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Abstract. This paper investigates, both theoretically and numerically, preferential

random walks (PRW) on weighted complex networks. By using two different analytical

methods, two exact expressions are derived for the mean first passage time (MFPT)

between two nodes. On one hand, the MFPT is got explicitly in terms of the eigenvalues

and eigenvectors of a matrix associated with the transition matrix of PRW. On the

other hand, the center-product-degree (CPD) is introduced as one measure of node

strength and it plays a main role in determining the scaling of the MFPT for the PRW.

Comparative studies are also performed on PRW and simple random walks (SRW).

Numerical simulations of random walks on paradigmatic network models confirm

analytical predictions and deepen discussions in different aspects. The work may

provide a comprehensive approach for exploring random walks on complex networks,

especially biased random walks, which may also help to better understand and tackle

some practical problems such as search and routing on networks.
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1. Introduction

In the past two decades, as the effective modelling of a wide range of complex systems,

complex networks have attracted much attention from both theorists and technologists

[1]. Most efforts were devoted to uncover the universal topological properties of real

systems [2]. Many empirical studies revealed that a large variety of real-world networks

display simultaneously small-world phenomenon [3] and scale-free nature [4]. These

global properties imply a large connectivity heterogeneity. It is evidenced by power-law

degree distributions and small average distance between nodes, together with strong

clustering. But an even more intriguing task is to understand the interplay between

the structure of complex networks and various dynamical processes taking place on

them. The processes include epidemic spreading [5], traffic flow [6], and so on. Such

processes have potential applications in the control of stochastic systems [7]-[10]. It has

been demonstrated that the structural properties of networks play an important role in

determining the dynamical features of these processes [2].

As a paradigmatic dynamical process, random walks on complex networks [11] have

been widely explored due to their basic dynamic properties and broad applications[12].

In recent years, there has been increasing interest in random walks on small-world

networks [13, 14] and scale-free networks [15, 16]. The structural properties affect

deeply the nature of the diffusive and relaxation dynamics of the random walk [14, 16].

Such interest is well motivated since the random walks could also be a mechanism of

search and routing on complex networks[17]-[21]. Random walks can be used to detect

unknown paths [20], design dynamic routing in wireless sensor networks [21], and so on.

Furthermore, to improve search performance, various modified random walks schemes

have been proposed, such as self-avoiding walks [22] and coverage-adaptive walks [23],

etc.

Those modified random-walk strategies, however, are in most cases too complicated

to be solved analytically. In addition, despite some studies of biased or preferential

random walks [18], [24]-[26], a general framework for the scaling behaviour of the walks

in networks with different topologies has not been available. That’s to say, there is not

a unified approach for understanding the behaviour of biased random walks. In this

paper, we will develop a simplified random-walk model of unifying different random-

walk strategies so that one could better understand results about Mean first passage

time (MFPT).

MFPT is an important characteristic of random walks on networks, which is

investigated in various situations, especially in characterizing search efficiency [17, 19,

27]. The MFPT from node i to j, denoted by ⟨Tij⟩, is the expected steps taken by a

walker to reach node j for the first time starting from node i. In complex networks,

MFPTs of random walks heavily depend on the underlying network topology. MFPT

of a single random walker in complex networks [28] has been extensively studied. For

random walks on the family of small-world networks, mean field approximation was

applied to get the analytic result for MFPT [13]. By using Laplace transform, an
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exact expression for the MFPT of random walks on complex networks was derived [11].

Adopting the theory proposed in [29] led to explicit solutions of the MFPT for random

walks on self-similar networks [30]. The solutions highlighted two strongly different

scaling behaviours of the MFPT for different types of random walks. For random walks

in a general graph, an explicit formula of the global MFPT to a trap node was provided

[31]. The formula is expressed in terms of eigenvalues and eigenvectors of Laplacian

matrix for the graph.

However, those results about MFPT are in various forms and are difficult to make

a unified understanding. In many circumstances, they are not beneficial to reveal the

interactions between the structural properties and random-walk dynamical behaviours.

Moreover, the impacts of node strength on scaling properties of the MFPT remain less

understood. To meet the above shortfall, we will attempt to establish a unified random-

walk model in a tractable way. And we expect that some unified analytic results could

be obtained for the statistics of the random-walk system. For this object, we take

advantage of random walks on weighted networks, and thus can make use of reversible

Markov chains theory. Based on local information of the degrees of current node and its

nearest neighbors, we attach different edge weights and then construct different random

walks on weighted networks. We focus on preferential random walks (PRW) and simple

random walks (SRW). We can consider the influence of node strength on the behaviour

of random walks by PRW and SRW.

In the following, we develop a comprehensive approach for exploring the scaling

behaviour of discrete-time random walks on complex networks. We mainly investigate

PRW on complex networks and make comparative study with SRW. In section 2, we give

preliminaries and terminologies for random walks. In section 3, we first attach weight

cij = djdi to each edge and construct PRW through random walks on weighted networks.

Then, we derive two exact expressions of the MFPT between two nodes for PRW on

networks. One is a spectra formula obtained by the method of matrix analysis; the other

is a probabilistic formula got by the method of stopping time. Accordingly, based on

the two formulas for MFPT, we get the analytical formulas of the average over MFPTs

(AMFPT) between all node pairs. In section 4, numerical simulations of an ensemble of

random walkers moving on paradigmatic network models confirm analytical predictions

and deepen discussions in different aspects. The network models include simple ER

random networks, NW small-world networks and BA scale-free networks. We discuss

the effects of the structural heterogeneity on the MFPT and AMFPT. Through the

comparison of PRW and SRW in networks, we unveil the CPD-based assortativity of

network structure. We also interpret and handle some search-related issues by random

walks, such as search efficiency in target problem, sensitivity of the total average search

cost affected by the source node’s location, network searchability, difference of the scaling

behaviours for search cost among the three strategies of maximum-degree-search (MDS),

PRW and SRW.
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2. Preliminaries & Terminologies

A simple random walk on a connected, undirected network G with N nodes is a Markov

chain whose states are the nodes of G. The walk begins with a walker at some node,

and at each tick of the clock, the walker moves to a neighbor of its current position at

random (uniformly). If instead the transition probabilities are biased according to edge

weights, one obtains a general reversible Markov chain. In this section, we give a brief

introduction to reversible Markov chains and random walks on weighted networks. We

review basic concepts and some fundamental issues that are handy in proving our main

results.

We describe a discrete-time Markov chain as follows: Consider a stochastic process

(Xt : t = 0, 1, 2 · · ·) with a finite state space V = {1, 2, · · · , N}. The process starts in

one of these states and moves successively from one state to another. If the chain is

currently in state in, then it moves to state in+1 at the next step with a probability

denoted by pij , and this probability is independent of the past states and depends only

on the current state, i.e.,

P (Xn+1 = in+1|X0 = i0, X1 = i1, · · · , Xn = in) = P (Xn+1 = in+1|Xn = in) = pij,

where i0, i1, · · · , in+1 ∈ V ,n ≥ 0.

The probabilities pij = P (Xn+1 = j|Xn = i) are called one-step transition

probabilities, which constitute the transition matrix P = (pij) of the chain. Accordingly,

the t-steps transition probabilities are P (Xt = j|X0 = i) = p
(t)
ij where P (t) = PP · · ·P

is the t-fold matrix product. Write Pi(·) and Ei(·) for probabilities and expectations

for the chain starting at state i and time 0. More generally, write Pρ(·) and Eρ(·) for

probabilities and expectations for the chain starting at time 0 with distribution ρ .

For the Markov chain with the state space V = {1, 2, · · · , N}, we say that the

distribution π = (π1, π2, · · · , πN)
⊤ is stationary or steady for the state space V if

π⊤ = π⊤P , that is, for any j ∈ V , πj =
∑

i∈V πipij. It is well known that any finite

irreducible aperiodic Markov chain has exactly one stationary distribution [32]. The

stationary distribution play the main role in asymptotic results as follows. We consider

a finite irreducible Markov chain with the the stationary distribution π. Let Ni(t) be the

number of visits to state i during times (0, 1, · · · , t−1). Then for any initial distribution

[33],

Ni(t)/t → πi a.s, as t → ∞. (1)

If the chain is aperiodic, then for all i ∈ V [34],

P (Xt = i) → πi, as t → ∞. (2)

Further, in terms of the stationary distribution, it is easy to formulate the property of

time reversibility [32, 33]: it is equivalent to saying that for every pair i, j ∈ V

πipij = πjpji. (3)
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That is, in a chain with time reversibility , we step as often from i to j as from j to i.

More vividly, given a move of the chain run forwards and the same move run backwards,

you cannot tell which is which. At this point, we call the chain reversible.

Now, we shift attention to random walks on weighted networks [35, 36]. We consider

a finite non-bipartite network (or graph) G = (V,E) with N nodes (or vertices, sites)

and M edges connecting them. Here, we consider only a connected network, that is,

there is at least one path linking any two nodes on the network. The connectivity is

represented by the adjacency matrix A with entries aij, i, j = 1, 2, · · · , N. aij = 1 if

there is an edge between node i and j, otherwise aij = 0. We also assume all aii = 0

conventionally. That is to say, the network we consider has no multiple edges, and has

no self-loops. The degree di of node i is defined as the number of connected neighbors,

i.e., di =
∑N

j=1 aij. For the network G = (V,E), if aij = 1, we assign a positive weight

0 < cij = cji < ∞ to edge (i, j), otherwise, if aij = 0, namely the edge (i, j) is absent,

we attach weight cij = cji = 0. Writing c for the function ij 7→ cij, we have obtained

the weighted network (G, c) [1, 37].

We define a random walk on the weighted network as a sequence of random variables

(Xt : t = 0, 1, 2 · · ·), each taking values in the set V of nodes. And the walk is such that

if Xt = i, namely at time t the walker is at node i, then with the transition probability

pij = cij∑
j
cij

the walker hops to one neighbour j at the next time t + 1 , that’s to say,

the walker randomly selects a neighboring node as its next dwelling point according to

edge weights. Clearly, the walk (Xt : t = 0, 1, 2 · · ·) can be described by a Markov chain

with the finite space V , whose transition matrix P satisfies [35, 36]

pij = P (Xt+1 = j|Xt = i) =

{ cij
ci
, (i, j) ∈ E,

0, (i, j) /∈ E.
(4)

where ci =
∑

j∈τ(i) cij. The sum ci, called the strength of node i, runs over the set

τ(i) of all the connected neighbors of i. Such a chain is reversible with the stationary

distribution [35, 36]

π = (π1, π2, · · · , πN)
⊤, where πi =

ci
c
, (5)

since πipij = πjpji =
cij
c
. Note that c =

∑
i ci is the total edge weight, when each edge

is counted twice, i.e., once in each direction.

In fact, by configuring the edge weights cij, we can get corresponding node strengths

ci [37] and thus can control the scaling behaviour of the random walks. The weight

heterogeneity could play an essential role in dynamical processes on networks [6],

including random-walk dynamics. This may also have potential reference value in the

control design for stochastic systems [38]-[41]. If we assign weight cij = 1 to each edge

(i, j), then the random walk on the weighted network is a simple random walk that we

always say. The transition matrix of the simple random walk is described by

pij =

{
1/di, (i, j) ∈ E,

0, (i, j) /∈ E.
(6)
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By using equation (5), it is easy to prove that the unique stationary distribution of the

simple random walk becomes

π = (
d1
2M

,
d2
2M

, · · · , dN
2M

)⊤, (7)

where M is the number of edges of the network G.

3. Mean first passage time of preferential random walks

In this section, we present a systematic study of preferential random walks in a general

connected non-bipartite network G = (V,E) with N nodes and M edges. MFPT is

one basic characteristic of the random walks, since it contains a great deal of useful

knowledge about the random-walk dynamics. We will derive two analytical expressions

for MFPT between source node and target node, based on which we obtain the closed-

form formulas of AMFPT between all node pairs. First, through applying the matrix

analysis approach proposed in [42, 43], we obtain an exact solution to the MFPT, which

is expressed in terms of the eigenvalues and eigenvectors of a matrix associated with the

transition matrix of PRW. Then, by employing the stopping time technique developed

in [44], we get a probabilistic formula for the MFPT, which provides the dependence of

MFPT on the CPD of target node.

3.1. Formulation of PRW

To perform a random walk on a complex network, each node needs to calculate the

transition probability from the node to each of its neighbours, but the knowledge

available to this endpoint is limited to its local information. Thus the real question

we need to ask is: what local information is necessary and sufficient to calculate

good transition probabilities at each node? In this paper, we implement preferential

random walks on complex networks, in which the walker is prone to a high-degree

neighboring node. Preferential random walks on complex networks are defined by

following rule: Suppose a particle (or random walker) wanders on the network. It

randomly selects a neighboring node as its next dwelling point according to the degrees

of neighboring nodes. That’s to say, the probability of heading to any neighboring node

is pij =
dj∑

j∈τ(i)
dj
, where dj denotes the degree, the number of connected neighbors, of

a node j and τ(i) denotes all the connected neighbors of node i. Representing the pij
as djdi∑

j∈τ(i)
djdi

, we can apply random walks on weighted networks to study preferential

random walks, simple random walks as well. Thus, we can use a unified approach to

explore preferential random walks and simple random walks.

If we attach weight cij = djdi to each edge (i, j), then the random walk on the

weighted network is a preferential random walk with the transition matrix as follows

pij =


djdi∑

j∈τ(i)
djdi

, (i, j) ∈ E,

0, (i, j) /∈ E.
(8)
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According to equation (5), the preferential random walk has a stationary distribution

π = (π1, π2, · · · , πN)
⊤ that is a unique probabilistic vector satisfying

πj =

∑
i∈τ(j)(didj)∑

j

∑
i∈τ(j)(didj)

. (9)

There is a measure of node strength, i.e., dj
∑

i∈τ(j) di, in the definition of the

PRW and the expression for the MFPT, see equations (8) and (41). We call it the

center-product-degree (CPD) of the node j and denote by CPDj. The CPD heavily

characterizes the behaviour of PRW on the network. There is a close relationship

between CPD and network assortativity [1]. For a degree-correlation network, if the

center-product-degree CPDj of node j is an increasing function of the degree dj of

node j, then we say that the network is weekly assortative. Whereas, if the CPDj is

an decreasing function of dj, the network is strongly disassortative. Obviously, if the

network is assortative, then it will be weakly assortative, while if the network is strongly

disassortative, then it will be disassortative. We will numerically explore the CPD-based

assortativity and homogeneity of network structure by random walks in section 4.1.2

In fact, the above-mentioned various types of biased random walks in networks

[24]-[26] can also be transformed into random walks on weighted networks equivalently

in the similar way. For example, a biased random walk in uncorrelated networks and a

biased N lions-lamb model were introduced in [24, 25] respectively. In the two articles,

the bias is defined by the preferential transition probability pij = dαj /
∑

j∈τ(i) d
α
j , where dj

denotes the degree of a node j and τ(i) represents the set of node i’s nearest neighbors.

We can attach edge weight cij = (djdi)
α and thus revisit the biased random walks.

Another example is the Lévy random walks in [26] which can be got by configuring

general weight cij = (dij)
−α between node i and node j where dij denotes the shortest

path length.

Remark 1. The framework here, together with the following main results, may provide

a unified approach to improve the understanding of the behaviour of various random

walks in networks, especially biased random walks.

3.2. Main results

For the sake of clearness, let us first remind the reader of basic notions and terms about

the MFPT. For node j, define two first passage times as

Tj = min{t ≥ 0 : Xt = j} and T+
j = min{t ≥ 1 : Xt = j}.

As the random walks frequently start out at different initial nodes, it is important to

distinguish the two first passage times. Write ⟨Tij⟩ = EiT
+
j and ⟨T ′

ij⟩ = EiTj, the angle

bracket” <> ” represents ”Mean”. Given that X0 = i, of course Tj = 0 when j = i, in

this case we call T+
j the first return time to node i. Correspondingly,

⟨T ′
ii⟩ = EiTi = 0, (10)
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we call

⟨Tii⟩ = EiT
+
i , (11)

the mean first return time (MFRT) to node i, that is, the mean number of steps needed

to return to any starting point i. On the other hand, if i ̸= j,

⟨T ′
ij⟩ = EiTj = EiT

+
j = ⟨Tij⟩, (12)

in this situation we call them the mean first passage time (MFPT) of j from i, namely the

expected time it takes to reach node j starting from node i. Occasionally, ⟨Tij⟩ = EiT
+
j

is also called the mean access time or the mean hitting time of j from i.

3.2.1. Method of matrix analysis. We now extend the matrix analysis approach

developed in [42, 43] to compute the MFPT ⟨Tij⟩ (i ̸= j) of a discrete-PRW walker

to target node j and the AMFPT. We thus get explicitly their dependence on the

eigenvalues and eigenvectors of a matrix associated with the transition matrix of the

PRW. We finish the calculation and derivation in the following two steps.

(i) diagonalizing the transition matrix P of the PRW.

We use P to define one matrix

S : sij = πi

1
2pijπj

− 1
2 , namely S = D

− 1
2

π PD
1
2
π , (13)

where Dπ = diag( 1
πj
) is a diagonal matrix,of which πj =

∑
i∈τ(j)

(didj)∑
j

∑
i∈τ(j)

(didj)
, j = 1, 2, · · · , N .

Clearly, S is symmetric due to the time reversibility of the PRW, namely πipij = πjpji.

Then S can be diagonalized and has the same set of eigenvalues as P . Let λ1, λ2, · · · , λN

be the N eigenvalues of S, rearranged as 1 = λ1 > λ2 ≥ · · · ≥ λN ≥ −1, and let

u1, u2· · ·uN are the corresponding orthogonal eigenvectors of unit length. Here we take

u1 = (π1
1
2 , π2

1
2 , · · · , πN

1
2 )T since the relation

∑
i πipij = πj holds, j = 1, 2, · · · , N . Hence

we can describe S in a spectral representation:

S = UΛUT =
N∑
k=1

λkuku
T
k . (14)

Considering equations (13) and (14), one can easily obtain

P = P ∗ +
N∑
k=2

λkD
1
2
π uku

T
kD

− 1
2

π (15)

where P ∗ = 1πT , i.e., the entry of P ∗ is p∗ij = πj.

(ii) constituting matrix T ′ with MFPTs ⟨T ′
ij⟩ = EiTj and solving the matrix

equation for T ′.

Since the first step takes the walker to a neighbor v of node i with the probability

piv =
dvdi∑
v
dvdi

, one has

⟨T ′
ij⟩ = 1 +

dvdi∑
v
dvdi

∑
v∈τ(i)

⟨T ′
vj⟩, (16)
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if i ̸= j. According to equation (16), we can write an expression in matrix notation

F = J + PT ′ − T ′, (17)

where any element of matrix J is 1. Applying equation (16) says that

Fij = 0, (18)

and hence F is a diagonal matrix. The definition of the stationary distribution for the

PRW indicates that (P − I)Tπ = 0. Thus, F Tπ = Jπ + T ′T (P − I)π = Jπ = 1. That’s

to say,

(F )ii =
1

πi

=

∑
i

∑
j∈τ(i)(didj)∑

j∈τ(i)(didj)
. (19)

From equations (17-19), one immediately sees the matrix T ′ satisfies

(I − P )T ′ = J −Dπ. (20)

We will next solve this matrix equation for T ′. Unfortunately, equation (20) can

not uniquely determine T ′ since I − P does not have an inverse. But following [43],

(I − P + P ∗)−1 exists and

T ′ = (I − P + P ∗)−1(J −Dπ) + P ∗T ′

= J − (I − P + P ∗)−1Dπ + P ∗T ′

= H + P ∗T ′ (21)

where

H = (I − P + P ∗)−1(J −Dπ) = J − (I − P + P ∗)−1Dπ. (22)

Note that P ∗ = 1πT , from equation (21), one sees that

⟨T ′
ij⟩ = Hij + (πTT ′)j (23)

Recalling that ⟨T ′
jj⟩ = 0 in equation (10), and from equation (21) one has

0 = Hjj + (πTT ′)j (24)

From equations (23) and (24), we have

⟨T ′
ij⟩ = Hij −Hjj. (25)

To give explicitly the spectra formula for the MFPT ⟨T ′
ij⟩, we will continue to do some

calculation on H. Substituting equation (15) into equation (22), we obtain

H = J − (I − P + P ∗)−1Dπ

= J − (D−1
π −

N∑
k=2

λkD
− 1

2
π uku

T
kD

− 1
2

π )−1

= J − [D
− 1

2
π Udiag(1, 1, · · · , 1)UTD

− 1
2

π

−D
− 1

2
π Udiag(0, λ2, · · · , λN)U

TD
− 1

2
π ]−1

= J − [D
− 1

2
π Udiag(1, 1− λ2, · · · , 1− λN)U

TD
− 1

2
π ]−1

= J −D
1
2
πUdiag(1,

1

1− λ2

, · · · , 1

1− λN

)UTD
1
2
π (26)
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Rewriting the entriesHij andHjj ofH in equation (26), and plugging them into equation

(25), we immediately get the following formula.

⟨Tij⟩ = ⟨T ′
ij⟩ =

N∑
k=2

1

1− λk

(
u2
kj

πj

− ukiukj√
πjπi

) (i ̸= j). (27)

Taking into account equation (43), together with equation (27), we can calculate the

average over MFPTs (AMFPT) between all node pairs ij(i ̸= j) as follows.

⟨⟨Tij⟩⟩ =
∑
i

∑
j

πiπj⟨Tij⟩

=
∑
j

πj⟨Tij⟩

=
∑
j

N∑
k=2

1

1− λk

(u2
kj − ukiukj

√
πj

πi

)

=
N∑
k=2

1

1− λk

(
∑
j

u2
kj − uki

√
1

πi

∑
j

ukj
√
πj)

=
N∑
k=2

1

1− λk

, (28)

where equation (14) has been used .

Remark 2. Summing up the above equations and derivation, equations (27) and (28)

are our one central result for the MFPT ⟨Tij⟩ (i ̸= j) and AMFPT ⟨⟨Tij⟩⟩, which are

expressed in terms of the eigenvalues and eigenvectors of S related with the transition

matrix P of the PRW.

Remark 3. For SRW on the finite network, the similar result of equations (27) and

(28) can be obtained from the similar derivation above. The transition matrices of PRW

and SRW, as two stochastic matrices, have the similar spectral property [45]. Combining

with equation(28), this indicates that the AMFPTs ⟨⟨Tij⟩⟩s of PRW and SRW have the

similar scaling behaviour, which is also demonstrated in the following simulation, see

figure 5.

3.2.2. Method of stopping time. As we know, an integer-valued random variable S < ∞
is said to be a stopping time [33, 34] for the sequence X0, X1, X2 · · ·, if the event {S =

s} is independent of Xs+1, Xs+2 · · ·, for all s = 0, 1, 2 · · ·. The idea being that the Xi

are observed one at a time: first X0, then X1, and so on; and S represents the number

observed when we stop. Notice that the above two first passage times, T+
j and Tj,

are stopping times associated with the PRW. After obtaining a spectra formula for the

MFPT by the matrix formalism, we will use the stopping time technique to derive a

probabilistic formula for the MFPT ⟨Tij⟩ = EiT
+
j .

We now consider the PRW on the network, denoted by (Xt : t = 0, 1, 2 · · ·), which is

a finite irreducible discrete Markov chain. Let 0 < S < ∞ be a stopping time such that

XS = i and EiS < ∞, and let Nj(t) be the number of times the PRW visits node j in t
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steps. Viewing the PRW as the renewal process with the inter-renewal time distribution

S, from the reward-renewal theorem [33], one has

lim
t→∞

Nj(t)

t
=

Ei(Nj(S))

EiS
, (29)

which, together with equation (1), leads to [44]

Ei(Nj(S)) = πjEiS. (30)

Next, we will show that many formulas of time scale related to the PRW are encoded

in equation (30) and thus can be derived from equation (30) by particularly choosing S

and j. Further, we can combine these formulas to obtain the exact expression for MFPT

⟨Tij⟩ = EiT
+
j . We would like to stress that this stopping time technique, including some

formulas such as equations (36), (39) and (40) inferred by the technique, was proposed

in [44]. We can also seek the sight of the method in the classical Markov theory [32, 34].

However, by using this method, we focus on the two aspects. On one hand, we use the

method to get some new rigorous mathematical results for random walks on complex

networks. On the other hand, we can apply this ”probabilistic” approach to explore

characteristics of dynamic processes in a random-walk fashion such as random search,

communication and transportation in complex networks.

Taking S = T+
i in equation (30), one has

Ei(Nj(T
+
i )) = πjEiT

+
i . (31)

Setting j = i gives

Ei(Ni(T
+
i )) = 1. (32)

Using equations (31) and (32), we are led to an explicit expression for the MFRT to

node i as follows.

⟨Tii⟩ = EiT
+
i =

1

πi

. (33)

Introducing S as ” the first return to i after the first visit to j, for j ̸= i, one has

Ei(Nj(S)) = Ej(Nj(Ti)), (34)

because there no visits to j before time Tj. Obviously,

EiS = EiTj + EjTi. (35)

Substituting equations (34) and (35) into equation (30), we obtain the relation

Ej(Nj(Ti)) = πj(EjTi + EiTj). (36)

Let us assume that the PRW starts out from node i in the network. We fix a time t0 ≥ 1

and set S as the following 2-stage stopping time: (i) wait time t0, (ii) then wait until the

PRW next passages i if necessary. Then equation (30), in the case where j = i, implies

πi(t0 + EρTi) = Ei(Ni(S)) =
t0−1∑
t=0

p
(t)
ii , (37)
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where ρ(·) = Pi(Xt0 = ·).
Therefore,

t0−1∑
t=0

(p
(t)
ii − πi) = πiEρTi, (38)

Considering equation (38) in the limit t0 → ∞, we can write

Rii ≡
∞∑
t=0

(p
(t)
ii − πi) = πiEπTi, (39)

where equation (2), i.e. ρ → π(t0 → ∞), was used.

In a similar way, with some calculation one obtains

EkTi =
1

πi

(Rii −Rki). (40)

Finally, combining equation (40), equation (33) and equation (9) yields our another

central result, which can be summarized as follows.

For the PRW on the finite network, the MFPT of node j from node i is

⟨Tij⟩ =


1
πj

=

∑
j

∑
i∈τ(j)

(didj)∑
i∈τ(j)

(didj)
, i = j,

1
πj
(Rjj −Rij), i ̸= j,

(41)

where

Rij =
∞∑
t=0

(p
(t)
ij − πj); (42)

Consequently, the AMFPT between all node pairs ij(i ̸= j) is

⟨⟨Tij⟩⟩ =
∑
i

∑
j

πiπj⟨Tij⟩ =
∑
j

πj⟨Tij⟩ =
∑
j

Rjj, (43)

since
∑

j Rij = 0 for all i ̸= j.

For the SRW on the finite network, by using the Laplace transform, the authors

got the similar theoretical result of MFPT in [11], given by

⟨Tij⟩ =


1
πj

= 2M
dj
, i = j,

2M
dj
(Rjj −Rij), i ̸= j,

(44)

where

Rij =
∞∑
t=0

(p
(t)
ij − πj). (45)

Remark 4. Compared with their method, the method here, i.e., the stopping time

technique, may be more ”probabilistic”. In fact, their result of equation (44) can also be

obtained by this method. The key of the method lies in properly choosing the stopping

time S in equation (30), which seems to be a little tricky. It is worth noting that a

special selection of S can derive many other characteristic parameters. The MFPT in

equation (41) or equation (44) is just one example. Thus, the stopping time technique

may provide a powerful tool for understanding the scaling behaviour of random walks on

complex networks.
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From equation (41) or (44), it is easy to get the following relation.

Rjj −Rij =
⟨Tij⟩
⟨Tjj⟩

, i ̸= j. (46)

From equations (41) and (44), the following corollary can be got straightforwardly.

Considering the SRW and PRW on the same finite network, if the node j satisfies

∑
i∈τ(j)

di =

∑
j

∑
i∈τ(j)

(didj)

2M
, (47)

then the mean firs return times ⟨Tjj⟩s of SRW and PRW starting from j are equal.

Remark 5. As equations (41) and (44) show, the MFRT ⟨Tjj⟩ of SRW on the network

is determined by the starting node’s degree and inversely proportional to it, while the one

of PRW starting out from node j is determined by the CPDj and inversely proportional

to the CPDj; The MFPT ⟨Tij⟩ of SRW on the network mainly depends on the degree

of target node j, while the one of PRW mainly depends on the CPDj. See figures 1, 2

and 3.

Remark 6. In equations (41-45), Rij is an important quantity closely related with the

mixing time of random walk [12]. The quantity depends on the network structure and

the type of random-walk strategy. Given that the mixing time is Tmix,
∑Tmix

t=0 (p
(t)
ij − πj)

can be used as the approximation of Rij. From the numerical results of random walks

on NW small-world networks (and BA scale-free networks) presented in figure 2 (and

figure 3), and according to equation (46), we find that the value (Rjj − Rij) is greater

than 1 but very close to 1.

Remark 7. From equations (28) and (43), the average over MFPTs from an arbitrary

node to all other target nodes is identical to the AMFPT ⟨⟨Tij⟩⟩ between all node pairs,

where nodes i or node j is randomly chosen from all nodes according to the stationary

distribution. This implies the average over MFPTs from a source node to all possible

target nodes is not sensitively affected by the source node’s location, see figure 4.

4. Simulations and applications

In this section, we make use of numerical simulation to deepen our discussions as well

as to confirm analytic results. In section 4.1, based on theoretical results of equations

(41), (44) and (27), we numerically explore the scaling properties of MFPT. Firstly, we

use a simple random network to test the first passage property of the PRW. Secondly,

we reveal topological properties of the NW small-world network such as assortativity

and homogeneity through PRW and SRW. Then, through the comparison of PRW

and SRW on the BA scale-free network, we investigate that how the heterogeneous

structure affects the scaling of MFPT. We also observe that PRW searches for the

relatively high-degree node more quickly than SRW. In section 4.2, based on theoretical

results of equations (28) and (43), we numerically investigate the scaling behaviours

of AMFPT. We find that the average over MFPTs from an arbitrary node to all

other target nodes is identical to the AMFPT. We discuss the effects of the structural
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Table 1. Simulation values and theoretical values of MFRT for PRW.

CPDj 72 90 100 105 132

analytical⟨Tjj⟩ 10.778 8.622 7.76 7.390 5.878

numerical⟨Tjj⟩ 10.676 8.745 7.797 7.396 5.949

heterogeneity/homogeneity on the scaling of AMFPT. Further, we observe that for

random walks on the BA scale-free network, the AMFPT demonstrates approximatively

linear scaling with the node number, i.e., ⟨⟨Tij⟩⟩ ∼ N , and does not have the small-world

feature, although the average shortest path length of the network has the small-world

effect. This phenomenon also appears in the NW small-world network. The observation,

to some extent, characterizes the network searchability [46]. Finally, we compare the

scaling behaviours of average search steps among SRW, PRW and maximum-degree-

search (MDS) strategy. We explain why the scaling behaviours of average search steps

for PRW and SRW are much similar, while utterly different from the one for MDS.

4.1. Scaling properties of MFPT
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Figure 1. ⟨Tjj⟩ and ⟨Tij⟩ vs node’s center-product-degree CPDj for PRW on the

simple random network. [source marked as i = 16 and its degree di = 1]

4.1.1. PRW on a simple random network. The small connected random network is

defined as N = 21 labelled nodes and every pair of the nodes being connected with

probability p = 0.1 by using the ER model [1]. The average degree of the simple

random network is 58
21
, namely ⟨d⟩ = 58

21
. We perform PRW on the simple random

network. Numerical data presented in the figures have been averaged over 104 runs.

We perform PRW on the simple network, see figure 1. For several nodes arbitrarily

selected, both the analytical and numerical results presented in table 1 claim that

⟨Tjj⟩ =
∑

j

∑
i∈τ(j)

(didj)∑
i∈τ(j)

(didj)
; As is shown in figure 1, our simulation states the MFPT ⟨Tij⟩ of

PRW on networks mainly depends on and is almost inversely proportional to the target

node’s center-product-degree, i.e., ⟨Tij⟩ ∝ 1
dj
∑

i∈τ(j)
di
, which is also found in equation
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Figure 2. (Log-Log plots for random walks on NW small-world networks) (a) MFRT

⟨Tii⟩ vs node’s degree di. (b) MFPT ⟨Tij⟩ vs target node’s degree dj . (c) MFRT

of PRW ⟨Tii⟩ vs node’s center-product-degree CPDi, MFPT of PRW ⟨Tij⟩ vs target

node’s center-product-degree CPDj . [source marked as i = 18 and its degree di = 13]

(41). That is, the simulation values of ⟨Tij⟩ are in good agreement with theoretical

predictions.

4.1.2. PRW on small-world networks: comparison with SRW. The small-world network

is generated by the method introduced by Newman and Watts [2]. In this network

model, no edges are rewired, which is different from the small-world model proposed by

Watts and Strogatz [3]. Instead shortcuts joining randomly chosen node pairs are added

to the low-dimensional lattice. The size of the network is N = 100, the neighboring

number is 2K = 4 and the probability of shortcuts is p = 0.15. The average degree

of the generated small-world network is ⟨d⟩ = 18. We perform PRW and SRW on the

small-world network respectively. Numerical data presented in the figures have been

averaged over 104 runs.

As shown in figures 2(a) and 2(c), for SRW on the NW small-world network, the

MFRT ⟨Tjj⟩ is determined by node’s degree dj, while for PRW, ⟨Tjj⟩ is determined by

node’s center-product-degree CPDj. The similar observation happens to the MFPT

⟨Tij⟩ due to that the value (Rjj − Rij) is greater than 1 but very close to 1. In detail,

for SRW on the NW small-world network, such value can be got from equation (46) and

numerical results presented in figures 2(a) and 2(b), while for PRW, the value can be

obtained from equation (46) and figure 2(c). This further confirms the conclusions of

equations (41) and (44) and improves the understanding of them.

A. CPD-based assortativity. It is worth noticing that the random walks can be applied

to reveal many different properties of network topology. Here is an example. One may be

pleasantly surprised that ⟨Tjj⟩ and ⟨Tij⟩ for SRW are determined by target node’s degree

dj as well as for PRW, see figures 2(a) and 2(b). In fact, from figure 2(c) or the analytic

prediction of equation (41), the ⟨Tjj⟩ and ⟨Tij⟩ of PRW are mainly determined by and

almost inversely proportional to the CPDj. Hence, this observation indicates that the

center-product-degree CPDj of one node and the degree dj maintain consistency. In

other words, for one node, higher degree, higher center-product-degree; lower degree,

lower center-product-degree. That is, the CPDj of one node is an increasing function

of dj for the NW small-world network. Thus, the NW small-world network considered
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Figure 3. (Log-Log plots for random walks on BA scale-free networks) (a) MFRT

⟨Tii⟩ vs node’s degree di. (b) MFPT ⟨Tij⟩ vs target node’s degree dj . (c) MFRT

of PRW ⟨Tii⟩ vs node’s center-product-degree CPDi, MFPT of PRW ⟨Tij⟩ vs target

node’s center-product-degree CPDj . [source marked as i = 146 and its degree di = 3]

here is weakly assortative, which, to a certain extent, reflects a homogeneous structure

of the network.

B. search efficiency. We compare SRW and PRW simultaneously on the same NW

small-world network, see figures 2(a) and 2(b). When the node’s degree dj is sufficiently

high , all the ⟨Tjj⟩s and ⟨Tij⟩s of PRW are smaller than those of SRW. It implies that

PRW prefers the node with higher degree, which is in accordance with the analytical

prediction of equation (47). This has some practical meanings. If PRW and SRW, as

search processes on networks, search for target node with sufficiently high degree, the

search time (walking steps) of PRW is much less than that of SRW. That is, in this case

PRW searches more quichly and more efficiently.

4.1.3. PRW on scale-free networks: comparison with SRW. The scale-free network is

generated by using BA model [4], with m = 2 and network size N = 300. The scale-free

network generated in such a way has an exponent γ = 3 of which the average degree is

4, namely ⟨d⟩ = 4. We perform PRW and SRW on the scale-free network, respectively.

Numerical data presented in the figures have been averaged over 104 runs

A. the impacts of structural heterogeneity on the scaling of MFPT. For SRW on the

BA scale-free network, ⟨Tjj⟩ and ⟨Tij⟩ are mainly determined by node’s degree, whereas

for PRW the two quantities fluctuate with node’s degree, see figures 3(a) and 3(b).

Combining with figure 3(c), it is easily been seen that node’s degree and center-product-

degree in the BA scale-free network do not maintain consistency. This is entirely different

from in the above NW small-world network, see figure 2. The difference is mainly

because the degree distribution of the BA network has a power-law tail, or the BA

network has a structure of heterogeneity. In fact, the weight allocation could play an

important role in random-walk dynamics. The above observation also suggests that one

can control the scaling behaviour of the random walks by configuring the edge weights.

It should be emphasized that ⟨Tjj⟩ and ⟨Tij⟩ of PRW mainly depend on the node’s

center-product-degree CPDj rather than degree dj. The discussion here may improve

the understanding of the result in [24], where the authors studied biased random walks

in uncorrelated networks and only explored the impacts of node’s degree on the MFPT.
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Figure 4. (a) PRW. (b) SRW. For random walks on the BA scale-free network, the

AMFPT ⟨⟨Tij⟩⟩ [marked as ×] is equal to the average over MFPTs from one randomly

chosen node i to all other N − 1 nodes[marked as ◦]. This is in accordance with the

analytic result of (28) and (43).

B. target problem on scale-free networks. Considering SRW and PRW as search

strategies on networks, PRW prefers the high-degree node, while SRW searches for

the relatively low-degree node more efficiently, see figures 3(a) and 3(b). Since the

scale-free network has a heterogeneous structure evidenced by the power-law degree

distribution, this inspires us to propose a mixing navigation mechanism for search in

scale-free networks, which interpolates between SRW and PRW. That is, to design the

search strategy from source node to target node, one can firstly compare the size between

the two nodes’ degrees. If the target’s degree is significantly higher than the source’s

or both of them are relatively high, then one could use PRW to search, otherwise one

could use SRW alternatively.

4.2. Scaling behaviours of AMFPT

In this part, the paradigmatic network models used are the same as those in section 4.1.

Based on the above discussion, we further numerically investigate scaling behaviours of

AMFPT.

4.2.1. Sensitivity of the total average search cost affected by the source node’s location.

From figure 4, one can see that the theoretical prediction of equations (28) and (43)

agrees quite well with the numerical calculations. As expected, for PRW or SRW on

different types of networks with different sizes N , e.g. the BA scale-free network, the

average MFPTs from any one source node to all other destination nodes is equal to the

AMFPT between all node pairs. The similar result was obtained for Koch networks

[27]. Such result is interesting and one could still look into its further meaning. On one

hand, this implies the average of MFPTs from a source node to all other destination

nodes is not sensitively affected by the source node’s location. On the other hand, if the

PRW and SRW being two kinds of routing processes on scale-free networks, the total

average search cost could be calculated by averaging from one site selected at random.
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4.2.2. The effects of structural heterogeneity on the scaling of AMFPT. For the BA

scale-free network with size N , the AMFPT ⟨⟨Tij⟩⟩ of PRW is much greater than that

of SRW, see figure 5(a). That is, considering PRW and SRW as search strategies, the

total average search cost of PRW is significantly higher than that of SRW. This is due

to two reasons. One is that, compared with SRW, PRW tends to searching for the

high-degree node; The other is that the degree distribution of the BA scale-free network

is approximated by a power-law distribution, i.e., the network has a heterogeneous

structure. A few nodes have a large number of connections while most nodes have

only a few connections. Thus, although PRW searching for high-degree nodes has high

efficiency, to search for other nodes, PRW is prone to falling into the high-degree-node

trap and difficult to reach those nodes with only a few connections. All of these lead to

the occurrence of the above phenomenon. Meanwhile, for the NW small-world network,

there is little difference in the AMFPT ⟨⟨Tij⟩⟩ between PRW and SRW, which is due to

that the degree distribution of the network is approximately Possion distribution, i.e.,

the network has a homogeneous structure, see figure 5(b).

4.2.3. Network searchability. As the actual average searching path length, the AMFPT

⟨⟨Tij⟩⟩ of the random walk on the network can be regarded as one generalization of the

average shortest path length, which, to some extent, characterizes network searchability

[46]. The average shortest path length L̄ of the BA network considered here obeys

L̄ ∼ logN . The AMFPT ⟨⟨Tij⟩⟩, however, satisfies ⟨⟨Tij⟩⟩ ∼ N for either PRW or

SRW on the BA network, see figure 5(a). The similar phenomenon happens to the NW

network, see figure 5(b). That is, in either case the actual average searching path length,

i.e., the AMFPT ⟨⟨Tij⟩⟩, does not have the small-world effect. In short, that a network

has the small-world effect does not necessarily guarantee that it can be rapidly searched

for.

4.2.4. The difference of scaling behaviours for search cost among MDS, PRW and SRW.

The numerical result presented in figure 5(a) shows that the AMFPT ⟨⟨Tij⟩⟩ satisfies

⟨⟨Tij⟩⟩ ∼ N for either PRW or SRW on the BA network. The observation states that the

leading scaling behaviours of ⟨⟨Tij⟩⟩ between PRW and SRW are much similar, which

is in accordance with the anayltical result of equation (28). Incidentally, the conclusion

just solves the authors’ puzzlement in [18]. They applied MDS strategy to path finding

in one scale-free network. In theMDS strategy, the neighbor node with the largest degree

is tried first. Their results showed that the global average search steps of MDS presents

small-world feature, LMDS ∼ logN . They were puzzled by the fact that PRW and MDS

strategies show very different scaling behaviours although both look quite similar, while

PRW and SRW strategies demonstrate the similar scaling behaviour. Why? The reason

is described as follows. The corresponding transition matrices of PRW and SRW are

stochastic matrices and have the similar spectral property [45], which implies the ⟨⟨Tij⟩⟩s
of the two walks having the similar scaling behaviour due to equation (28). On the other

hand, the PRW is one probabilistic degree-preferred mechanism, while the MDS is one
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Figure 5. (a) AMFPT ⟨⟨Tij⟩⟩ vs network size N for PRW and SRW on the BA

scale-free network. (b) AMFPT ⟨⟨Tij⟩⟩ vs network size N for PRW and SRW on the

NW small-world network. For the BA scale-free network, the gap in the AMFPT

⟨⟨Tij⟩⟩ between PRW and SRW is more obvious than for the NW small-world network.

Moreover, the fitting approximatively displays that ⟨⟨Tij⟩⟩ ∼ N holds for PRW or

SRW on the two networks respectively.

deterministic degree-preferred strategy and the SRW is a uniform mechanism. The

PRW incorporates the local degree-preferred element and the randomness ingredient,

which in this sense can be regarded as a mixing strategy of SRW and MDS. Thus, their

puzzlement just highlights, for PRW on the BA networks, the leading scaling behaviour

of AMFPT is dominated by the randomness ingredient of the PRW.

5. Conclusion

In summary, we have developed a unified approach for understanding the scaling

properties of discrete-time random walks on complex networks. Our work may be of

practical significance for performing efficient search on complex networks and controlling

the scaling behaviour of random walks on real-world networks.

We presented a systematic study of PRW in general undirected networks, including

complex networks. We also made comparative study of PRW and SRW in order to better

uncover and utilize the network structure. According to random walks on weighted

networks, we attach weight cij = djdi to each edge (i, j) where di and dj are the degrees of

i and j, and then construct PRW, of which the transition probability from node i to node

j is proportional to the edge weight. We derived two exact expressions for the MFPT

between two nodes, of which one is a spectra formula and the other is a probabilistic

formula [see equations (27) and (41)]. We got explicitly the MFPT’s dependence on

the eigenvalues and eigenvectors of a matrix associated with the transition matrix of

the PRW [see equation (27)]. We found that the CPD plays a main role in determining

the scaling of MFPT for the PRW [see equation (41)]. The CPD of node j, being

one measure of node strength, is defined as dj
∑

i∈τ(j) di, where τ(j) denotes all the

connected neighbors of node j. Accordingly, we obtained the closed-form formulas of

AMFPT between all node pairs and observed that the average over MFPTs from an
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arbitrary node to all other target nodes is equal to the AMFPT [see equations (28) and

(43)].

Based on theoretical analysis, we did extensive simulations to confirm analytical

predictions and deepen discussions. Through the comparison of PRW and SRW in

networks, we revealed the CPD-based assortativity of network structure and found that

the structural heterogeneity/homogeneity has a considerable impact on the scaling of

MFPT and AMFPT. If we consider various random walks as search strategies applied

to target problems, the MPFT between source and target characterizes search efficiency.

The AMFPT represents the total average search cost, which, to some extent, can

describe network searchability. We demonstrated that PRW prefers the high-degree

node while SRW searches for the low-degree node more efficiently. We also found that

the average over MFPTs from a source node to all possible destinations is not sensitively

affected by the source node’s location. As we observed, the average path length between

nodes of a complex network possessing small-world effect does not necessarily guarantee

that one could perform search rapidly in the network. By comparing the search strategies

of MDS, PRW and SRW, we confirmed that the leading scaling behaviours of average

search steps for PRW and SRW are much similar, while utterly different from the one

for MDS.

In the current work, we consider two paradigmatic types of single random walks

on weighted network, i.e., PRW and SRW corresponding to edge weights cij = djdi and

cij = 1. The generalization to more types of weight configurations would be interesting.

Further, one could configure proper weights to develop proper multiple random walks for

some practical applications such as improving the reliability and efficiency of searching

for networks, identifying the influential nodes of real networks [47]. We leave these more

intriguing problems to future studies.
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