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Abstract 
 

In this paper, we study the impacts of traffic allocations on the performance of optical 

packet switches (OPS). In particular, two different cases are investigated where traffic 

loads are distributed over different (i) time slots (time dimension); and (ii) output ports 

(space dimension), respectively. These two cases are of significant importance as each has 

different applications and they form the basis of some more complicated schemes. Our 

main contributions are three fold. Firstly, for the most fundamental OPS configuration, we 

prove that its packet loss is a convex function of traffic load. For any other node 

configuration, we prove that its packet loss remains as a convex function of traffic load as 

long as a simple condition is satisfied. Secondly, for any OPS with its packet loss as a 

convex function of traffic load, we propose a simple algorithm for efficiently comparing 

some different traffic allocations and tell which one of them leads to the lowest packet loss. 

We also show that in either time or space dimension, the best packet-loss performance is 

achieved when traffic loads are uniformly distributed. Thirdly, for OPS with limited 

capability of adjusting a given traffic distribution, we propose a Load Balancing (LB) 

algorithm to minimize the packet loss. These contributions provide some useful guidelines 

and algorithms for achieving efficient traffic allocations in various OPS networks.   

  

Index Terms ⎯ Contention resolution, optical buffer, optical packet switch, packet loss, 

traffic allocation, wavelength conversion. 
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I.  INTRODUCTION 

Optical fiber networks are handling a major part of today’s high-speed data 

communications. While current optical networks are mostly transmitting data flows 

through circuit-switched optical connections, optical packet-switched (OPS) systems, 

which process the transmitted information at a much finer granularity of data packets, are 

expected to play an important role in the future systems [1]-[4]. The finer granularity, if 

handled efficiently without the expensive optical-electronic-optical (O/E/O) conversion, 

helps to achieve higher bandwidth utilization and better flexibility in traffic management 

[3], [5], [6].  

A critical issue in OPS systems is the resolution of packet contentions where there are 

multiple packets destined for the same output port simultaneously. Based on today’s 

technology, popular contention resolution methods mainly include optical buffering, 

generally by fiber delay lines (FDLs) [7]-[11], and wavelength conversion, which transfers 

the contending packets to other free wavelength channels (if any) in the destined output 

links [12]-[19]. Other solutions include deflecting the contending packets to another 

outgoing link (e.g., [20]), or exploring the space dimension in the multi-fiber links [21], 

[22], etc. All these solutions, unfortunately, are still subject to some hardware constraints, 

including bulky volume of FDLs, high cost of wavelength converters, and high complexity 

of large-sized optical switch in multi-fiber networks, etc.  

Besides the hardware constraints, traffic distribution is another important factor that 

can significantly affect the performance of optical packet switches. For example, it is 

known that bursty traffic generally leads to higher packet loss [23], [24]. Therefore some 

schemes have been proposed to lower the traffic burstiness (e.g., [23], [25]). We consider 
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the effects of traffic allocation in a more general framework, where traffic distribution can 

be adjusted in two different dimensions:  

1. Time dimension, where changing the distribution of traffic load in different time slots is 

feasible yet the ratio of traffic loads destined for different output links (termed as 

traffic pattern hereafter) cannot be significantly modified. Existing results of 

smoothing the burstiness of data traffic at network boundary [23], [25] can be viewed 

as roughly belonging to this class: traffic is re-distributed in different time slots to 

achieve better fairness in time dimension, while the traffic pattern is largely decided by 

traffic load between different source-destination pairs and hence cannot be significantly 

changed.  

2. Space dimension, where the traffic pattern can be adjusted yet the traffic distribution in 

time dimension is fixed. Examples include allocating outgoing packets on several 

different alternative routes as that in the deflection routing scheme [20]; or allocating 

traffic on different fibers in the same multi-fiber output link [21], [22], etc. 

The above two classes of traffic allocations may happen simultaneously in real-world 

operations, though generally one of them would be of more significant effects than the 

other. In this paper, to achieve some straight yet insightful observations, however, we 

restrict our discussions to the most representative cases where traffic allocations happen in 

only one dimension. Our main contributions can be summarized as follows:   

• For the most fundamental OPS configuration, we prove that its packet loss (defined as 

the statistical average number of lost packets in each time slot) is a convex function of 

traffic load. For any other node configuration, we prove that, as long as a simple 
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speeding-up condition (defined later in Section II) is satisfied, its packet loss remains 

as a convex function of traffic load. For simplicity, hereafter we term such OPS 

configurations as having convex packet loss.  

• For any OPS configuration with convex packet loss, we propose a simple algorithm 

that can efficiently make comparisons and tell which one of some different traffic 

allocations achieves the lowest packet loss. We also show that in both the time and 

space dimensions, uniform distribution where traffic load is evenly distributed among 

different time slots or output ports, leads to the best performance.  

• For an optical switch with limited capability of adjusting a given traffic distribution, 

we propose a simple Load Balancing (LB) algorithm which minimizes the packet loss 

after the adjustments. 

Together, these contributions provide some useful guidelines and algorithms for achieving 

efficient load allocation in various OPS networks.  

The rest of this paper is organized as follows. In Section II, we prove that the most 

fundamental OPS configuration has convex packet loss, so it is with any other 

configuration satisfying the speeding-up condition. For any OPS with convex packet loss, 

we propose in Section III a simple algorithm for quickly telling which one of some given 

traffic allocations achieves the lowest packet loss. Also it is proved that the uniform traffic 

distribution leads to the best performance. In Section IV, we propose the LB algorithm and 

prove its optimality for any switch with convex packet loss. These conclusions are verified 

in Section V by simulation results. Section VI concludes this paper.  
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II.  CONVEXITY OF PACKET LOSS IN DIFFERENT SWITCHES 

We firstly study the packet-loss performance of the most fundamental OPS 

configuration, followed by discussions on the more general cases of other switches 

satisfying the speeding-up condition. 

A. Convexity of Packet Loss in the Most Fundamental OPS Configuration 

The most fundamental switch configuration we would study in this section is illustrated 

in Fig. 1. It is a typical model with extensive existing studies on its packet-loss and packet-

delay performance (e.g., [8], [23], [27], [28]). In this model, there are N input and output 

links with M channels per link connected to the same switch matrix. The channels are 

assumed to be on the same wavelength, or equivalently, be equipped with redundant 

wavelength conversion capability. Apparently, in such a switch, there can be a maximum 

of N×M packets arriving in each time slot; and at most M packets be transmitted by each 

output link at one time. Note that the switch has no contention resolution resource other 

than the multiple (if 1M > ) channels in each link. Throughout this paper, we assume that 

the arriving packets are synchronized and contained in the fixed-length time slots before 

entering the switching matrix [14], [18], [26].  

In our analysis, the average traffic load, defined as the probability of having a packet 

arriving in each time slot from each input channel, is denoted as α . To define the traffic 

pattern, we denote iρ  (i = 1,2,…,N) as the probability that a newly arrived packet is 

destined to the i-th output link. For the special case of uniform traffic pattern [8], [14], 

[27], [28], we have that 1/ ,i Nρ =  i = 1,2,…,N. Based on these definitions, the probability 

of having j packets destined for the output link i can be calculated as: 
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When j M≤ , all the j packets can be transmitted. When j M> , however, j M−  packets 
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The overall packet loss of the switch therefore can be calculated as  

 
1

.
N

i
i

PL PL
=

= ∑  (3) 

As later we shall see in Section V, the traffic model in Eqs. (1) - (3) is highly accurate. 

Now we consider the adjustments of traffic distribution in two dimensions respectively. 

We see that the traffic distribution in time dimension can be reflected by the parameter α  

(A larger value of α  denotes a higher traffic load, and vice versa.), while the traffic 

distribution in space dimension can be defined by the traffic pattern { ,  1,2,..., }.i i Nρ =  

Therefore, the two representative cases of traffic allocations can be re-phrased as follows: 
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1. Traffic allocations in time dimension, where the traffic pattern { ,  1,2,..., }i i Nρ =  is 

given and fixed. We are allowed to adjust ,tα  1,2,..., ,t T=  without changing the 

overall traffic loads in T time slots 
1

T

t
t

α
=
∑ , to lower the packet loss in Eq. (3). 

2. Traffic allocations in space dimension, where α  is given and fixed. We are allowed 

to adjust the traffic pattern { ,  1,2,..., }i i Nρ =  to lower the packet loss in Eq. (3). 

To prove that the most fundamental OPS configuration has convex packet loss in time 

dimension, we have  

Theorem 1: With any given set of non-negative parameters  { ,  1,2,..., },i i Nρ =  the 

packet loss PL in Eq. (3) is a convex function of α .  

Proof: See Appendix A. □ 

For traffic allocations in space dimension, similar to Theorem 1, we have:  

Theorem 2: With any given value of α  ( 0 1α≤ ≤ ), the packet loss PL in Eq. (3) is a 

convex function of iρ , 1,2,...,i N= . 

Proof: See Appendix A.  □ 

Remark: Note that the underlying assumption in Eqs. (1)-(3) is that the traffic is 

independent and identically distributed (i.i.d) on the slot level. Such assumption has been 

adopted in analyses of OPS under aggregated traffic [29], low traffic [30], or traffic within 

short time intervals [31]. For other cases where this assumption does not apply, extensive 

studies have been done to derive proper analyses of their packet-loss performances (e.g., 
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[31], [32]). However, none of these results, to the best of our knowledge, has been simple 

yet accurate enough for a solid proof of convexity as those in Theorems 1 and 2. To 

provide an alternative solution, we prove in the next subsection that, for any switch under 

any traffic load, as long as the speeding-up condition is satisfied, its packet loss remains as 

a convex function of traffic load. □  

B. Convexity of Packet Loss in the Other OPS Configurations 

The speeding-up condition can be defined as follows. Add additional traffic load to a 

switch, the packet loss will be increased. If the same amount of additional traffic load leads 

to a larger increase of packet loss under heavier traffic, we say that this switch satisfies the 

speeding-up condition. In other words, if for any 1 2β β≤ and 0βΔ ≥ , 

1 1 2 2( ) ( ) ( ) ( ),i i i iPL PL PL PLβ β β β β β+ Δ − ≤ + Δ −                             (4) 

we say that iPL  satisfies the speeding-up condition.  

We may expect that the speeding-up condition is satisfied in most, if not all, well-

engineered switches. Specifically, under low traffic load, when traffic is increased, the 

packet loss increases slowly, since most of the increased traffic can go through the switch 

smoothly. When traffic load becomes higher, however, an increasingly larger portion of 

the increased traffic will be blocked and lost. Finally, packet loss would increase at nearly 

the same speed as that of the traffic load, where virtually all the increased traffic is 

blocked.  

To prove that any switch satisfying the speeding-up condition has convex packet loss, 

we have the lemma as follows:  
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Lemma 1: Assume ( )f x  is a continuous function with first-order derivative. The 

necessary and sufficient condition that ( )f x  is a convex function of x is that, for any 

1 2x x≤  and 0xΔ ≥ , we have 

1 1 2 2( ) ( ) ( ) ( ).f x x f x f x x f x+ Δ − ≤ + Δ −                                 (5) 

Proof: See Appendix B. □ 

Comparing Eqs. (4) and (5), we have  

Theorem 3: If iPL , the packet-loss component of a switch either in time or space 

dimension, satisfies Eq. (4), it is a convex function of traffic load. If every component 

satisfies Eq. (4), then PL in Eq. (3) is a convex function of traffic load. □ 

III.  CONVEXITY-BASED PACKET LOSS COMPARISONS 

Given a fixed amount of total traffic load, there can be different allocations of it in time 

or space dimensions. Denote the packet loss corresponding to such allocations as 

( )1 2, , TPL α α α"  or ( )1 2, , NPL ρ ρ ρ" , where T and N denote the number of different 

components in time and space dimensions (e.g., time slots in time dimension or output 

ports in space dimension) respectively.  In this section, we propose a simple algorithm to 

make comparisons between some different traffic allocations and quickly tell which one of 

them leads to the lowest packet loss.  To start, we make the following definitions:  

If for any permutation of { }1 2, , , ,Ka a a" denoted as l l m{ }1 2, , , ,Ka a a" , we have 
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( ) l l m( )1 2 1 2, , , , , , ,K KPL a a a PL a a a=" "                                          (6) 

we say that the packet loss function PL is symmetric.   

We may reasonably expect that most OPS have exactly or nearly symmetric packet 

loss. For example, an OPS with the same capacity in each output link generally speaking 

has symmetric packet loss in space dimension. OPS with no buffer or small-sized buffer 

may have symmetric packet loss in time dimension as well, where exchanging the traffic 

load in different time slots leads to exactly or nearly the same packet loss.  

For OPS with convex, symmetric packet loss, we define traffic shifting as the operation 

that moves a portion of a higher-value traffic component to a lower-value component 

without making the latter component exceed the former one. For example, we may apply a 

traffic shifting operation to transfer traffic allocation { }0.3,  0.7  into { }0.4,  0.6 .   

From Lemma 1, we can easily prove 

Lemma 2: Assume ( )f x  is a convex function with first-order derivative. For any 

1 2x x≤  and 2 10 x x x≤ Δ ≤ − , we have 

1 1 2 2( ) ( ) ( ) ( ).f x x f x f x f x x+ Δ − ≤ − − Δ                                   (7) 

Proof: Replace in Eq. (5) the 2x  by 2x x− Δ . □ 

Based on Lemma 2, we have the comparison method as follows:  
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Theorem 4: Assume the switch has symmetric, convex traffic loss. For two different 

allocations of the same amount of overall traffic load, if one of them can be transferred into 

the other one by a certain number of traffic shifting operations, the former one has higher 

packet loss. □ 

To quickly judge whether a traffic allocation can be transferred into another one by a 

certain number of traffic shifting operations, we propose the following theorem: 

Theorem 5: Assume the switch has symmetric, convex traffic loss. For two different 

traffic allocations { }1 2, , , Ka a a" and{ }1 2, , , Kb b b" where ia ’s and ib ’s ( 1,  2, , )i K= … are 

each listed in an non-decreasing order of their values, { }1 2, , , Kb b b" can be transferred into 

{ }1 2, , , Ka a a"  by a certain number of traffic shifting operations if and only if  

 
1 1

,     1,2,..., 1.
k k

i i
i i

a b k K
= =

≥ = −∑ ∑                                           (8) 

Proof: See Appendix C. □ 

For example, by applying Theorem 5, we can prove that  

(0.2,  0.3,  0.5) (0.1,  0.35, 0.55).PL PL≤  

Finally, for any convex and symmetric function PL, either from Theorem 5 or from the 

Jensen’s Inequality [33], we have 

 ( ) ( )1 2, , , , ,...,KPL a a a PL a a a≥"                                          (9) 
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where 
1

1 .
K

i
i

a a
K

=

= ∑  Therefore, we have the conclusion as follows: 

Theorem 6: For any switch with convex and symmetric packet loss, uniform traffic 

allocation, which evenly distributes traffic load among different time slots or different 

output ports, achieves the best performance in time and space dimensions respectively. □ 

Remark: Note that the comparison method proposed in Theorems 4 and 5 has its limit: 

for two traffic allocations that cannot be transferred into each other by applying traffic 

shifting operations, e.g., { }0.2,0.3,0.5 and { }0.24,0.24,0.52 , we cannot tell which one of 

them leads to lower packet loss by using the proposed method. This does not come as a 

surprise: the proposed method is based on a single condition that the packet loss is convex 

and symmetric. We cannot expect it to fix all the problems with such a minimum 

assumption. For those cases that cannot be judged by convexity condition, additional 

information has to be provided and more sophisticated algorithms have to be developed.  □ 

IV.  THE LOAD BALANCING (LB) ALGORITHM 

In the last section, we proved that the uniform distribution leads to the best 

performance, in either time or space dimension. In practical switch implementations, 

however, various constraints may make the uniform distribution beyond reachable. For 

example, we may have limited buffer size for adjusting the traffic distribution in time 

dimension, or limited wavelength conversion for adjusting the traffic distribution in space 

dimension. In this section, we consider the problem of minimizing the packet loss in an 

OPS with limited capability of adjusting a given traffic distribution. We propose a simple 

Load Balancing (LB) algorithm and prove its optimality under the simple condition that 



 13

the switch has convex and symmetric packet loss (which probably holds in most OPS, as 

we pointed out earlier).   

The main idea of the LB algorithm is to repetitively apply the traffic shifting operations 

to move traffic loads from the most-loaded component(s) to the least-loaded component(s), 

until the traffic distribution is adjusted to be uniform, or the capability of adjusting traffic 

distribution has been exhausted. As an example, hereafter we discuss the traffic allocations 

in time dimension in detail.  

Without loss of generality, we assume that the traffic distribution ,  1,2,..., ,t t Tα =  has 

1 2 ... Tα α α≤ ≤ ≤ . The given capability of adjusting the traffic distribution is denoted as 

maxβ . In other words, max
1

1 ' ,
2

T

t t
t

α α β
=

− ≤∑  where { }'tα  denotes the traffic distribution 

after the adjustments. 

LB Algorithm in Time Dimension 

1. Calculate the distance of the given traffic distribution from the uniform distribution 

 
1

1
2

T

t
t

β α α
=

= −∑  (10) 

where 
1

1 .
T

t
tT

α α
=

= ∑  If max ,β β≥  then the given traffic pattern can be adjusted to the 

uniform traffic distribution, stop; otherwise, let maxβ β=  and go to Step 2.  

2. Deduction operation: Find all the traffic distribution components with the largest 

value ...m Tα α= = . Note that m can be equal to T. Let  
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 1min ,  
1T m T m

ββ α α −
⎛ ⎞Δ = −⎜ ⎟− +⎝ ⎠

 (11) 

 ,    , 1,...,j j j m m Tα α β= − Δ = +  (12) 

 ( 1)T mβ β β= − Δ × − +  (13) 

Repeat the above procedure until 0β = . 

 
3. Addition operation: Re-initialize maxβ β= . Find all the components with the smallest 

value 1 ... sα α= = . Note that s can be equal to 1. Let  

 1 1min ,  s s
ββ α α+

⎛ ⎞Δ = −⎜ ⎟
⎝ ⎠

 (14) 

 ,    1,...,j j j sα α β= + Δ =  (15) 

 sβ β β= − Δ ×  (16) 

 Repeat the calculations in Eqs. (14) - (16) until 0β = . □ 

The LB Algorithm in the space dimension would be nearly the same, except that it is 

,  1,2,...,i i Nρ = , instead of ,  1,2,...t t Tα = , that is adjusted. The very similar descriptions 

of the detailed algorithm therefore are omitted.  

Next we prove that the LB algorithm’s optimality in lowering packet loss with any 

given traffic distribution and maxβ . Once again we use traffic allocation in time domain as 

an example, while the optimality of the algorithm in space dimension can be proven 

similarly.  

Denote the packet loss in a single time slot under traffic load α  as ( )PL α . Since 

( )PL α  is a convex function of α , from Lemma 1, we have that 
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 1 1 2 2( ) ( ) ( ) ( )PL PL PL PLα α β α α β− − Δ ≤ − − Δ  (17) 

for any 1 2α α≤  and 0βΔ ≥ . It indicates that in the Step 2 of the LB algorithm, reducing 

the most-loaded traffic component leads to the quickest decrease of packet loss.  

Meanwhile, still from Lemma 1, we have  

 1 1 2 2( ) ( ) ( ) ( )i i i iPL PL PL PLα β α α β α+ Δ − ≤ + Δ −  (18) 

for any 1 2α α≤  and 0βΔ ≥ . It indicates that in the Step 3 of the LB algorithm, adding 

traffic to the least-loaded traffic component leads to the slowest increase of packet loss. 

Combining the observations in Eqs. (17) and (18), the optimality of the LB algorithm is 

proved.    

V.  SIMULATION RESULTS AND DISCUSSIONS 

A. Packet Loss in the Most Fundamental OPS Configuration 

We start by studying the packet-loss performance in the most fundamental OPS 

configuration as illustrated in Fig. 1. To evaluate the effects of traffic allocations in time 

dimension, we assume that the overall traffic loads in T time slots, measured by 
1

T

t
t

α
=
∑ , is 

given and fixed. Specifically, we let 4T =  and 
1

1 0.5,
T

t
tT

α α
=

= =∑   and consider several 

different cases as follows:  
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{ } { }
{ } { }
{ } { }
{ } { }
{ } { }
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1 2 3, 4
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(c) , , 0.7,0.7,0.3,0.3

, , 0.8,0.8,0.2,0.2(d)
(e) , , 0.9,0.9,0.1,0.1

α α α α

α α α α

α α α α

α α α α

α α α α

=

=

=

=

=

 (19) 

 By using Theorem 5, it can be easily proved that each traffic allocation can be 

achieved by applying traffic shifting operations to the latter ones. For simplicity, we 

differentiate them by introducing the deviation degree γ :  

 1 .

T

t
t

T

α α
γ =

−
=
∑

 (20) 

The above five different cases then can be denoted as with different values of γ  varying 

from 0 (case (a)) to 0.4 (case (e)).  

As to the traffic patterns in space dimension, we consider several cases as follows: 

(i) Uniform traffic pattern, where 1/i Nρ = , 1,2,..., ;i N=   

(ii) Geometric traffic pattern, where 1/ ,  2,3,..., .i i R i Nρ ρ − = =  In other words, the 

average traffic loads destined to different output links distribute as a geometric 

sequence. We present two different cases where 1.1R =  and 1.2R =  respectively, 

and  

(iii) Hotspot traffic pattern, where we assume that each of the three hotspot output links 

has traffic destined to it five times as high as that destined to each of the other output 

links, where the number of input/output links are configured as N = 8. 
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When 8,N =  again it can be proved by using Theorem 5 that each traffic pattern can 

be achieved by applying traffic shifting operations to the latter ones. The proof is trivial yet 

quite lengthy. Thus it is omitted in this paper.   

We let 8,N =  M = 4, 0.5α = , and T = 4 (Note that such parameter values will be 

adopted in all the following simulations unless otherwise specified.). Throughout this 

paper, the simulation results are plotted as the average of ten rounds of independent 

simulations with different random number generators and/or different seeds for random 

number generation. In each round of simulation, at least 106 packet arrivals have been 

simulated. To avoid random fluctuations, the packet loss calculations are only carried out 

after the packet-loss performance has reached a stable status.  

Both the analytical and the simulation results are presented in Fig. 2. We see that for 

any value of γ , uniform traffic pattern leads to the best performance in space-dimension 

traffic allocations. Meanwhile, for any traffic pattern, 0γ =  leads to the best performance 

in time-dimension traffic allocations. Therefore, the optimality of the uniform traffic 

distribution in both dimensions is verified. The global optimal solution (i.e., the global 

minimum packet loss) is achieved when the traffic distribution in both time and space 

dimensions is uniform. More generally and more significantly, we see that either in time 

dimension or in space dimension, those traffic allocations that can be achieved by applying 

traffic shifting operations to the others enjoy lower packet loss, which matches the 

conclusions of Theorems 4 and 5 in Section III. It is also demonstrated that the proposed 

analytical models are highly accurate, generating analytical results almost perfectly 

matching the simulation results.  
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B. Packet Loss Evaluation of Some Other OPS Configurations 

Optical packet switches are typical implemented with contention resolution 

components such as FDLs or SWCs or both, where a typical example is shown in Fig. 3. 

Since it is notoriously difficult to achieve accurate yet simple analytical models for such 

node configurations under general non-uniform traffic loads [9], [17], [27], [28], we 

investigate their packet-loss performance through numerical simulations.  

Fig. 4 shows the results where the switch is equipped with shared FDLs but no SWC. 

We denote the number of FDLs as NFDL and assume that they can be accessed by all the 

input ports. When there are more contending packets that can be handled by FDLs, the 

contending packets will be randomly selected to be buffered. We assume that all the 

incoming/outgoing channels are on the same wavelength (may be viewed as multi-fiber 

case).  From Fig. 4, we see that though the existence of FDLs helps to lower packet loss, 

the comparison method proposed in Theorems 4 and 5 remains valid, and the uniform 

traffic distribution still leads to the best performance in both time and space dimensions. In 

other words, all the major conclusions hold.  

Node configuration with SWCs but no FDL is evaluated in Fig. 5. We assume that 

there are totally W different wavelengths in each link, and a certain number (denoted as 

SWCN ) of SWCs are installed in the switch, which can be accessed by all the input ports. 

We consider two different cases where the M channels in each output link belong to a 

single-fiber (W = 4) or multiple fibers (W = 2), respectively. In both cases, we set Nswc = 2. 

The results in Fig. 2 meanwhile can be viewed as for the special case with unlimited 

wavelength-conversion capability. When 4W = , all contentions have to be resolved by 
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SWCs. When W = 2, the two channels on each wavelength help to resolve some 

contentions. Fig. 5 demonstrates that all the conclusions mentioned earlier remain valid.  

Finally, we evaluate the node configuration with both the SWCs and the FDLs, where 

the simulation results are presented in Fig. 6. We assume that a packet contention will be 

resolved by wavelength conversion as long as such is applicable before an FDL is used. 

All the conclusions hold in single-fiber (W = 4) as well as multi-fiber (W = 2) cases. Due to 

space limitation, only the single-fiber case results have been presented. The multi-fiber 

case results appear to be curves of very similar shapes yet at lower values.  

C. Load Balancing Algorithm in the Most Fundamental Node Configuration 

Fig. 7 presents the simulation results where the LB algorithm is applied in the most 

fundamental node configuration as illustrated in Fig. 1, where the multiple channels (M = 4) 

in each link are either of the same wavelength or equipped with unlimited wavelength-

conversion capability. The packet loss performance versus the adjustment capability maxβ  

in time domain is shown in Fig. 7(a), where we assume that the traffic pattern is uniform. 

Two different cases, namely Case 1 where tα = {0.2, 0.4, 0.6, 0.8} and Case 2 where tα = 

{0.1, 0.3, 0.7, 0.9} respectively, have been considered. The packet losses are steadily 

lowered with increased values of maxβ , until finally the uniform time-domain distribution 

is achieved (where max 0.4β =  in Case 1 and max 0.6β =  in Case 2 respectively).  

For traffic allocations in space dimension, it is presented in Fig. 7(b) the effectiveness 

of the LB algorithm. Again we consider two different cases: geometric-distributed case 

where 1/ 1.3,  2,3,...,i i R i Nρ ρ − = = = , and the hotspot case. For both cases, we let 0.5α = . 
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Both the analytical and the simulation results show that, the lowest packet losses are 

achieved when max
1

1 1
2

N

i
i N

β ρ
=

= −∑ , that is, max 0.246β ≈  for the geometric-distributed  

case, and max 0.375 β =  for the hotspot case respectively, where the traffic patterns are 

adjusted to be uniform.   

D. Load Balancing Algorithm in Some Other OPS Configurations 

For OPS implemented with FDLs and/or SWCs as illustrated in Fig. 3, their packet-

loss performance versus the adjustment capability maxβ , in both time and space dimensions, 

have been extensively simulated. Due to space limitation, we present in Fig. 8 through Fig. 

10 only the results for load allocations in time dimension, while all the conclusions hold in 

space dimension as well.  We still consider Case 1 where tα = {0.2, 0.4, 0.6, 0.8}; and 

Case 2 where tα = {0.1, 0.3, 0.7, 0.9} respectively, where traffic pattern is still assumed to 

be uniform. 

 Fig. 8 shows the performance of OPS with only FDLs, where NFDL = 2 and W = 1. 

Compared with Fig. 7, with FDLs the packet losses in Fig. 8 are largely reduced. However, 

the effectiveness of the LB algorithm is not affected, which still manages to achieve the 

best performance at exactly the same value of maxβ  as that in Fig. 7(a). Very similar 

observations could be made in Fig. 9, where we have SWCs (W = 4 and NSWC = 2) but no 

FDL, as well as in Fig. 10, where we have both SWCs (W = 4 and NSWC = 2) and FDLs 

(NFDL = 2).  
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V.  CONCLUSIONS  

In this paper, we evaluated the impacts of traffic allocations on the performance of 

OPS. Firstly, we revealed the convexity of the packet-loss functions in various OPS. 

Specifically, for the most fundamental OPS configuration, we proved that it has convex 

packet loss. For any other node configuration, we proved that its packet loss remains as a 

convex function of traffic load as long as the speeding-up condition is satisfied. Secondly, 

for any OPS with convex packet loss, we proposed a simple algorithm for efficiently 

comparing some different traffic allocations and tell which one of them leads to the lowest 

packet loss. We also showed that in either time or space dimension, the lowest packet loss 

is achieved under uniform traffic distribution. Thirdly, for OPS with limited capability of 

adjusting a given traffic distribution, we proposed a simple Load Balancing algorithm for 

minimizing the packet loss after the adjustment. These contributions are not restricted to 

any particular node configuration, therefore they provide some useful guidelines and 

algorithms for achieving efficient traffic allocations in various OPS networks.   
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APPENDIX A:  PROOF OF THE CONVEXITY OF TRAFFIC LOSS IN THE 

MOST FUNDAMENTAL OPS CONFIGURATION  

Proof of Theorem 1: We prove the convexity of the packet loss function by showing 

that ( )
2

2 0.d PL
dα

≥  More specifically, we prove that,  

( )
2

2 0,  1, 2,... .i
d PL i N

dα
≥ =                                             (A.1)  

We have: 
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          (A.2) 

By expanding the above equation with 0,1,..., ,j M=  we have that the coefficient of each 

item ( ) 22 1 ,  0,1,..., ,NM jj j
i i j Mρ α ρα − −+ − =  can be calculated as:  
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Therefore, Eq. (A.2) can be simplified to be   

( ) ( )
2

11 1 1
2 ( 1) ( ) 1 N M MM M M

i N M i i
d PL C N M M N M M

d
ρ α ρα

α
⋅ − −− + −

⋅= ⋅ ⋅ − + ⋅ ⋅ − − .      (A.4) 

Since 1N ≥ , 1M ≥ , 0 1iρ≤ ≤ , 0 1α≤ ≤ , and (1 ) 0iρα− ≥ , we have ( )
2

2 0i
d PL

dα
≥ . 

Therefore, PLi is a convex function of α . Consequently, PL is a convex function of α . □ 

Proof of Theorem 2: As α  and iρ  are at symmetric positions in the function 

,  1,2,... ,iPL i N=  by applying the same technique as above, we can prove that PL is a 

convex function of iρ , 1,2,...i N= . □ 

APPENDIX B:  PROOF OF THE CONVEXITY CONDITION  

Proof of Lemma 1: (i) Necessity. Since ( )f x  is a continuous convex function with 

first-order derivative, we have that, for any 1 2x x≤ ,  
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1 2'( ) '( ).f x f x≤                                                       (B.1) 

For any 1 2x x≤  and 0xΔ ≥ , there are possibly two different cases: Case (a) 

1 2x x x+ Δ ≤ ; and Case (b) 1 2x x x+ Δ > . Hereafter we discuss the two cases separately.  

Case (a) where 1 2x x x+ Δ ≤ : for such case, from the well-known mean value theorem, 

we have that there exists an there exists an *
1x , *

1 1 1 2x x x x x≤ ≤ + Δ ≤ , such that  

*
1 1 1( ) ( ) '( ) .f x x f x f x x+ Δ − = ⋅Δ                                      (B.2) 

Meanwhile, there exists *
2x , *

2 2 2x x x x≤ ≤ + Δ , such that  

*
2 2 2( ) ( ) '( ) .f x x f x f x x+ Δ − = ⋅Δ                                       (B.3) 

From Eq. (B.1), since * *
1 2 2x x x≤ ≤ , we have that  

 * *
1 2'( ) '( ).f x f x≤                                                       (B.4) 

Therefore, from Eqs. (B.2)-(B.4), we obtain that 

 1 1 2 2( ) ( ) ( ) ( )f x x f x f x x f x+ Δ − ≤ + Δ −                                  (B.5) 

Case (b) where 1 2x x x+ Δ > : Similar to that in Case (a), there exists a 1y , 1 1 2x y x≤ ≤ , 

such that  

2 1 1 2 1( ) ( ) '( ) ( ).f x f x f y x x− = ⋅ −                                    (B.6) 

Meanwhile, there exists a 2y , 2 1 2 2x x x y x x< + Δ ≤ ≤ + Δ , such that 
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( ) ( )2 1 2 2 1 2 2 1( ) ( ) '( ) '( ) .f x x f x x f y x x x x f y x x+ Δ − + Δ = ⋅ + Δ − − Δ = −        (B.7)                             

Since 1 2 2y x y≤ < , similar to that in Eq. (B.4), we have 

 1 2'( ) '( ),f y f y≤                                                       (B.8) 

 which in turn, similar to that in Eq. (B.5), leads to the conclusion that  

 2 1 2 1( ) ( ) ( ) ( ),f x f x f x x f x x− ≤ + Δ − + Δ                                 (B.9) 

or equivalently, 

1 1 2 2( ) ( ) ( ) ( ).f x x f x f x x f x+ Δ − ≤ + Δ −                               (B.10) 

Therefore, the necessity is proven for both case (a) and case (b).  

(ii) Sufficiency. For any 1 2x x≤ , let 1 1,y x=  1 2
2 ,

2
x xy +

=  and 2 1

2
x xy −

Δ = . From the 

given condition, since 1 2,y y≤  we have  

1 1 2 2( ) ( ) ( ) ( ),f y y f y f y y f y+ Δ − ≤ + Δ −                            (B.11) 

or equivalently,  

1 2 1 2
1 2( ) ( ) .

2 2
x x x xf f x f x f+ +⎛ ⎞ ⎛ ⎞− ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                              (B.12) 

Therefore,  
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1 2
1 2( ) ( ) 2 ,

2
x xf x f x f +⎛ ⎞+ ≥ ⎜ ⎟

⎝ ⎠
                                     (B.13) 

which proves that ( )f x  is a convex function of x. Therefore, the sufficiency of the 

condition is also proven. □ 

APPENDIX C: PROOF FOR THE TRAFFIC ALLOCATION  

COMPARISON METHOD  

Proof of Theorem 5: (i) Necessity. We prove by contradictory. If there exists an M, 

1 1M K≤ ≤ − , such that  

1 1

,
M M

i i
i i

a b
= =

<∑ ∑                                                    (C.1) 

By applying any number of traffic shifting operations to { }1 2, , , Kb b b" , it is trivial to prove 

that 
1

M

i
i

b
=
∑  will never been decreased. In other words, inequality (C.1) always holds after 

any number of traffic shifting operations. Therefore { }1 2, , , Kb b b"  can never be transferred 

into { }1 2, , , Ka a a" . 

(ii) Sufficiency. From the given condition, we have that 
1 1

1 1

K K

i i
i i

a b
− −

= =

≥∑ ∑  and 

1 1

.
K K

i i
i i

a b
= =

=∑ ∑  Therefore .K Ka b≤  Apply a traffic shifting operation to { }1 2, , , Kb b b"  by 

letting jK Kb a=  and k ( )1 1K K K Kb b b a− −= + − , where jKb  and k1Kb −  denote the new values of 

Kb  and 1Kb −  after the operation, respectively. In other words, we shift a portion of Kb  to  
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1Kb −  such that after the operation, jK Kb a= . Since 
2 2

1 1

K K

i i
i i

a b
− −

= =

≥∑ ∑  and jK Kb a= , we have 

k
1 1.K Ka b− −≤  Similar to the above, we can apply a traffic shifting operation to k1Kb −  to shift 

a part of it to 2Kb −  such that after the shift, the new value of k1Kb −  equals to 1Ka − . The 

procedure can be repeated until finally after 1K −  traffic shifting operations, 

{ }1 2, , , Kb b b"  is transferred into { }1 2, , , Ka a a" . □ 
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Fig. 1:  The most fundamental OPS configuration. 
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Fig. 2:  Performance of the most fundamental OPS under various load  

distributions in time and space dimensions. 
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Hotspot  (simulation)

N = 8, M = 4, α = 0.5, T = 4 
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Fig. 3:  Typical OPS configuration with SWCs and FDLs. 
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Fig. 4: Packet-loss performance in the OPS with FDLs but no SWC. 

N = 8, M = 4, α = 0.5, T = 4,  
NFDL = 2 

Uniform (simulation)
R = 1.1   (simulation) 
R = 1.2   (simulation)
Hotspot  (simulation)
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(a) M = 4, W = 4 (single-fiber case).  
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 (b) M = 4, W = 2 (multi-fiber case). 

 
Fig. 5: Packet-loss performance in the OPS with SWCs but no FDL.  

N = 8, M = 4 (W = 4), 
α = 0.5, T = 4, NSWC = 2 

Uniform (simulation)
R = 1.1   (simulation)

R = 1.2   (simulation)

Hotspot  (simulation)

N = 8, M = 4 (W = 2), 
α = 0.5, T = 4, NSWC = 2 

Uniform (simulation)
R = 1.1   (simulation)

R = 1.2   (simulation)

Hotspot  (simulation)
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Fig. 6:  Packet-loss performance in the OPS with both SWCs and FDLs. 

N = 8, M = 4 (W = 4), α = 0.5, 
T = 4, NSWC = 2, NFDL = 2

Uniform (simulation)
R = 1.1   (simulation)

R = 1.2   (simulation)

Hotspot  (simulation)
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(a) Adjustments in time dimension (uniform traffic pattern). 
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(b) Adjustments in space dimension. 

 
Fig. 7:  Performance of the LB algorithm in the most fundamental OPS configuration. 

Case 1  (analytical) 
Case 1  (simulation) 
Case 2  (analytical) 
Case 2  (simulation) 

N = 8, M = 4, α = 0.5, T = 4 

  N = 8, M = 4, α = 0.5 

R = 1.3  (analytical) 
R = 1.3  (simulation) 
Hotspot  (analytical) 
Hotspot  (simulation) 
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Fig. 8:  Performance of the LB algorithm in OPS with only FDLs ( 2FDLN = ). Traffic 

allocation adjustments are made in time dimension (uniform traffic pattern). 

N = 8, M = 4 (W = 1) 
α = 0.5, T = 4, NFDL = 2 

Case 1 (simulation) 
Case 2 (simulation) 
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Fig. 9:  Performance of the LB algorithm in OPS with only SWCs. (NSWC = 2). Traffic 

allocation adjustments are made in time dimension (uniform traffic pattern). 

N = 8, M = 4 (W = 4) 
α = 0.5, T = 4, NSWC = 2 

Case 1 (simulation) 
Case 2 (simulation) 
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Fig. 10:  Performance of the LB algorithm in OPS with both FDLs and SWCs (NFDL = 2, 

NSWC = 2). Traffic allocation adjustments are made in time dimension (uniform traffic 

pattern). 

N = 8, M = 4 (W = 4), α = 0.5 
T = 4, NFDL = 2, NSWC = 2 

Case 1 (simulation) 
Case 2 (simulation) 


