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Abstract— A discrete-time tracking differentiator (TD) based
on a time criterion is presented. Its control law is derived
by comparing the time that the initial state is driven to the
switching curve or the origin with the sampling period. The
advantages of this TD include faster signal-tracking, better
noise filtering and derivative extraction. Simulation results
show that this TD has smaller errors in signal-tracking and
derivative extraction compared with the existing differentiators.
Experiments are carried out on the gap sensor of the suspension
control system in a magnetic-levitation (maglev) train to demon-
strate that the proposed TD can obtain an effective velocity
signal from the gap sensor when the accelerometer fails.

Index Terms— Tracking differentiator, time criterion, discrete
time, gap sensor, maglev train.

I. INTRODUCTION

The differentiation of a given signal in real time is a well-
known yet challenging problem in control engineering and
theory [1], [2]. The proportional-integral-derivative (PID)
control law developed in the last century still plays an
essential role in modern control-engineering practice [3],
[4]. However, derivative signals are prone to the noise
pollution and derivative controls usually cannot be physically
implemented, causing the PID to be degraded to PI control
[5], [6]. For this reason, much effort has been devoted
to the problem of designing differentiator, such as high-
gain observer-based differentiator [7], linear time-derivative
tracker [8], super-twisting second-order sliding-mode algo-
rithm [9], robust exact differentiator [10], and finite time-
convergent differentiator [11], [12], among others [13]-[15].

A noise-tolerant time-optimal system-based tracking dif-
ferentiator (TD) was first proposed by J.Q. Han [16], [17].
The advantage of this TD is that it sets a weak condition
on the stability of the systems to be constructed for TD
and requires a weak condition on the input. In addition,
it has advantageous smoothness compared with the obvious
chattering problem encountered by sliding-mode-based dif-
ferentiators [18]. Han used this TD as an important part of
the emerging active disturbance rejection control (ADRC)
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[18]. He also presented a nonlinear PID control based on a
TD [19]. Therein, the TD acted not only as the derivative
extraction, but also as a transient profile that the output of
a plant could reasonably follow to avoid the setpoint jump
in PID. However, to achieve high accuracy of Han’s TD in
signal-tracking and derivative extraction requests imposing
strict constraints on the sampling period. Furthermore, the
control law (denoted as Fhan) of the TD is determined
by comparing the location of the initial state with the
isochronic region that is obtained through complicated non-
linear boundary transformation [17].

In this paper, we propose a discrete TD that has character-
istics of faster signal-tacking, greater accuracy in derivative
extraction and better noise filtering. In addition, the control
law is obtained easily by comparing the time that the initial
state sequence is driven to the switching curve or the origin
with the sampling period.

The remainder of the paper is organized as follows: in
Section II, the control law of the TD via a time criterion is
presented in detail. In Section III, the structure of the TD
and its filtering characteristic are discussed. In Section IV,
numerical simulation results are presented to compare the
performance of signal-tracking and derivative extraction for
the proposed TD versus the existing ones. Experiments are
carried out to acquire effective velocity signals from the gap
sensor for the suspension system in the maglev train when
the accelerometer fails. In Section V, the conclusions and
remarks are given.

II. CONTROL LAW FOR TRACKING DIFFERENTIATOR

Consider a standard discrete-time double-integral system
as follows

x(k+1) = Ax(k)+Bu(k), |u(k)| ≤ 1 (1)

where A =

(
1 h
0 1

)
, B =

(
1
h

)
. The goal is to derive a

high-precision feedback-control law (denoted as Ftd) based
on a time criterion in discrete time domain, which is de-
scribed as follows:

Control Objective: Given the system (1) and its initial
state x(0), determine the control signal sequence, u(0), u(1),
..., u(k) by comparing the time that the initial state point
is driven back to the switching curve or the origin with the
sampling period h such that the state x(k) is driven back to
the origin in a finite number of steps, subject to the constraint
of |u(k)| ≤ 1.

The time that any initial state point M(x1(0),x2(0)) is
driven back to the switching curve (Γ(x1,x2)= x1+

x2|x2|
2 [20],



[21]) is denoted as tA, and the time that the state point
located on the switching curve is driven back to the origin
is denoted as tB. We can then determine that tA = sx2(0)+√

sx1(0)+ 1
2 x2

2(0) and tB = |x2(0)|, where s =−sign(x1(0)+
1
2 x2(0)|x2(0)|). The work of determining the control signal
sequence that drives any initial state to the origin can be
divided into the following two tasks:

Task 1: Determine the control signal sequence when
the initial state point M(x1(0),x2(0)) is not located on the
switching curve by comparing the time tA and the sampling
period h.

Task 2: Determine the control signal sequence when the
state point M(x1(0),x2(0)) is located on the switching curve
by comparing the time tB and the sampling period h.

For Task 1, when h ≤ tA, the control signal is u = −s;
otherwise, the control signal value should be decreased to
guarantee that the state point M(x1(0),x2(0)) can be driven
to the switching curve Γ within the sampling time of h.
When the state point is located above the Γ , there exists
s = 1 and the control signal takes on u = −ua. ua satisfies
the following equations:

x1 = x1(0)− 1
2ua

(x2
2− x2

2(0))

x2 = x2(0)−uah
(2)

There exists x1 =
1
2 x2

2 when the initial state point is driven
back to the switch curve by the corresponding control signal
sequence. If ua is taken as an unknown, then

1
2

h2u2
a +(

1
2

h2−hx2(0))ua +
1
2

x2
2(0)− x2(0)h− x1(0) = 0.

(3)
The discriminant of (3) is

4= (
1
2

h2−hx2(0))2−2h2(
1
2

x2
2(0)− x2(0)h− x1(0))

=
1
4

h4 +h3x2(0)+2h2x1(0).

Two cases are possible.
1) When x2(0)≥ 0, the discriminant satisfies the condition

that

4>
1
4

h4 +2h2(x1(0)+
1
2

x2
2(0))

=
1
4

h4 +2h2(x1(0)+
1
2

x2(0)|x2(0)|)>
1
4

h4 > 0;

2) When x2(0) < 0, x1(0)− 1
2 x2

2(0) > 0 can be derived
because x1(0)+ 1

2 x2(0)|x2(0)|> 0. Therefore,

4=
1
4

h4 +h3x2(0)+2h2x1(0)

>
1
4

h4 +h3x2(0)+2h2 1
2

x2
2(0) = h2(x2(0)+

1
2

h)2 ≥ 0.

According to two cases analysed above, the discriminant can
always satisfy 4> 0. Furthermore, there exists two unequal
real-number roots that satisfy x2(h) < 0. Because x2(h) =

x2(0)−uah= h
2±

√
4
h < 0, the positive root shall be excluded

and the expression of ua can be obtained as follows:

ua =−
1
2
+

1
h

x2(0)+
1
2

√
1+

4
h

x2(0)+
8
h2 x1(0). (4)

Similarly, when the state point M is located below Γ where
s = −1, the control input is u = ua. ua can be derived as
follows:

ua =−
1
2
− 1

h
x2(0)+

1
2

√
1− 4

h
x2(0)−

8
h2 x1(0). (5)

The resulting expression of ua is

ua =−
1
2
− s

h
x2(0)+

1
2

√
1+(

4
h

x2(0)−
8
h2 x1(0))s (6)

where the parameter s has the same definition as described
in the previous section.

For Task 2, when the state point M is located on the
switching curve Γ , it satisfies the condition x1(t) = 1

2 x2
2(t)

x2(t) = x2(0)+ut = 0, t = h.
(7)

When h ≤ tB (tB = |x2(0)|), the control law is u =
−sign(x2(0)). However, when t > tB, the control signal value
should be decreased to guarantee that the state point M can
be driven back to the origin in one step. Therefore, the
control signal cannot be the constant value but must satisfy
the following condition: x1(t) = x1(0)+ x2(0)t +

∫ t
0
∫

τ

0 u(σ)dσdτ = 0

x2(t) = x2(0)+
∫ t

0 u(τ)dτ = 0, t = h.
(8)

For simplicity, supposing u = a+bt, and substituting it into
(8), we have x2(0)+ah+ 1

2 bh2 = 0

x1(0)+ x2(0)h+ 1
2 ah2 + 1

6 bh3 = 0.
(9)

This leads to 
a =− 2

h2 (2x2(0)h+3x1(0))

b = 6
h3 (x2(0)h+2x1(0)).

(10)

From the above, we can obtain the control law based
on a time criterion for a standard discrete-time double-
integral system (1). This is denoted here as u(k) =
Ftd(x1(k),x2(k),r,h), where the parameters r and h have the
same definitions as described in the previous section. The
resulting control law is

u(k) = Ftd(x1(k),x2(k),r,h)

x1(k+1) = x1(k)+hx2(k)+ 1
2 u(k)h2− 1

3 bh3

x2(k+1) = x2(k)+u(k)h− 1
2 bh3.

(11)



For a general discrete time double-integral system, one can
obtain its control law Ftd by substituting the x1 and x2 with
z1 and z2 respectively, where z1 =

x1
r and z2 =

x2
r .

Based on the control law above, the following TD can be
constructed:

u(k) = Ftd(x1(k)− v(k),c1x2(k),r0,c0h)

x1(k+1) = x1(k)+hx2(k)+ 1
2 u(k)h2− 1

3 bh3

x2(k+1) = x2(k)+u(k)h− 1
2 bh3.

(12)

where r0 is the quickness factor, c1 is the damping factor, c0
is the filtering factor, and v is the given signal.

III. STRUCTURE ANALYSIS OF DISCRETE TIME
TRACKING DIFFERENTIATOR

For a given signal sequence v(k)(k = 0,1,2, ...), the
discrete-time TD in (12) can be transformed into an approx-
imately linear one by taking on the proper parameter r, as
follows:

x(k+1) = Gx(k)+Hv(k),k = 0,1,2... (13)

where x(k) = [x1(k),x2(k)]T , H = [ 1
c2

0
, 2

c2
0h
]T and G =

[G1,G2]
T , where G1 = [1− 1

c2
0
,(1− c1

c2
0
)h] and G2 = [− 2

c2
0h
,1−

2c1
c0
].

We assume that the given signal is v(t) =

∑
N
i=1 Aie j(wit+φi0) + ξ (t), where Ai,wi ∈ R+, φi0 ∈ R,

and ξ (t) is a width-steady process. Then we have

x(k) = Gk p0 +
N

∑
i=1

(e jwihI2−G)−1HAie j(wikh+φi0)+η(k),

(14)
where η(k + 1) = Gη(k)+Hξ (k),k = 0,1,2, ..., and p0 is
determined by the initial conditions x(0) and η(0). The
sufficient and necessary condition for convergence of (14)
is that the spectral radius of matrix G satisfies ρ(G) < 1.
It can be derived that x1(k) = CGk p0 + ∑

N
i=1 C(e jwihI2 −

G)−1HAie j(wikh+φi0)+Cη(k) by choosing C = [1,0]. When
the transfer function of the discrete-time system is denoted
as Φ(z) =C(zI2−G)−1H, x1(k) can be expressed as follows

x1(k) =CGk p0 +
N

∑
i=1

Φ(e jwih)Aie j(wikh+φi0)+Cη(k). (15)

The characteristics of magnitude-frequency and phase-
frequency for the TD in (12) are analysed in the followings.
Given a sine signal v(t) = Ae j(wt+φ0), the tracking output
signal yout is also a sine signal when the particular signal
sequence is long enough and the spectral radius of matrix
G satisfies ρ(G) < 1. We suppose that the output signal is
yout = βv(t − τ0), where β is the dynamic amplifier factor
and τ0 is the time delay. By choosing the filtering factor c0
to satisfy the condition c0wh� 1, we have{

β = 1
1+0.5c2

0(c
2
1−1)w2h2

τ0 = (c0c1−1)h
(16)

Furthermore, when the damping factor c1 = 1, we have
β = 1 and τ0 = (c0−1)h. Based on the conditions above, the
characteristics of magnitude-frequency and phase-frequency
are shown in Fig. 1. We can see that the proposed tracking
differentiator has good filtering ability when the filtering
factor c0 is properly selected.

Fig. 1. Characteristic curves of magnitude-frequency and phase-frequency
for TD.

The following path is taken to compare the filtering
characteristics between the discrete-time TD Ftd and Fhan
[16], [17]. Here, only the width-steady random process is
considered. For a discrete-time linear-tracking differentiator,
width-steady input leads to width-steady output. When the
random input sequence ξ (t) is a white noise sequence, Rξ =
Qδ (τ), where δ (τ) is the Kronecker delta function [22], [23]
and Q is the constant matrix. The variance matrix satisfies
the equation Rη(k + 1) = GRη(k)GT + HQHT . When the
constant k is large enough, Rη(k) converges to the constant
matrix, i.e.,

Rη = GRη GT +HQHT . (17)

The above equation is a Lyapunov function of a discrete-time
system, demonstrating the relationship between the output
sequence’s variance R and the filtering factor c0. For the
Fhan algorithm, the matrices G and H are

G =

(
1 h
1

c0h 1− 2
c0

)
,H =

(
0
1

c2
0h

)

respectively. By assuming that the density of the white noise
power spectrum is Q = 1, the result shown in Fig. 2 is
achieved.

As shown in Fig. 2, the tracking differentiator can filter
random noises when the proper filtering factor c0 is selected.
The filtering capacity is better for the Ftd algorithm than for
the Fhan algorithm.



Fig. 2. Output sequence variance R vs filtering factor c0 for two algorithms.

IV. NUMERICAL SIMULATION AND EXPERIMENT
RESULTS

The numerical simulations are conducted to compare the
proposed differentiator versus the existing ones in signal-
tracking and differentiation acquisition. Experiments are also
carried out on the gap sensor of the suspension system of
a maglev train to determine whether the proposed TD can
acquire an effective velocity signal from the gap sensor when
an accelerometer fails.

A. Numerical Simulation

In this subsection, we present some numerical simulation
results to compare the following three differentiators.

DI. Robust exact differentiator using sliding mode tech-
nique from [10].{

ẋ1 = x2−α|x1− v|0.5sign(x1− v),
ẋ2 =−β sign(x1− v)

DII. Tracking differentiator based on discrete time optimal
control Fhan from [16], [17]. u(k) = Fhan(x1(k)− v(k),x2(k),r0,c0h),

x1(k+1) = x1(k)+hx2(k),
x2(k+1) = x2(k)+hu(k), |u(k)| ≤ r

DIII. Tracking differentiator based on discrete time opti-
mal control Ftd proposed in this letter.


u(k) = Ftd(x1(k)− v(k),c1x2(k),r0,c0h),
x1(k+1) = x1(k)+hx2(k)+ 1

2 u(k)h2− 1
3 bh3,

x2(k+1) = x2(k)+u(k)h− 1
2 bh3.

The Matlab program of Euler method is adopted in in-
vestigation. We choose the same initial value (x1(0) = 0,
x2(0) = 2) and the input signal sequence v(t) = 1+sin(3t)+
γ(t) in all simulations, where γ(t) is the evenly distributed
white noise with an intensity of 0.001. For differentiator DI,
the parameters are α = 1.5, β = 36; for differentiator DII
and differentiator DIII, the sampling step is h = 0.005, the
quickness factor is r0 = 200, the damping factor is c1 = 2, and
the filtering factor is c0 = 5. As mentioned in proposition 2.1,
the control signal in differentiator DIII satisfies |u(k)| ≤ r.
The comparison results in signal-tracking and differentiation

Fig. 3. Comparison result in signal-tracking with three different differen-
tiators.

Fig. 4. Comparison result in differentiation acquisition with three different
differentiators.

acquisition for three differentiators are plotted in Figs. 3 and
4.

From above simulation results, we see that tracking dif-
ferentiator DII and differentiator DIII based on discrete
time optimal control are smoother than differentiator DI
in which the discontinuous function produces chattering
problem. From the perspectives of static errors and phase
delays, differentiator DIII performs better in signal tracking
and differentiation acquisition than differentiator DII.

B. Experiment Results

The experiments are intended to evaluate the practical en-
gineering application of the proposed tracking differentiator
during the operation of a maglev train. The experimental
platform is shown in Fig. 5, where the maglev train adopts the
real-time development environment RTW toolbox supported
by Matlab software. The integrated electromechanical system
of this train comprises the vehicle structure, the bogie, the
track, and the suspension system [24]-[26]. The three electro-
magnets of the suspension system are regulated by three sets
of controllers. The platform can carry out the single-point
or multi-point modularity suspension control experiments
because three suspension points are mechanically decoupled.

The suspension sensor group collects the gap, accelera-
tion, and current signals from the suspension system. This
closed-loop feedback-control scheme utilizes the PID control
law [27], for which the velocity signal comes from the
integral of the acceleration signal. Without that velocity
signal, the suspension system cannot guarantee suspension
stability. However, in a practical engineering scenario, the



Fig. 5. Experimental platform of the maglev train.

accelerometer is more likely to fail because of poor operating
conditions. Furthermore, redundant technology is not used
for the accelerometer because it is too expensive. In our
experiments, the proposed TD is proposed to track the gap
signal and produce the velocity signal if an accelerometer
fails.

The A/D module is set with a sampling frequency of
Fs = 2kHz to collect the gap signals and acceleration signals
when the train is moving with load fluctuation and train
body might not be stabilized at 3mm. The proposed TD is
used to track the gap signals and produce the corresponding
velocity signals, where the filtering factor is c0 = 8, the
damping factor is c1 = 2 and the quickness factor is r =
650. The comparative results are presented in Fig. 6. As

Fig. 6. Comparison between tracking and derivative signal obtained by
TD and gap and velocity signal collected by sensors.

shown in Fig. 6, the proposed TD is able to track the gap
signals quickly with small tracking errors. It also produces
the desired velocity signals with only a small phase delay.
Therefore, if the accelerometer fails, we believe that the
proposed TD can acquire the velocity signals effectively with
the gap signals.

V. CONCLUSIONS

We proposed a new and simple control law that is effective
for applications in discrete-time, double-integral systems.

This algorithm enabled us to develop a novel tracking dif-
ferentiator. Numerical simulation results demonstrated that,
compared with the existing differentiators, the proposed
noise-tolerant TD has faster signal-tracking, and better noise
filtering and derivative extraction. Experiment results showed
that the proposed noise-tolerant TD can produce effective
velocity signals for the suspension system of a maglev train
when the accelerometer fails. Note that the utility of the TD
is not limited to signal-tracking and differentiation acquisi-
tion, it can also be adopted in constructing controllers. Future
work will include analysing the accuracy of this tracking
differentiator and further exploring its practical engineering
applications.
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