
TB, AN, US, JPhysA/485400, 17/01/2014

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 47 (2014) 000000 (16pp) UNCORRECTED PROOF

On early detection of strong infections in
complex networks

Yi Yu and Gaoxi Xiao

School of Electronic and Electrical Engineering, Nanyang Technological University,
50 Nanyang Ave, 639798, Singapore Q1

E-mail: egxxiao@ntu.edu.sg

Received 7 September 2013, revised 2 December 2013
Accepted for publication 2 January 2014
Published DD MMM 2014

Abstract
Various complex systems are exposed to different kinds of infections ranging
from computer viruses to rumors. An intuitive solution for limiting the damages
caused by such infections is to detect the infection spreading as early as possible
and then take necessary actions. In this paper, we study on how much we may
expect to achieve in infection control by deploying a number of monitors in
complex networks for detecting the outbreak of a strong infection at its early
stage. Specifically, we consider the problem of finding the optimal locations
for a given number of monitors in order to minimize the worst-case infection
size. The NP-hardness of the problem is proved and a heuristic algorithm is
proposed. Extensive simulations on both synthetic and real-life networks show
that the worst-case infection size may be put under control by deploying a
moderate number of monitors in a large complex network. Effects of a few
different factors, including transmissibility of the infection, network topology
and probability of detection failure, are also evaluated.

Keywords: complex networks, epidemic dynamics, infection detection
PACS numbers: 89.75.−k, 89.75.Fb, 64.60.aq, 02.10.Ox

Q2(Some figures may appear in colour only in the online journal)

1. Introduction

The world is becoming more connected than ever [1] and a tremendous amount of data and
information is being exchanged everyday through various complex networks, e.g., the Internet
and social networks. It is well known that many of such networks are vulnerable to various
types of risks, including the spreading of infections such as computer viruses, diseases and
rumors [2–7]. Strong infections are usually, though not always, most dangerous in their first
outbreak, when the networks have hardly any immunity or resistance to them.

1751-8113/14/000000+16$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1

mailto:egxxiao@ntu.edu.sg

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

An intuitive solution for limiting the damages caused by a strong infection is to detect
it as early as possible. Monitors may be installed on some network nodes and be equipped
with necessary intelligence to detect the infection once it reaches the node. Upon a successful
detection, an alarm can be triggered and necessary actions can be taken immediately.

Extensive studies have been done on epidemic dynamics of complex networks [8–14]
and immunization schemes [15–22]. Research on developing effective monitoring schemes,
however, is still rather limited.

A scheme was proposed in [23] to randomly deploy a number of ‘honey-pots’ as detecting
agents and immunization agents in complex networks. Once any of the honey-pots is triggered
by virus infection, all the honey-pots will be alerted to start the distribution of vaccination
immediately. It is assumed that there exist high-speed and secured information channels,
separated from the network being monitored, between all the honey-pots. All the honey-pots
therefore can work together as a virtual super hub, ensuring high efficiency of vaccination
distribution. The scheme is efficient yet may be of a very high cost, especially in large networks.
Also it is not clear how good the random deployment of the honey-pots is compared to other
possible options we may have. More closely related work was reported in [24], where the
authors developed algorithms for finding the best locations of a given number of monitors
to minimize the average penalties such as the population infected and detection time, etc.
It was proved that the problems for these different objectives are equivalent to each other
from a mathematics point of view and they are all NP-hard. Based on the results in [25], the
author then proposed a heuristic algorithm named cost-effective lazy forward selection. The
performance of the algorithm was evaluated in two real-life networks for multiple penalty
reductions.

The work we will report in this paper has two main objectives. First, we propose an
algorithm for minimizing the worst-case infection size. We argue that while controlling the
average infection size is certainly of importance, minimizing the worst-case infection size may
be a critical life-or-death issue for some systems: a system with high robustness in average
may collapse in the worst case, though the worst case may only happen at a low probability.
We prove that the problem remains to be NP-hard. A heuristic algorithm is then proposed,
of which the satisfactory performance is verified by extensive simulation results. Second, we
evaluate the effects of a few important factors on the effectiveness of infection detection,
namely the transmissibility of the infection, network topology, and probability of detection
failure. We find that (i) the worst-case infection size tends to be smaller when infection is
of lower transmissibility; (ii) network topology may play a non-trivial role in affecting the
effectiveness of the monitoring schemes; and (iii) in some cases, infection sizes may become
significantly larger even at a low probability of detection failure. Enhancing fault tolerance of
infection detection therefore remains as a challenge.

The rest of the paper is organized as follows. In section 2, we describe the system model and
the assumptions adopted. In section 3, we formulate the problem, proving its NP-hardness
and then propose a simple yet efficient heuristic algorithm. Simulation results on synthetic
and real-life networks are presented in section 4.1. Finally, section 5 concludes the paper.

2. System model

In this paper, we adopt the well-known susceptible-infected model [9] to model the virus
spreading in complex networks since in many cases, recovery may not even have started at an
early stage of infection spreading. To focus on the worst case of a strong infection, we assume
that time is slotted and a susceptible node adjacent to any of the infectious nodes will surely
be infected at the beginning of the next time slot. A similar model has been adopted in [24].

2

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

A given number of monitors are to be deployed in the network. We assume that each of the
monitors is able to detect the infection once the node on which it is installed is infected. The
objective of the algorithm is to minimize the maximum number of nodes getting infected until
any of the monitors triggers an alarm.

Note that in our model, we assume 100% transmissibility in the network, i.e., a susceptible
node adjacent to any infected node will surely be infected in the next time slot. Not only this
corresponds to the worst possible case, it may indeed to a certain extent resemble the early-
stage developments of some newly-emerging strong infections, e.g., new computer virus,
where hardly any nodes has immunity to the infection. It may also resemble the cascade
failures in interdependent networks [7] where failures of nodes in one network surely lead
to the failures of all the dependent nodes in another network, which will in turn cause more
failures in the current network. The chain process of this cascade failure can be modeled
as an infection spreading in a bipartite graph composed of only the inter-network links and
the interdependent nodes at the ends of these links. Further extensions to the probabilistic
infection cases will be discussed in section 4.1. As we will see, the proposed scheme remains
to be highly effective in controlling the probabilistic infection, and the worst-case infection
size tends to become smaller under weaker infection.

3. Monitor deployment algorithm

In this section we present the problem formulation and the algorithm for minimizing the
worst-case infection size.

The problem can be formulated as follows. In a general graph G(V, E), where V is the
set of nodes and E is the set of edges, we assume that it has unit link length and equal node
weight. Assume that the infection always starts from a single node and it can start from any
node in the network. Let the infection have transmissibility of 1. A given number of p monitors
are to be installed in the network. Once the infection reaches any of the nodes installed with a
monitor (We term such nodes as monitor nodes.), an alarm will be triggered and the infection
will be stopped immediately. The objective of the algorithm is to find the optimal locations
for the p monitor nodes such that the maximum infection size (i.e., the worst-case infection
size) is minimized. Note that monitor nodes themselves are not counted as being infected since
we expect such nodes, thanks to the intelligence of the monitors installed on them, can resist
the infection. To facilitate the later discussions, we term the above problem as the p-monitor
problem.

Theorem 1. The p-monitor problem is NP-hard.

Proof. We first observe the vertex cover problem which is known to be an NP-complete
problem [26]: given a graph G(V, E) and an integer k, find a subset V ∗

k of the vertices of G
such that |V ∗

k | � k and each edge of G is incident at a vertex of V ∗
k . We see that the vertex

cover problem is polynomial time reducible to the p-monitor problem: if we were able to solve
the p-monitor problem in general graph in polynomial time, the vertex cover problem can also
be solved in polynomial time by increasing the value of p until the maximal infection size is
reduced to 1. Hence, it is proved that the general p-monitor problem is NP-hard. �

3.1. The algorithm

The proposed algorithm adopts a simple iterative approach: starting with a random allocation
of a given number of p monitors, we let each node join the monitor closest to itself to form

3

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

into a cluster. When there is a tie, i.e., when a node is of the same shortest distance to a few
monitors, we make a copy of this node in each of these clusters (to be further explained later).
Hence we shall have a total of p clusters in the network. In each cluster, we use exhaustive
search to find the best location of the monitor which minimizes the maximum infection size
of any infection starting from any single node in this cluster. Then all the network nodes are
re-clustered, where we once again let each node join its closest monitor. The procedure is
repeated until no further improvements can be made.

Note that the exhaustive search in each cluster is carried out by evaluating the maximum
infection size where we let each node of the cluster serve as the monitor node in turn. We
choose the one leading to the minimum worst-case infection size as the monitor node of this
cluster. To simplify the algorithm and also to avoid trivial yet complicated discussions on
the convergence of the algorithm, denoting the distance between an infection source and the
candidate monitor node of its cluster as d, we calculate the infection size as the number of
d-step neighbors of the infection source minus 1 (i.e., by ignoring the case where an infection
reaches multiple monitor nodes at the same time). We claim this approximation to be legal as
the proportion of the monitor nodes is small compared to the network size.

As aforementioned, when we cluster/re-cluster the network nodes and a node is found to
be of the same shortest distance to several monitor nodes (Such a node is termed as a tied node
hereafter.), we make multiple ‘copies’ of this node such that it appears in multiple clusters.
For example, for a node ni with the same distance to monitors m1, m2, . . ., we let ni belong
to C1,C2, . . . where Cj is the cluster that contains the monitor mj. Our experiences show that
such an approach helps the algorithm achieve better results.

To allow a tied node appear in multiple clusters at the same time, however, generates an
issue to be resolved: a tied node may be selected as the monitor node by multiple clusters. In
our experiences, this is more likely to happen when the tied node has a high degree. Assume
there are C clusters choosing the same tied node as the monitor node. A simple solution is
proposed as follows: we allocate a monitor on this tied node. Then we conduct a global search
to see that, among those nodes not serving as monitor nodes, which one, if installed with
a monitor, will lead to the biggest reduction of the worst-case infection size. A monitor is
allocated on this node and a tie, if it exists, is broken arbitrarily. Repeat the procedure for C−1
times until all the C − 1 monitors are allocated.

The reason we conduct a global search to find the location for a monitor instead of a local
search in a certain single cluster can be understood: when multiple clusters select the same
tied node as the monitor node, usually these clusters are of relatively small sizes and the tied
node has a high degree. Conducting a global search, which can be done very quickly as will be
further discussed later, allows us to better balance the distribution of the monitors in the whole
network. Our experiences show that the approach steadily leads to satisfactory performance.

Note that, since the infection size is calculated as the d-step neighborhood size minus 1
where d denotes the distance between the infection source and its closest monitor node, we
only need to calculate d-step neighborhood sizes for each node, where d varies from 1 to a
large enough value, at the beginning of the calculation once for all, and never need to repeat
it again. This allows the proposed algorithm to be highly efficient in handling even extra-big
network models.

The main framework of the proposed algorithm is presented below. To facilitate the
discussion, hereafter we term it as the minimizing the maximum infection (MMI) algorithm.

Figure 1 illustrates an example of the operations of the MMI algorithm step by step. The
computations of the algorithm mainly come from the one-time-only calculations of the d-step
neighborhoods of each node. Note that most complex networks of research/application interest
are of very short diameter [27, 28], which gives d a small-value upper bound.

4

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

Figure 1. An example of applying the MMI algorithm to allocate 2 monitors in an
8-node network. Numbers beside the nodes show the maximum infection size where
the node is selected as the monitor node and the infection starts from its own cluster.
Assume that we start by randomly selecting nodes 1 and 3 as the monitor nodes. The
network is then partitioned into two clusters, where node 2 appears in both clusters.
Then the cluster on the left shall select node 2 as the monitor node, and the cluster on
the right shall select node 4. The network will be re-clustered where node 3 appears in
both clusters. No further improvement be made and the algorithm will then stop.

Algorithm 1. Minimizing the maximum infection (MMI) algorithm.

• Initialization
Input the network and number of monitors p.

• Step 1
Arbitrarily choose p nodes m1, m2, . . . , mp as the starting p monitor nodes.

• Step 2
Partition the network into p clusters by letting each nodes join its nearest monitor.
Let tied nodes, if any, appear in multiple clusters.

• Step 3
Perform exhaustive search in each cluster to find the best location for the monitor.
Shift monitor to that node. Update mi and get a new set of monitor nodes m1, m2, . . . , mp.

• Step 4
If multiple monitors choose the same node, keep one monitor there and perform a global search to
find the best locations for the other monitors.

• Step 5
If the maximum infection size has been reduced in this iteration, go to step 2; otherwise, stop.

3.2. Convergence and evaluation

Theorem 2. The MMI algorithm is convergent in general graphs.

Proof. It is easy to prove the convergence of the MMI algorithm by showing that the worst-
case infection size monotonically decreases in each iteration. Specifically, each iteration of
the MMI algorithm is composed of two different steps: (i) re-selection of the monitor node for
each cluster; and (ii) re-clustering. We examine these two steps separately.

When there is no tied node, obviously the re-selection of the monitor node in each cluster
will not increase the worst-case infection size: a node will replace another node in the same
cluster to serve as the monitor node if and only if such will help reduce the worst-case infection
size of any infection sourced from any node in the cluster. When there exists a tied node, the

5

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

iteration number

m
ax

im
um

 in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(a)

2 4 6 8 10
0

500

1000

1500

2000

2500

3000

iteration number

m
ax

im
um

 in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(b)

Figure 2. Worst-case infection sizes versus the number of iterations in implementing the
MMI algorithm: (a) Internet AI; (b) US power grid network. The plotted curves show
the average results of 100 independent implementations, each time with a different set
of randomly selected initial allocations of monitors.

tied node, by serving as the monitor node, will not increase the worst-case infection size either.
The global search of the monitor nodes for breaking the tie will only help make the sizes of
the infections sourced from some nodes smaller.

The re-clustering operations will not increase the worst-case infection size either: the
size of the infection sourced from a node is decided by the distance between this node and
its closest monitor. A non-monitor node will change its cluster only if it finds a monitor
node closer to itself than the previous one. The sizes of the infections sourced from those
nodes which choose to change their clusters therefore will not be increased. As to those nodes
choosing not to change their clusters, the sizes of the infections sourced from them are not
affected in this step.

The monotonically decreasing worst-case infection size ensures that the MMI algorithm
converges in finite iterations. �

Note that the convergence of the algorithm only ensures it converges to a local optima.
Repeating the algorithm for a large enough times, each time with a different set of initial
allocations of the monitors, helps achieve better results. The algorithm is highly efficient and
can easily be repeated for many times. As later we will see, the proposed algorithm steady
reaches suboptimal solutions.

Figure 2 demonstrates the fast convergence speed of the MMI algorithm. Specifically,
we test on two different networks, namely the Internet autonomous system [29] and the US
power grid network [30], respectively. For each testing case, we run the proposed algorithm
for 100 times, each time with a different set of randomly selected initial allocations of the
monitors, and keep record of how the worst-case infection size decreases along the iterations.
The presented results are the average of these 100 implementations. As we can see, the MMI
algorithm steadily converges in just a few iterations. We have also tested the algorithm in quite
a few other networks including the ER random network, the scale-free network and many Q3

more. The MMI algorithm has always converged very quickly.

4. Network monitoring: how hard it is?

By presenting the extensive simulation results, we will discuss on a few issues in this section,
namely the performance of the MMI algorithm; the infection size under weaker infection; the
effects of the network topology; and the fault tolerance of the monitoring schemes, respectively.

6

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

Table 1. The comparisons between the results of the MMI algorithm and the brute force
method in different networks.

(100,2) (100,3) (100,4) (100,5) (500,2) (500,3)

Experiment 1: scale-free network, 100 run per graph

Brute force 74.93 54.52 43.11 36.99 346.12 282.32
MMI algorithm 75.42 55.60 43.59 37.79 348.69 285.23
Error (in %) 0.65 1.98 1.09 2.16 0.74 1.03

Experiment 2: scale-free network, 1000 run per graph

Brute force 76.10 54.87 43.34 37.29 343.01 280.44
MMI algorithm 76.19 55.26 43.56 37.54 343.72 280.83
Error (in %) 0.12 0.71 0.51 0.67 0.26 0.14

Experiment 3: ER random network, 1000 run per graph

Brute force 92.77 73.06 68.85 66.04 465.52 447.50
MMI algorithm 95.56 76.29 71.40 68.65 490.50 458.11
Error (in %) 3.01 4.42 3.70 3.95 5.37 2.36

4.1. Performance of the MMI Algorithm

We first compare the results of the MMI algorithm versus the optimal solutions achieved by
using the brute force method. Obviously such comparisons are only feasible in small-sized
networks with a small number of monitors. The comparison results are presented in table 1. The
case (m, n) means there are n monitors in a network with m nodes. For each case, we generate
100 different networks and the presented results are the average of these 100 independent
implementations. We see that the MMI algorithm steadily achieves suboptimal solutions. Also
we can observe that, having more runs, each time with a different set of randomly selected
initial allocations of monitors, helps improve the algorithm performance. For example, for
case (500, 3) in the scale-free network, increasing from 100 runs to 1000 runs helps reduce
the average error (i.e., the average difference between the optimal solutions and the solutions
of the MMI algorithm in the 100 different networks) from 1.03% to 0.14%.

We then proceed to conduct further performance evaluations in some bigger networks.
Specifically, we adopt four different network typologies in our simulations: the BA scale-free
network with 1000 nodes and 3000 edges [31]; the ER random network with 500 nodes and
2500 edges [32]; the Internet autonomous system (AS) network with 3042 nodes and 5399
edges [29]; and the US power grid network with 4961 nodes and 6594 edges [30]. These
networks may closely resemble or represent the topologies of many other real-life systems
[29, 30, 33–35]. While implementing the MMI algorithm on each of these networks, we conduct
1000, 5000, 100 and 100 independent runs respectively, each time with a different randomly
generated initial allocations of the given number of monitors. To make comparisons, we adopt
three benchmark algorithms: random deployment which randomly distributes the monitors in
the network; hub occupation which installs the monitors on highest-degree nodes, and greedy
algorithm developed in [24] for minimizing the average infection size (For convenience,
hereafter we term it as the minimizing average infection (MAI) algorithm.). It is of research
interest to see how big the worst-case infection size is when we implement a monitoring
scheme for minimizing the average infection size, and vice versa. For the random deployment,
we randomly generate 1000 different allocations and choose among them the one leading to
the best performance. For the BA and ER network models, we randomly generate ten different
networks for each of them and show the average results on the ten networks with 95%

7

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 10 20 30 40
0

200

400

600

800

1000

number of monitors

m
ax

im
um

 in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deplyment

(a)

0 10 20 30 40
100

200

300

400

500

number of monitors

m
ax

im
um

 in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deplyment

(b)

0 10 20 30 40
0

500

1000

1500

number of monitors

m
ax

im
um

 in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deployment

(c)

0 10 20 30 40
0

500

1000

1500

number of monitors

m
ax

im
um

 in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deployment

(d)

Figure 3. Maximum infection size versus the number of monitors deployed in (a) scale-
free network; (b) ER random network; (c) Internet AI; and (d) US power grid network.

confidence interval. For all the network models, we compare the average and the worst-case
infection sizes while implementing each of the four different algorithms.

Figures 3 compares the worst-case infection sizes in different networks when we adopt
different algorithms. We see that the MMI algorithm steadily achieves the best performance
when the number of monitors is reasonably large. With a moderate number of monitors, e.g.,
25 monitors in a 1000-node scale-free network, the worst-case infection size would be about
10% of network size. Further improvements, however, have to come at a much higher cost:
doubling the number of monitors to 50 only slightly decreases the worst-case infection size to
about 8% of the network size.

Other interesting observations include: (i) hub occupation does not lead to the best
performance, even in the scale-free network. High-degree hubs are not necessarily always
the best choices for monitor installation; (ii) algorithms other than the MMI algorithm tend
to have a large fluctuation range in their results on the ER random network. This may not
be a surprise since the ER random network does not have any obvious hubs or ‘intuitively
favorable choices’ for monitor installation; (iii) the two real-life networks, large as they are,
are actually easier to be effectively monitored compared to the homogeneous BA and ER
networks. Though it is difficult to prove in mathematics, the existence of the community
structures in the network appears to helpin making the monitoring job easier.

Figure 4 compares the performances of the different algorithms in controlling the average
infection size. It is not a surprise that the MAI algorithm is usually the winner; but the MMI
algorithm is never far away when the number of monitors is reasonably large. This is good
news for us: the effective control of worst-case scenario does not have to come at a high cost
of sacrificing the average performance.

8

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 10 20 30 40
0

50

100

150

200

number of monitors

av
er

ag
e

in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deployment

(a)

0 10 20 30 40
0

50

100

150

200

number of monitors

av
er

ag
e

in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deployment

(b)

0 10 20 30 40
0

50

100

150

200

250

300

number of monitors

av
er

ag
e

in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deployment

(c)

0 10 20 30 40
0

100

200

300

400

500

number of monitors

av
er

ag
e

in
fe

ct
io

n
si

ze

MMI algorithm
MAI algorithm
hub occupation
random deployment

(d)

Figure 4. Average infection size versus the number of monitors deployed in (a) scale-
free network; (b) ER random network; (c) Internet AI; and (d) US power grid network.

Other interesting observations include: (i) it is relatively easy to put the average infection
size under control when the network is scale-free or closely resembles a scale-free network
(e.g., the Internet AS model). For example, installing 25 monitors in the BA network suppresses
the average infection size to be about 2% of network size; having 37 monitors in the Internet
AS network leads to an average infection size of only seven nodes. Controlling the average
infection size in the ER random network, however, appears to be more difficult: installing 37
monitors in a 500-node network, the average infection size is still about 30; (ii) the two real-life
networks perform differently. As aforementioned, it is easy to control the average infection
size in the Internet AS network. In the power grid network, however, it is significantly more
difficult: installing 80 monitors by using the MAI algorithm, the average infection size can
still be as large as 31. This is mainly due to the different network diameters it has. With
an average shortest-path distance of 18.99 between every pair of nodes, it takes a large
number of monitors to suppress the average infection size to be very small in the US power
grid network.

4.2. Infection size of probabilistic spreading

We now test on the performance of the proposed scheme under probabilistic spreading, or in
other words, under weaker infection with transmissibility p < 1. Weaker infection spreads
out more slowly. But there is a (low but nonzero) chance that, instead of reaching the closest
monitor and triggering an alarm, a weaker infection may infect almost the whole network
without touching any monitor node (unless the monitor nodes form into a cut set which, once
getting removed, will leave the network be broken into pieces). Discussing on the ‘worst-case’

9

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

transmissibility

m
ax

im
um

 in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(a)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

transmissibility

av
er

ag
e

in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(b)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

transmissibility

m
ax

im
um

 in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(c)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

transmissibility

m
ax

im
um

 in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(d)

Figure 5. Expected maximum infection size versus the transmissibility in (a) scale-free
network; (b) ER random network; (c) Internet AI; and (d) US power grid network.

infection size under such rare event may not be very meaningful. Instead, we will evaluate the
‘expected’ maximum and average infection sizes.

The ‘expected’ maximum and average infection sizes under probabilistic spreading are
defined as follows: for each network node, run 100 independent simulations of infection starting
from this node. Term the average infection size of these 100 independent implementations as
the expected infection size of this node. The expected maximum infection size of the network
is defined as the maximum of each network node’s expected infection sizes; and the expected
average infection size of the network is the average of all the nodes’ expected infection sizes.

We still test on the four types of networks with the same parameters as those in section 4.1.
For the BA and ER networks, we each generate ten different networks. Once again the 95%
error bar is given for the results of the ten networks.

Figures 5 and 6 illustrate the relationship between the infection transmissibility and the
expected maximum/average infection size of the network, respectively. The results indicate a
clear trend that a smaller value of p leads to a smaller expected maximum/average infection size.
For example, with four monitors in a 1000-node scale-free network, the expected maximum
infection size can be reduced from 426 to 66.2 when transmissibility decreases from 1 to 0.1.
The trend, however, is least obvious in the US power grid network: the large diameter and low
nodal degree of the network make it less sensitive to changes in infection transmissibility.

4.3. Effects of network topology on effectiveness of the monitoring schemes

Figures 3 and 4 to an extent have already showed the effects of network topology. The most
notable conclusions include: (i) it is relatively easy to put the average infection size under

10

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

transmissibility

av
er

ag
e

in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(a)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

transmissibility

av
er

ag
e

in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(b)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

transmissibility

av
er

ag
e

in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(c)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

transmissibility

av
er

ag
e

in
fe

ct
io

n
si

ze

4 monitors
10 monitors
19 monitors
37 monitors

(d)

Figure 6. Expected average infection size versus the transmissibility in (a) scale-free
network; (b) ER random network; (c) Internet AI; and (d) US power grid network.

control in scale-free network but more difficult in networks without obvious hubs or with
a relatively large diameter; (ii) a moderate number of monitors can suppress the worst-case
infection size to be reasonably small. To have a very small worst-case infection size (e.g., 1%–
2% of network size), however, requests a very large number of monitors. Such conclusions
are useful, but they only reflect the expected and worst-case behaviors of the networks. In this
section, we shall have a look at the distribution of the infection size for infection starting from
different network nodes.

The assumptions/parameters adopted in this part of simulations are summarized as follows.
We still consider all the four network models as stated in section 4.1. In each network, we
let each of the network nodes (except for the monitor nodes) serve as the infection source
in turn and keep a record of the corresponding infection size. Such records allow us to plot
the distribution of the infection size in each network. For the BA and ER network models,
we still randomly generate ten different networks and for each of them, keep a record of the
distribution of infection size. The 95% error bars for both network models are rather small
and therefore are not plotted in the figures. We assume that ten monitors are installed in each
network by using the MMI algorithm.

Figures 7 illustrates the distributions of infection size in the four networks respectively.
We see that in the BA network and the Internet AS network, in most cases the infection size
is very small. Large infection size only occurs at a very low probability. In the ER random
network, usually the infection size is small; but there exists a non-trivial proportion of large
infection-size cases, making the average infection size in this network difficult to be controlled.
The worst case happens in the US power grid network where a significant proportion of all
the cases lead to a relatively large infection size. The lesson is that it is difficult to monitor the

11

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

infection size

pr
ob

ab
ili

ty

10 monitors

(a)

0 50 100 150 200
0

0.01

0.02

0.03

0.04

infection size

pr
ob

ab
ili

ty

10 monitors

(b)

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

infection size

pr
ob

ab
ili

ty

10 monitors

(c)

0 50 100 150 200
0

0.005

0.01

0.015

infection size

pr
ob

ab
ili

ty

10 monitors

(d)

Figure 7. Probability distribution of infection size for infections sourced from each
different nodes of the (a) scale-free network; (b) ER random network; (c) Internet AI;
and (d) US power grid network. The average infection sizes are 36.3, 81.9, 25 and 115
respectively.

infection spreading at its early stage in networks with large diameters: infection spreading in
such networks may not have a very large worst-case infection size, but the average infection
size tends to be big.

4.4. Where are the monitors allocated?

In this section, we briefly examine on the statistical properties of the best monitor allocations.
An easy observation is that, in scale-free networks with short diameters, the monitor nodes

selected by the MMI/MAI algorithms tend to be hub nodes. For example, in ten randomly
generated BA model networks deployed with 37 monitors, MMI and MAI algorithms averagely
select 19.8 and 28.2 of the first 37 highest-degree hubs as the monitor nodes respectively. Rank
the hubs in a decreasing order of their degrees, the average degree of the highest-degree hub that
is not selected as a monitor node is 11.6 and 22.5 for MMI and MAI algorithms respectively.
In the Internet AS model deployed with 37 monitors, MMI and MAI algorithms hit 27 and 20
of the first 37 highest-degree hubs respectively; and the average degrees of the highest-degree
node that is not selected as a monitor node are 22 and 15 for MMI and MAI algorithms
respectively. Figure 8(a) shows in the Internet AS model, the degrees of the monitor nodes
in a descending order while using MMI, MAI and hub occupation methods, respectively. The
results show that most of the highest-degree nodes are selected as monitor nodes. The situation
is basically the same in the BA model.

Such an observation can be easily understood: in such networks, infection starting from
any node usually reaches a hub node within one or two steps. It is important that infection does

12

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

monitors

de
gr

ee
 o

f m
on

ito
r

no
de

s

MMI algorithm
MAI algorithm
hub occupation

(a)

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

distance to the nearest monitor node

pr
ob

ab
ili

ty

MMI algorithm
MAI algorithm
hub occupation

(b)

Figure 8. Statistical properties of the selected monitor nodes: (a) Degrees of monitor
nodes in a descending order in the Internet AS model network; (b) Distribution of
distances between infection sources and their nearest monitors in US power grid
network.

not have a chance to take down a high-degree hub and its large number of adjacent nodes. We
call this degree effect.

From figure 8(a), however, we can also observe that sometimes the selected monitor nodes
can be of rather low degrees. It would be of interest to figure out why such nodes are selected.
We conducted a detailed study on these low-degree nodes and found that they normally have
at least a 2-hop distance from the nearest hub node. This means that, if monitors are only
installed on hub nodes, infection starting from any of these low-degree nodes shall have a
chance to propagate two steps, infecting its 2-hop neighborhood area which could be actually
quite large, before it is stopped. For example, in one case of using the MMI algorithm to
deploy 22 monitors in the BA model network, there are five monitor nodes with degrees lower
than 10. Their degrees are 3, 3, 4, 5, 7 respectively. If monitors are installed on the first 22
highest-degree nodes and let infection start from each of these low-degree nodes, the infection
sizes would be 32, 36, 24, 46 and 46 respectively. This explains why these nodes are selected:
their special locations of being relatively far away from any of the hub nodes make them
dangerous candidates of infection source. Hence these nodes have to be closely monitored.

In US power grid network, we have yet some other interesting observations: while
deploying 37 monitors, MMI and MAI algorithms hit 7 and 0 of the 37 largest-degree hubs
respectively, and the largest hub is not selected by any of the two methods. The main reason,
as we believe, is that in networks with very large diameters, the monitor nodes need to have
a geographically-balanced distribution: in such networks, the infection size is largely decided
by the distance the infection can travel before it is stopped, rather than the degrees of the nodes
it has a chance to infect. We call such the distance effect.

To support the above argument, figure 8(b) illustrates the distribution of the distances
between the infection sources and their nearest monitors when we install 37 monitors in
the US power grid network and then exhaustively let each of the network nodes serve as
the infection source. We see that the MMI/MAI algorithms achieve a much shorter distance
between the monitors and infection sources. The worst-case distance is 15 hops while by using
the hub occupation method, the longest distance is 20 hops. The average distances between
the infection sources and their closest monitors achieved by the three algorithms are 11.40,
10.54 and 14.38 respectively.

The BA model and the US power grid network provide two extreme cases where the
degree effect and the distance effect dominate respectively. In many real-life networks with
different specific network architectures, the worst/average infection size is influenced by a

13

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

failure probability

av
er

ag
e

in
fe

ct
ed

 p
ro

po
rt

io
n

4 monitors
10 monitors
19 monitors
37 monitors

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

failure probability

av
er

ag
e

in
fe

ct
ed

 p
ro

po
rt

io
n

4 monitors
10 monitors
19 monitors
37 monitors

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

failure probability

av
er

ag
e

in
fe

ct
ed

 p
ro

po
rt

io
n

4 monitors
10 monitors
19 monitors
37 monitors

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

failure probability

av
er

ag
e

in
fe

ct
io

n
pr

op
or

tio
n

4 monitors
10 monitors
19 monitors
37 monitors

(d)

Figure 9. Average infection size versus the probability of detection failure while using
the MMI algorithm in (a) scale-free network; (b) ER random network; (c) Internet AI;
and (d) US power grid network.

combination of these two effects. Finding the best allocations of the monitor nodes therefore
essentially requires an algorithmic approach.

4.5. Fault tolerance of the monitoring schemes

Up till now, we have been assuming that every monitor never fails to trigger an alarm once the
infection reaches it. This may be an over-optimistic assumption compared to real-life cases:
while it may be indeed easy to detect cascading failure in a power grid or rumor spreading in
social networks, spreading of a brand-new, well-disguised computer virus may stand a good
chance to skip the attention of a few, or even many, monitors. Another example may be the
spreading of a new virus in human society. It is, therefore, important to examine and understand
the fault tolerance of the monitoring schemes. In this section, we evaluate the average infection
size when each monitor has a certain probability of failing to trigger an alarm (Note that the
worst-case infection size under such case is always ‘the whole network’, though such may
only happen at an extremely low probability.).

Figure 9 illustrates the average infection size versus the probability of the detection
failure in the four networks. All the parameters remain the same as those in section 4.1 unless
otherwise specified. For each network, we run ten rounds of independent simulations. The
error bars for the results on the BA and ER network models are for simulations on the ten
different networks. We plot in each figure a few curves corresponding to different cases with
different numbers of monitors respectively.

We can easily observe that in all the networks, the performance of the network monitoring
is rather sensitive to the detection failure. For example, in the Internet AS network with 37

14

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

monitors, the average infection size is only 7 when there is no detection failure. When the
probability of detection failure is increased from 10% to 50% at a step of 10%, the average
infection size is increased to 23, 46, 71, 101 and 137 respectively. Note that the average
infection size with only four monitors and 100% successful rate is 55, having 37 monitors
with an 80% successful rate in detection, averagely speaking, is only as good as having
four monitors with 100% successful rate. Even a low detection failure rate can seriously
compromise the effectiveness and usefulness of the monitoring schemes.

Note that the above observations still hold when we adopt the MAI algorithm, hub
occupation or random method to decide the locations of the monitors. Enhancing the fault
tolerance of the monitoring schemes therefore remains as a challenge which probably requests
a different approach in algorithm design.

5. Conclusion and future work

In this paper, we studied on monitor deployment in complex networks for early-stage
detection of a strong infection. Specifically, we considered the problem with the objective
of minimizing the worst-case infection size. The NP-hardness of the problem was proved and
a simple heuristic algorithm was proposed. Extensive simulation results showed that, generally
speaking, the average and the worst-case infection size may be put under control by installing
a moderate number of monitors in a large network. Monitoring weaker infection for damage
control, averagely speaking, tends to be easier. It was also revealed that network topology may
have non-trivial influences on the effectiveness of infection detection. The easy-to-be-infected
scale-free networks are also relatively easy to be monitored. A challenge remained, however,
is to enhance the fault tolerance of the monitoring schemes; otherwise, in some cases a low
detection failure rate may lead to serious losses.

Our future work would naturally be focusing on developing fault-tolerant monitoring
schemes and understanding the costs such schemes may have to impose. Another interesting
topic is to investigate the effects of the community structures on infection detection and control
in complex networks.

Acknowledgments

The work is partially supported by Ministry of Education, Singapore, under the contract no.
RG69/12.

References Q4

[1] Barabási A-L 2003 Linked: How Everything is Connected to Everything Else and What it Means
for Business, Science, and Everyday Life reissue edn (Plume) Q5

[2] Crucitti P, Latora V, Marchiori M and Rapisarda A 2004 Error and attack tolerance of complex
networks Physica A 340 388–94

[3] Lloyd A L and May R M 2001 How viruses spread among computers and people
Science 292 1316–7

[4] Shah D and Zaman T 2011 Rumors in a network: who’s the culprit? IEEE Trans. Inform.
Theory 57 5163–81

[5] Albert R, Albert I and Nakarado G L 2004 Structural vulnerability of the north american power
grid Phys. Rev. E 69 025103

[6] Liljeros F, Edling C R, Núñez Amaral L A, Stanley H E and Åberg Y 2001 The web of human
sexual contacts Nature 411 907–8

[7] Buldyrev S V, Parshani R, Paul G, Eugene Stanley H and Havlin S 2010 Catastrophic cascade of
failures in interdependent networks Nature 464 1025–8

15

http://dx.doi.org/10.1016/j.physa.2004.04.031
http://dx.doi.org/10.1126/science.1061076
http://dx.doi.org/10.1109/TIT.2011.2158885
http://dx.doi.org/10.1103/PhysRevE.69.025103
http://dx.doi.org/10.1038/35082140
http://dx.doi.org/10.1038/nature08932

J. Phys. A: Math. Theor. 47 (2014) 000000 Y Yu and G Xiao

[8] Moore C and Newman M E J 2000 Epidemics and percolation in small-world networks Phys. Rev.
E 61 5678–82

[9] Bailey N T J 1975 The Mathematical Theory of Infectious Diseases and its Applications vol 66
(London: Griffin)

[10] Pastor-Satorras R and Vespignani A 2001 Epidemic spreading in scale-free networks Phys. Rev.
Lett. 86 3200–3

[11] Newman M E J and Watts D J 1999 Scaling and percolation in the small-world network model
Phys. Rev. E 60 7332–42

[12] Zhou J, Xiao G, Cheong S A, Fu X, Wong L, Ma S and Cheng T H 2012 Epidemic reemergence in
adaptive complex networks Phys. Rev. E 85 036107

[13] Wang Y and Xiao G 2012 Epidemics spreading in interconnected complex networks Phys. Lett.
A 376 2689–96

[14] Pastor-Satorras R and Vespignani A 2002 Epidemic dynamics in finite size scale-free networks
Phys. Rev. E 65 035108

[15] Cohen R, Havlin S and ben Avraham D 2003 Efficient immunization strategies for computer
networks and populations Phys. Rev. Lett. 91 247901

[16] Pastor-Satorras R and Vespignani A 2002 Immunization of complex networks Phys. Rev.
E 65 035104

[17] Dezső Z and Barabási A-L 2002 Halting viruses in scale-free networks Phys. Rev. E 65 055103
[18] Chen Y, Paul G, Havlin S, Liljeros F and Eugene Stanley H 2008 Finding a better immunization

strategy Phys. Rev. Lett. 101 058701
[19] Wang Y, Xiao G, Hu J, Cheng T H and Wang L 2009 Imperfect targeted immunization in scale-free

networks Physica A 388 2535–46
[20] Wang C, Knight J C and Elder M C 2000 On computer viral infection and the effect of immunization

ACSAC’00: 16th Annu. Computer Security Applications Conf. pp 246–56
[21] Gomez-Gardenes J, Echenique P and Moreno Y 2006 Immunization of real complex

communication networks Eur. Phys. J. B 49 259–64 Q6
[22] Echenique P, Gómez-Gardeñes J, Moreno Y and Vázquez A 2005 Distance-d covering problems

in scale-free networks with degree correlations Phys. Rev. E 71 035102
[23] Goldenberg J, Shavitt Y, Shir E and Solomon S 2005 Distributive immunization of networks against

viruses using the ‘honey-pot’ architecture Nature Phys. 1 184–8
[24] Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J and Glance N 2007 Cost-effective

outbreak detection in networks KDD’07: Proc. 13th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining pp 420–9

[25] Nemhauser G L, Wolsey L A and Fisher M L 1978 An analysis of approximations for maximizing
submodular set functions Math. Program. 14 265–94

[26] Karp R M 1972 Reducibility among combinatorial problems Complexity of Computer
Computations (The IBM Research Symposia Series) ed R E Miller, J W Thatcher
and J D Bohlinger Q7

[27] Bollobás B and Riordan O 2004 The diameter of a scale-free random graph Combinatorica 24 5–34
[28] Albert R, Jeong H and Barabási A-L 1999 The diameter of the world wide web Nature 130–1 Q8
[29] Leskovec J, Kleinberg J and Faloutsos C 2005 Graphs over time: densification laws, shrinking

diameters and possible explanations KDD’05: Proc. 11th ACM SIGKDD Int. Conf. on Knowledge
Discovery in Data Mining pp 177–87

[30] Watts D J and Strogatz S H 1998 Collective dynamics of ‘small-world’ networks Nature 393 440–2
[31] Barabási A-L and Albert R 1999 Emergence of scaling in random networks Science 286 509–12
[32] Erdös P and Rényi A 1959 On random graphs: I Publ. Math. 6 290–7
[33] Barabási A-L, Albert R and Jeong H 2000 Scale-free characteristics of random networks: the

topology of the world-wide web Physica A 281 69–77
[34] Faloutsos M, Faloutsos P and Faloutsos C 1999 On power-law relationships of the internet topology

SIGCOMM Comput. Commun. Rev. 29 251–62
[35] Newman M E J, Strogatz S H and Watts D J 2001 Random graphs with arbitrary degree distributions

and their applications Phys. Rev. E 64 026118

16

http://dx.doi.org/10.1103/PhysRevE.61.5678
http://dx.doi.org/10.1103/PhysRevLett.86.3200
http://dx.doi.org/10.1103/PhysRevE.60.7332
http://dx.doi.org/10.1103/PhysRevE.85.036107
http://dx.doi.org/10.1016/j.physleta.2012.07.037
http://dx.doi.org/10.1103/PhysRevE.65.035108
http://dx.doi.org/10.1103/PhysRevLett.91.247901
http://dx.doi.org/10.1103/PhysRevE.65.035104
http://dx.doi.org/10.1103/PhysRevE.65.055103
http://dx.doi.org/10.1103/PhysRevLett.101.058701
http://dx.doi.org/10.1016/j.physa.2009.02.036
http://dx.doi.org/10.1140/epjb/e2006-00041-1
http://dx.doi.org/10.1103/PhysRevE.71.035102
http://dx.doi.org/10.1038/nphys177
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1007/s00493-004-0002-2
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/S0378-4371(00)00018-2
http://dx.doi.org/10.1145/316194.316229
http://dx.doi.org/10.1103/PhysRevE.64.026118

QUERIES

Page 1
Q1
Author: Please check whether the affiliation address is okay as included.

Q2
Author: Please be aware that the color figures in this article will only appear in color in the
Web version. If you require color in the printed journal and have not previously arranged it,
please contact the Production Editor now.

Page 6
Q3
Author: Please expand the acronyms ‘ER’ and ‘BA’, if required.

Page 15
Q4
Author: Please check the details for any journal references that do not have a blue link as they
may contain some incorrect information. Pale purple links are used for references to arXiv
e-prints.

Q5
Author: Please check whether the book title is okay as amended in reference [1] .Also provide
the location of the publisher in the same.

Page 16
Q6
Author: Please check whether the year is okay as included in reference [21].

Q7
Author: Please provide the publisher details (city and name) in reference [26].

Q8
Author: Please provide volume number in reference [28].

	1. Introduction
	2. System model
	3. Monitor deployment algorithm
	3.1. The algorithm
	3.2. Convergence and evaluation

	4. Network monitoring: how hard it is?
	4.1. Performance of the MMI Algorithm
	4.2. Infection size of probabilistic spreading
	4.3. Effects of network topology on effectiveness of the monitoring schemes
	4.4. Where are the monitors allocated?
	4.5. Fault tolerance of the monitoring schemes

	5. Conclusion and future work
	Acknowledgments
	References

