see Fig. 4), i.e. the
crash trend is nearly identical if only〈kB〉 changes. Combin-
ing these observations, a significant finding poses itself: the
interdependent systems will be more vulnerable only if the
network layer supporting virus propagation has denser con-
nections (i.e. larger average degree); otherwise the interde-
pendent systems are robust against the change of connections
in other layer(s). Along this discovery, it now becomes easy
to understand that simultaneously changing〈kA〉 and〈kB〉 will
generate the same results as Fig. 3. In addition, this discov-
ery also differs from previous framework of cascading failure
in interdependent networks [11], where better robustness usu-
ally needs denser connections. Thus, our outcomes, to some
extent, prove the necessity and significance of feedback loop
when designing the interdependent networks.

IV. CONTROL STRATEGY

Up to now, it has been very clear that in interdependent net-
works virus propagation on one layer could lead to continuous
cascading failures and fragmentation of systems. Along this
line, the most intuitive method of protecting interdependent
networks is to control the spread of virus when it appears. In
reality, it seems hard to timely restrain the spreading of virus
(especially the emerging virus) by using the well-known pre-
immunization strategies [38, 39], due to the absence of ef-
fective antivirus programs [36]. However, in CF-VP model
it seem feasible to identify the infected neighbor based on
knowledge and abnormal behavior of infected nodes. Here
we consider such a control strategy: after the emergence of
virus, susceptible nodei can identify one infected neighbor
with probability qi, and then prunes its connection with this
neighbor. This strategy not only isolates the health nodes from
their infected neighbors, but also decreases the average de-
gree of network layer which supports the virus propagation
(see Fig. 3 for its impact). With respect to the identification
capabilityqi , we consider two following cases.

1) Deterministic adaptive isolation:qi = q j = q for i , j.
That is, all of nodes have the same ability to idenfify infected
neighbors.

2) Degree-based adaptive isolation:{q1, q2, · · · , qN} follow-
ing gauss distribution. That is,{q1, q2, · · · , qN} ∼ N(q, σ),
whereq andσ are mean and standard deviation respectively.
Moreover, if ki ≥ k j , we assumeqi ≥ q j, which means
that large-degree nodes have higher ability to identify infected
neighbors. Considering thatqi must be between 0 and 1, we
assignqi as
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FIG. 5: The sizeG of the remaining giant component of network A
versus identification probabilityq for deterministic adaptive isolation
case (a) and degree-based adaptive isolation whereσ = 0.3 (b). The
interdependent networks are SF networks with average degree 〈kB〉 =

8, 〈kA〉 = 4 (squares), 6 (triangles), 8 (circles), 10 (diamonds) and 16
(stars), respectively. The transmissibility probabilityis λ = 0.5.

qi =



















0, if qi < 0,
qi , if 0 ≤ qi ≤ 1
1, if qi > 1,

(1)

Subsequently, we explore how the control measures im-
prove the robustness of interdependent networks under CF-
VP model, where we still use two opposite cases as Figs. 3
and 4. Fig. 5 first shows the impact of isolation strategies
when〈kB〉 is fixed and〈kA〉 changes. It is clear that the size
G of remaining giant component increases withq, which indi-
cates the robustness of interdependent networks can be signifi-
cantly improved by increasing nodes’ identification capability,
regardless of which strategy. With large identification proba-
bility, the infection source(s) can be controlled and isolated
earlier. The removal of these infected nodes further makes
the cascading process become slow, which also decreases the
possibility of infection outbreak. This thus validates theim-
portance of feedback loop in the coupled disease-cascading
model once again. Moreover, another similar phenomenon in
Figs. 5 (a) and (b) is that network A possessing large average
degree needs largerq to maintain the equivalent robustness
with the case of small〈kA〉, which in fact is consistent with
the prediction of Fig. 3: larger〈kA〉 usually enables systems to
become more vulnerable, thus requiring more powerful pro-
tection. Except for similarity, we can also notice that degree-
based adaptive isolation performs much better than determin-
istic adaptive isolation. This actually agrees with our intu-
ition, because (as single-layer networks) large-degree nodes
play a more significant role in the propagation of virus than
small-degree nodes. If there exist infected nodes among the
neighborhood of large-degree nodes, they can easily prune the
connections with infected neighbor(s) due to large identifica-
tion ability. With fast removal of infection sources, cascading
will be controlled better (i.e. largerG for the sameq value).

We now turn to another case: fixing〈kA〉 yet varying〈kB〉

and study how the isolation strategies improve the robustness
of interdependent networks. As reflected in Fig. 4, this case
has no impact on the system crash. Though the sizeG of re-
maining giant component enhances with identification capa-
bility q and degree-based adaptive isolation performs better,
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FIG. 6: The sizeG of the remaining giant component of network A
versus identification probabilityq for deterministic adaptive isolation
case (a) and degree-based adaptive isolation whereσ = 0.3 (b). The
interdependent networks are SF networks with average degree 〈kA〉 =

8, 〈kB〉 = 4 (squares), 6 (triangles), 8 (circles), 10 (diamonds) and 16
(stars), respectively. The transmissibility probabilityis λ = 0.5.

only changing〈kB〉 will generate nearly identical results with
each isolation strategy (i.e. the overlapped curves in Fig.6).
This is because, for eachq value, the isolation probability of
infected neighbors on network supporting virus propagation
is the same, irrespective of average degree in other network.
Combining Figs. 5 and 6, it seems to indicate that the best
way of controlling system crash is to eradicate the infection
sources in epidemic layer, which is specially useful for this
layer with denser connections.

V. CONCLUSION

In this letter, we have developed a toy model (CF-VP
model) in which virus propagation and cascading failure are
coupled on interdependent networks, where each network
layer sustains one dynamic process. For both processes, they
spontaneously form a novel feedback loop: virus propaga-
tion triggers continuous cascading failures and even complete
fragmentation if transmissibility probability is above a thresh-
old; while cascading failures will break the connections of
networks and thus suppresses virus propagation. Of note, if
the network layer supporting epidemic spreading has denser
connections, interdependent systems will be more vulnerable,
which is opposite to the observation of traditional cascading
fashion in interdependent networks [11]. To protect interde-
pendent networks, we further propose the control measures
based on the capability to identify the infected neighbor. In-
terestingly, the larger the identification capability (especially
for larger-degree node), more robustness the interdependent
networks will be.

In spite of simplicity, our model describing the interplay
between cascading failures and virus propagation in interde-
pendent networks seems reasonable and as well easily jus-
tifiable with realistic situations. For example, Internet and
some social online networks could be encapsulated into the
framework of multilayer networks. But how they influence
each other will be a long-term question. This work may pro-
vide some new insights into understanding the interplay and
proposing the protection measures. Besides, another point
that deserves our attention is to consider theoretical analysis
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framework, which may validate the present simulation find-
ings. Except for interplay between dynamical processes, the
co-evolution between dynamics and interdependent network
topology is also worth of our endeavors in future.

Acknowledgments

This work is supported by the Shandong Province Out-
standing Young Scientists Research Award Fund Project

(Grant No. BS2015DX006), the Shandong Academy of Sci-
ences Youth Fund Project (Grant No. 2016QN003), the Inner
Mongolia Colleges and Universities Scientific and Technolog-
ical Research Projects (Grant no. NJZY132), and the National
Natural Science Foundation of China (Grant Nos. 61572297,
31560622, 31260538, 30960246).

[1] Mark Newman.Networks: an introduction. Oxford university
press, 2010.

[2] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani.
Dynamical processes on complex networks. Cambridge Uni-
versity Press, 2008.

[3] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz.
Random graph models of social networks.Proceedings of the
National Academy of Sciences, 99(suppl 1):2566–2572, 2002.

[4] Romualdo Pastor-Satorras, Claudio Castellano, Piet
Van Mieghem, and Alessandro Vespignani. Epidemic
processes in complex networks.Reviews of modern physics,
87(3):925, 2015.

[5] Reuven Cohen and Shlomo Havlin.Complex networks: struc-
ture, robustness and function. Cambridge University Press,
2010.

[6] Chaoming Song, Shlomo Havlin, and Hernan A Makse. Self-
similarity of complex networks.Nature, 433(7024):392–395,
2005.

[7] Zhen Wang, Cheng-Yi Xia, Sandro Meloni, Chang-Song Zhou,
and Yamir Moreno. Impact of social punishment on cooperative
behavior in complex networks.Scientific reports, 3:3055, 2013.

[8] Zhen Wang, Aleksandra Murks, Wen-Bo Du, Zhi-Hai Rong,
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