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Cascading failures and epidemic dynamics, as two sucdegsilication realms of network science, are usu-
ally investigated separately. How do thefest each other is still one open, interesting problem. l#iter, we
couple both processes and put them into the framework aftependent networks, where each network only
supports one dynamical process. Of particular interesy, spontaneously form a feedback loop: virus propaga-
tion triggers cascading failures of systems while casepféiitures suppress virus propagation. Especially, there
exists crucial threshold of virus transmissibility, abovieich the interdependent networks collapse completely.
In addition, the interdependent networks will be more vrdibde if the network supporting virus propagation
has denser connections; otherwise the interdependeminsystre robust against the change of connections in
other layer(s). This discoveryftiers from previous framework of cascading failure in int@eledent networks,
where better robustness usually needs denser connedfimagly, to protect interdependent networks we also
propose the control measures based on the identificatiaabdiy The larger this capability, more robustness
the interdependent networks will be.

PACS numbers: 89.75.-k,64.60.aq,05.45.-a

I. INTRODUCTION bustness of interdependent networks to cascading fajlaness
found that the systems become more robust when they share

During the past years, complex networks have proven to b8igher inter-similarity [13]. By mapping the random attack
a successful tool in describing a large variety of real-dorl t0 the targeted attack problem, Huang et al. evaluated the
complex systems, ranging from biological, technologisat, c_ascadmg failures in interdependent networks under an ini
cial to information, engineering, and physical system&]1, tial targeted attack [28]. Shao et al. developed a the(aﬂ_etlc
The investigations of the structure and dynamics of COmlo|e).tra.mework for understandmg.the cascade process of failure
networks have triggered enormous interests, and a lot of rdD interdependent networks with a random number of support
markable results have been achieved [3-10]. However, va§nd dependence relationships|[29]. Refs.] {30, 31] showed
majority of existing works mainly focus on single networks that when a small fraction of autonomous node§_ were prop-
that are isolated from each other, despite of the fact thayma €'y selected, the nature of the percolation transitiomged
real-world networks usually interact with and depend orheac frc_)m discontinuous to continuous fashions and the casgadin
other. In 2010, Buldyrev et al] [11] proposed a new modeff@ilures could be largely suppressed.
of networks, so-called interdependent networks, and devel Epidemic dynamicl[4], as another rapidly developing re-
oped theoretical framework to study the cascading failuresearch area in network science, is broadly used to mimic
of interdependent systems caused by random node removahany real propagation processes, such as disease in human
Surprisingly, they found that systems made of interdepende contact networks_[32, 33], information and rumor in social
networks would be intrinsically more fragile than each iso-networks[[34], and virus in computer or communication net-
lated component. After that, much research attention movesorks |35, 36]. Understanding the epidemic spreading pro-
to more complicated yet more realistic multilayer networks cesses is thus crucial for developingigent methods to ei-
mainly including interdependent networks [12-16], intere  ther prevent propagation of disease, rumor and virus, or ac-
nected networks [17—21] and multiplex networks [22-25].  celerate information dissemination. At present, the most

Cascade of failures, as one of the hottest research topics popular models to describe the propagation of epidemic in-
network science, has attracted great attentions afteretiné s clude susceptible-infected (SI) model, susceptiblecitee-
nal idea of Buldyrev|[12-16, 26—31]. For example, Parshansusceptible (SIS) model, and susceptible-infected- reraal/
et al. explored the influence of degree correlation on the ro(SIR) modell[4]. Like other dynamic processes upon networks
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[25], the recent concerns of epidemic spreading also extend

from single networks to multilayer networks [17/ 18 24,.34] d A 0 A S S & S
In spite of great progress of recent years, cascading ésilur At A27 AT AsT AsT Aer Stageé.(l)
and epidemic dynamics are usually considered as two irrele- g,i B, Bs;i Bii B . Sgizie:;g

vant research topics and studied separately. However, iy ma
real world systems, cascading failures and epidemic dyceami
often influence and interact with each other. For exampée, th
virus propagation on communication network not only causes
node failure or load redistribution of communication netiwo
but also triggers the collapse of other related networke lik A@ A2® A3 A4 As A Stage 1(2)
power grid due to the interdependency relationships betwee ; ; : : : ! (Cascade
them, thus resulting in cascading failures in interdepande Blé B Bsi  Bel Bsi Bl

process
systems. The cascade of failure on other networks in turn W
A

é

enables more nodes or fragmentation to be removed in com-
munication network, which thus suppresses the propagation
of the virus. In particular, if the virus is not completelypsu
pressed, it will lead to new cash of nodes and thus triggers A

successive cascading failures in the interdependent nietwo A]© A2® A3 A4 A5 Aa Stage 2(1)
Compared with the existing researches on the robustness of _ i B i i i i Spreading
interdependent networks, the above case introduces a novel ]Q 1 process
and much more severe attack method for interdependent net-
works.

Aim to this issue, here we develop a new framework where
the virus propagation could induce cascading failures ase ¢
cadir_lg failures are able to suppress virus _propagatio_n (i_g @ A® A® A@ A@ e 20
forming feedback between cascade dynamics and epidemic ' 2 i ! % * Cascade
dynamics). By means of numerous simulations, we will inves- B, | B B3l B4
tigate the interplay of both processes in interdependexi¢sc O O O
free (SF) networks [37], and explore the robustness of-inter
dependent networks under this novel setup.
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Before defining the detailed model, we first survey the gen-
eral cascading failures of interdependent networks and the
SIR dynamics which we use as the paradigmatic example for
the collapse process of interdependent systems undek aftac
the spread of virus.

The general cascading failures in interdependent networks A@ AS A2 Stage 3(2)
were first proposed in Ref.| [11], where there are two net- i : i i ; i Cascade
works A and B with the same size df nodes, then both of Blé 36 B?é B‘b BSO BGO process
them are coupled via one-to-one interdependence. If npde A
(Bi,i =1,2,...,N) stops function owing to attack or failure,
its inter-layer counterpart;BA;) becomes nonfunctional as etworks. Green nodes represent the functional nodese ghly
well. When some nodes on network A (hereafter A-nodes odes represent the removed nodes. Each stage is compasen of
are removed, the nodes of network B (hereafter B-nodes) thaf,pstages (see the number in the brackets): disease spreaniess

connect to the nonfunctional A-nodes will also be removedand cascade process. Besides, tadeans the successful propaga-
(because of the dependence between both networks), whigian of virus, while black is the opposite case.

further prunes connections of these B-nodes with the giant

component of network B. Subsequently, A-nodes that connect

to the non functional B-nodes will stop function and cut thei work nodes into three states: susceptible (S), infectea(l)

connections with the new giant component of network A (onlyrecovered or removed (R). Susceptible nodes are free of epi-

the nodes that belong to the giant component of network redemic and can get infection via direct contacts with infdcte

main functional). These cascade processes repeat untit no Aounterparts. Infected nodes are assumed to carry thesdisea

nodes and B-nodes could be removed. and pass it towards susceptible nodes. Recovered (removed)
SIR model [4], as one of the most fundamental and im-state means the nodes recovered (died) from the disease so

portant paradigms of epidemic dynamics, classifies the nethat these nodes neithefftise the infection nor be infected

®
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g
‘®
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FIG. 1: A schematic illustration of CF-VP model in interdedent
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exists a new infected nodesAit can bring infection to its
neighbors A and As. Since A becomes nonfunctional soon,
new cascade process is triggered:i®8removed due to losing
dependent counterpart;;As removed because of separation
from the giant component of network A, which in turn causes
B4 nonfunctional. In stage 3, even ifsAXails to infect its
neighbor, itself and its partnersBvill also be nonfunctional
due to the state transitiorHR of As. Because no giant com-
ponent exists, Aand Bs are finally removed and the systems
are completely collapsed. From this illustration, it isscléhat
the virus propagation causes cascading failures, whileahe
cading failures suppress the virus propagation: S-statie no

0 5 10 15 A; and I-state node Aare isolated owing to the cascading
time stage failures.

FIG. 2: Fractionf; of infected nodes versus the time stage. The
solid and dash lines represent results on network A of iefgeddent I1l. RESULTS
systems and single-layer networks, respectively. Thedefeendent
networks are SF networks with sid = 2,000 and same average
degregka) = (kg) = 4 (black), 6 (blue), 8 (green), and 10 (red). The
transmissibility probability ist = 0.5.
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again. In addition, classic SIR model considers discrate ti < 04 x g
process: at each time step, the infected node can infectsits s 0.2
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ceptible neighbors with transmission rateand then becomes
recovered or removed state with recovery rate

Now, we turn to our model: cascading failure and disease
spreading are coupled via interdependent networks, namely
the interplay between cascading failures and virus propaga
tion (CF-VP for short) in interdependent networks. Givea th
same interdependent networks as Refl [11], we give two ad-
ditional hypotheses: 1) only one network (e.g. network A) DY
supports the propagation of virus; 2) the time scale of cas-
cading failures is much smaller than that of virus prop@gati  FiG. 3: The sizeG of the remaining giant component of network
so that virus propagation can repeat until there is no failur A versus the transmissibility probability. The interdependent net-
node in the systems. Moreover, our model also considers disvorks are SF networks with average degrtkg) = 8, (ki) = 4
crete time-step: each time stage contains the virus préjpaga (squares), 6 (triangles), 8 (circles), 10 (diamonds), afdstars),
process and one general cascading failure process. lyitial respectively. The inset features how the threshil¢hanges as a
one random chosen A-node is infected by the virus, then théinction of(ka).
infected node propagates the virus: it infects its susbkpti
neighbors with probability, and then becomes removed state  Results of computation simulations are obtained on inter-
with probabilityé (without loss of generality, we use=1).  dependent scale-free (SF) networks with average deggge
In particular, if the removed nodes are assumed to be noafunand (kg) of networks A and B. In each CF-VP process, we
tional, a general cascading failure process will be trigden  assume that, initially, only one randomly chosen node is in-
interdependent networks and more nodes may be pruned. fiécted on network A. What we are interested is the robustness
there still exist infected nodes in the networks after trezad-  of interdependent networks against CF-VP process, which is
ing process, a new virus propagation process and the subs@weasured by the siz8 of the remaining giant component of
guent triggered cascading failure will repeat until no até&l  network A when CF-VP ends. Here, it is worth mentioning

nodes exist in the network. that CF-VP model finally generates the identical size of the
To get a better understanding, Hig. 1 provides a schemati@maining giant component on networks A and B.
example for this novel CF-VP model. Assume Being ini- Fig.[2 shows the evolution of virus on network A with the

tially infected, it can infect its neighbors with probabilit. proposed CF-VP model, which is featured by the solid lines.
After the spreading process of stage 1, @d A3 become To take a direct comparison, we also add the traditional case
removed node and infected node respectively. Due to interdef virus propagation on single-layer networks (dash lines,
pendence, nodeBvill be nonfunctional, which subsequently without the interplay of cascading failure and virus pragag
causes node Bto be removed since it does not belong to thetion). It is obvious that though the fraction of infected resd
giant component of network B. Similarly,1As removed be-  in both scenarios is almostidentical at the early stagedpih
cause of the removal of B The first stage ends. Now there lowing trend becomes greatlyftrent. Comparing with tra-
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ular, there exists the critical threshold of virus transsitig-

1 ' ity, Ac, above which the remaining giant component will be
od i} 8-2‘ X x % x x x | null. From Fig[3, we can see thag becomes smaller with
< o the increment ofka), yvhlch means that denser co.nnectlons
0 of network A where virus spreading takes place will acceler-
0.6 0 ] ate the propagation of virus and thus the progress of cascad-
o 24 6;?(12121“6 ing failures in systems. At variance, the chang€lg) has
0.4t B no obvious impact on the threshaold (see Fig[4), i.e. the
crash trend is nearly identical if onlkg) changes. Combin-
0.2 ing these observations, a significant finding poses itshi: t
interdependent systems will be more vulnerable only if the
0 network layer supporting virus propagation has denser con-
0

nections (i.e. larger average degree); otherwise thedeter
pendent systems are robust against the change of conreection
. o in other layer(s). Along this discovery, it now becomes easy
FIG. 4: The sizéS of the remaining giant component of network A 4 ynderstand that simultaneously changikg and(kg) will
versus transmissibility probability. The interdependent networks generate the same results as Fig. 3. In addition, this discov
are SF networks with average degié) = 8, (ks) = 4 (squares), o oo difers from previous framework of cascading failure
6 (iriangles), 8 (circles), 10 (diamonds), and 16 (staespectively. in interdependent networks [11], where better robustngss u
The inset features how the threshdldchanges as a function ¢6). p > ’

ally needs denser connections. Thus, our outcomes, to some
extent, prove the necessity and significance of feedbagk loo

ditional case, CF-VP model not only makes infection reach aNVhen designing the interdependent networks.
peak faster, but also impedes the total infection risk. &, i

is easy to elucidate these phenomena. At the early staggs, on
a small fraction of nodes are infected and removed, the-inter
dependent networks are not broken and most nodes are still
functional. Thus, the virus propagates on network A almost
as on single-layer networks. But with continual propagatio

of virus, the triggered (;ascading failures cause more noqles Up to now, it has been very clear that in interdependent net-
be removed and make interdependent networks collapse infgo ks virus propagation on one layer could lead to contisuou
the unconnected fragments. In particular, many infectetl anca5cading failures and fragmentation of systems. Alorg thi
susceptible nodes are also removed due to the cascading fajhe  the most intuitive method of protecting interdepemde
ures, which in turn leads to thefective suppression of virus  hanyorks is to control the spread of virus when it appears. In
propagation (also see Figl 1). With the CF-VP frameworkeqity. it seems hard to timely restrain the spreading nfwi
_the role of feed_back _Ioop bec_omes clegr: virus pmpagat'o'(‘especially the emerging virus) by using the well-known-pre
induces cascading failure, while cascading failure SUES®®  jmmunization strategies [38,139], due to the absence of ef-
virus propagation. . _ o fective antivirus programs [36]. However, in CF-VP model
Besides, another interesting observation from[Hig. 2 i thajt seem feasible to identify the infected neighbor based on
similar to traditional case, the spreading scale of virlarger  knowledge and abnormal behavior of infected nodes. Here
in network A with denser connections (i.e. the larger the avyye consider such a control strategy: after the emergence of
erage degree, more obvious the infection peak will be), whic yirys, susceptible nodecan identify one infected neighbor
makes the totql transmission be_come easier. Due to feedbagkin probability g, and then prunes its connection with this
loop (refer to Figl1L), this should in turn cause larger-scals-  neighbor. This strategy not only isolates the health noces f
cading failures in interdependent systems and make systemejr infected neighbors, but also decreases the average de
more \(ulnera_ble to CF-VP model, which we will systemati- gree of network layer which supports the virus propagation
cally discuss in what follows. (see Fig[B for its impact). With respect to the identificatio
To explore the influence of CF-VP model on the rObUSt-Capabi“tyqi, we consider two fo||owing cases.
ness of interdependent networks, we focus on two opposite
cases. The first case is to fix the average degree of netwo
B ((kg)) yet vary the average degree of network{&a); an-
other case is to fixka) yet vary(kg) (Indeed, there exists the
third case: keefka) and(kg) equal, i.e.(ka) = (kg), and 2) Degree-based adaptive isolatidqy, gy, - - - , gn} follow-
simultaneous changing, like Figl 2. But here we do not ploiing gauss distribution. That i, gz, -+ ,gn} ~ N(g, o),
the curves of this case, which will be explained soon). interwhereq ando- are mean and standard deviation respectively.
estingly, such a change that seems trivial will lead to dyeat Moreover, ifk; > k;, we assumey > q;, which means
different outcomes. First, irrespective of which case, inereaghat large-degree nodes have higher ability to identifgdtdd
ing 2 makesG become smaller, namely, fast propagation ofneighbors. Considering thgt must be between 0 and 1, we
virus will trigger larger, stronger crash of systems. Intjgar  assigng; as

IV. CONTROL STRATEGY

1) Deterministic adaptive isolatior; = q; = qfori # j.
atis, all of nodes have the same ability to idenfify infecte
neighbors.
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FIG. 5: The siz&5 of the remaining giant component of network A FIG. 6: The sizeG of the remaining giant component of network A
versus identification probability for deterministic adaptive isolation versus identification probabilityfor deterministic adaptive isolation
case (a) and degree-based adaptive isolation wherd.3 (b). The  case (a) and degree-based adaptive isolation wher®.3 (b). The

interdependent networks are SF networks with average eégye= interdependent networks are SF networks with average eégoe=
8, (ka) = 4 (squares), 6 (triangles), 8 (circles), 10 (diamonds) a&hd 1 8, (kg) = 4 (squares), 6 (triangles), 8 (circles), 10 (diamonds) &d 1
(stars), respectively. The transmissibility probabilgyl = 0.5. (stars), respectively. The transmissibility probabilgyl = 0.5.

only changingkg) will generate nearly identical results with

_ each isolation strategy (i.e. the overlapped curves in@ig.
0, 'f_ G <0, This is because, for eachvalue, the isolation probability of

g =1 q _|f 0<qg<1 (1) infected neighbors on network supporting virus propagatio
L ifg>1 is the same, irrespective of average degree in other network

Combining Figs[b anfll6, it seems to indicate that the best

Subsequently, we explore how the control measures imyay of controlling system crash is to eradicate the infectio
prove the robustness of interdependent networks under Cky,rces in epidemic layer, which is specially useful fos thi
VP model, where we still use two opposite cases as FEigs. %yer with denser connections.
and[4. Fig[h first shows the impact of isolation strategies
when(kg) is fixed and(ka) changes. It is clear that the size

G of remaining giant component increases vejthvhich indi-

cates the robustness of interdependent networks can b#-sign V.. CONCLUSION
cantly improved by increasing nodes’ identification capgbi
regardless of which strategy. With large identificationkzro In this letter, we have developed a toy model (CF-VP

bility, the infection source(s) can be controlled and iseda model) in which virus propagation and cascading failure are
earlier. The removal of these infected nodes further makesoupled on interdependent networks, where each network
the cascading process become slow, which also decreases tager sustains one dynamic process. For both processgs, the
possibility of infection outbreak. This thus validates the  spontaneously form a novel feedback loop: virus propaga-
portance of feedback loop in the coupled disease-cascadingn triggers continuous cascading failures and even cetapl
model once again. Moreover, another similar phenomenon ifragmentation if transmissibility probability is aboveragsh-
Figs[3 (a) and (b) is that network A possessing large averagald; while cascading failures will break the connections of
degree needs largerto maintain the equivalent robustness networks and thus suppresses virus propagation. Of note, if
with the case of smaklkya), which in fact is consistent with the network layer supporting epidemic spreading has denser
the prediction of Fid.13: largeka) usually enables systems to connections, interdependent systems will be more vulterab
become more vulnerable, thus requiring more powerful prowhich is opposite to the observation of traditional casegdi
tection. Except for similarity, we can also notice that gggr fashion in interdependent networks|[11]. To protect inéerd
based adaptive isolation performs much better than determi pendent networks, we further propose the control measures
istic adaptive isolation. This actually agrees with ounint based on the capability to identify the infected neighbar. |
ition, because (as single-layer networks) large-degrelesio terestingly, the larger the identification capability (esally
play a more significant role in the propagation of virus thanfor larger-degree node), more robustness the interdepénde
small-degree nodes. If there exist infected nodes among theetworks will be.
neighborhood of large-degree nodes, they can easily phenet In spite of simplicity, our model describing the interplay
connections with infected neighbor(s) due to large idevatifi between cascading failures and virus propagation in ieterd
tion ability. With fast removal of infection sources, cadtey  pendent networks seems reasonable and as well easily jus-
will be controlled better (i.e. larges for the samey value). tifiable with realistic situations. For example, Internedda

We now turn to another case: fixinga) yet varying(kg) =~ some social online networks could be encapsulated into the
and study how the isolation strategies improve the robgstne framework of multilayer networks. But how they influence
of interdependent networks. As reflected in [Ei. 4, this caseach other will be a long-term question. This work may pro-
has no impact on the system crash. Though theGinére- vide some new insights into understanding the interplay and
maining giant component enhances with identification capaproposing the protection measures. Besides, another point
bility q and degree-based adaptive isolation performs bettethat deserves our attention is to consider theoreticalaizal
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