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Abstract 

Clustering is a widely adopted energy-saving technique in wireless sensor networks (WSNs). In this paper, 

we study algorithms for finding the best locations of cluster heads in WSNs to minimize the overall 

energy consumption. Specifically, based on the assumption that the global information of all the sensors’ 

locations or location distribution is available, algorithms are proposed for finding 1) the best location of 

the cluster head in a single given cluster; 2) the best formation of a given number of clusters where each 

cluster head has to communicate with base station directly; and 3) the best formation of a given number of 

clusters where there can be ad-hoc transmission between cluster heads, respectively. For each case, 

algorithms are designed for free-space and multipath energy consumption models respectively. 

Theoretical analysis and extensive simulation results show that the proposed algorithms are fast and can 

steadily achieve satisfactory results.  The calculation results of the proposed algorithms provide a useful 

benchmark for evaluating various local information-based distributed clustering schemes or schemes 

based on partial or inaccurate global information.   

Keywords: Wireless sensor networks; clustering algorithms; energy efficiency, free-space model, 

multipath model. 

 

 



1. Introduction  

With the developments of low power and multi-functional sensors, wireless sensor networks (WSNs) are 

becoming increasingly important in research and applications. WSNs composed of sensors with ability of 

sensing, data processing and communication have paved the way for wide applications in monitoring, 

tracking and control, etc. 

As sensor nodes have a limited battery power supply and usually cannot be readily replaced or recharged, 

a main concern in deploying WSNs is to achieve high energy efficiency. Energy consumption is a critical 

constraint that imposes restrictions on lifetime, communication range and data rate in WSNs. 

Clustering is one of the promising techniques [1, 2] for lowering energy consumptions and hence 

prolonging network lifetime. In a clustered WSN, sensor nodes are partitioned into a certain number of 

clusters, each of which consists of a cluster head (CH) and non-cluster head members (non-CHs). CH 

collects information from all the cluster members and then forwards to other CHs or base station (BS), 

while non-CHs are responsible for sensing environment and transmitting information to the 

corresponding CH. 

Extensive researches have been conducted for achieving high energy efficiency in clustered WSNs (e.g., 

[3-29]). Existing methods are largely composed of two categories: centralized methods (e.g., [4-11, 29]) 

and distributed methods (e.g., [3, 5, 12-18]). Centralized methods typically request knowledge of the 

location of each sensor or the location distribution of all the sensors such that decisions can be made to 

achieve a certain kind of global optimization. Distributed methods, on the other hand, make most or all 

decisions based on local information, typically with limited information exchanges between neighborhood 

sensors. The distributed methods help achieve better scalability of networks, while the centralized 

methods are useful where location of each sensor or location distribution of all the sensors is known to a 

central controller. Centralized methods also serve as a good reference for network pre-plan and a useful 



benchmark for evaluating the performance of distributed methods or methods based on partial/inaccurate 

global information. In this paper, we focus on studying global information-based centralized methods. 

It has been proved that finding the optimal clustering of a WSN for minimizing the overall energy 

consumption is an NP-complete problem [19]. Numerous centralized algorithms have been proposed and 

a few representative ones among them are briefly presented here. In LEACH-C (Low Energy Adaptive 

Clustering Hierarchy-Centralized) [5], BS computes the average node energy and chooses the CHs based 

on the residual energy and location information of each sensor. The number of clusters is determined 

beforehand. DSC (Dynamic/Static Clustering) [4] makes improvements to LEACH-C, mainly by 

lowering the communication overhead in the setup phase. BCDCP (Base Station Controlled Dynamic 

Clustering Protocol) [6] utilizes a high-energy BS to set up clusters and the routing paths between CHs. 

The main features of BCDCP include the formation of balanced clusters, BS-supervised randomized 

rotation of CHs, and CH-to-CH routing for transferring data to BS, etc. AHP (Analytical Hierarchy 

Process) [30] considers three different factors, namely energy, mobility and the distance to the involved 

cluster centriod respectively, in calculating the local weight and global weight of sensor nodes. The CHs 

are chosen by measuring the combined values of these two weights. And CH re-selection is triggered 

based on node mobility and remaining energy levels. In [31], Memetic Algorithm (MA) was developed to 

organize the sensors into clusters. The calculations adopt a fitness function which takes a few factors into 

account including the remaining energy of each sensor, distance to BS, distance between CHs and the 

time period between clustering operations, etc.  In DMCLUSTER (Data Mining Cluster) [9], data mining 

techniques are adopted to infer the location and topology information from the information of remaining 

energy. In [32], CHEFL (Cluster Head Election using Fuzzy Logic) was proposed to select CHs 

according to three fuzzy variables: energy, concentration and centrality. In DCC (Distance-based 

Crowdedness Clustering) algorithm [33], it is proposed to determine the cluster heads in WSNs based on 

the crowdedness of sensor nodes with the objective of minimizing the overall energy consumption. 



Among the existing results, DCC has the same objective function and adopts largely the same 

assumptions as what we will adopt in this paper. It is therefore the most closely related existing result.  

Other related results include distributed clustering algorithms (e.g. [3, 5, 12-18, 34]), algorithms for 

maximizing network connectivity (e.g. [35-37]), lifetime (e.g. [38, 39]) and cluster stability (e.g. [40, 41]) 

respectively, and MAC layer design (e.g. [42, 43]), etc. A good survey of clustering techniques and 

algorithms is referred to [44].   

In this paper, we propose efficient algorithms for finding the best locations of a given number of CHs 

such that the overall energy consumptions of a given network are minimized. Specifically, algorithms are 

proposed for finding 1) the best location of CH in a single cluster; 2) the best formation of a given number 

of clusters in a WSN where each CH has to communicate with BS directly; and 3) the best formation of a 

given number of clusters where there can be ad-hoc transmission between CHs, respectively. For each 

case, we consider two different models, namely the free space and multipath power consumption models 

(explained in detail later), and propose an algorithm for each of them respectively. Theoretical analyses 

and extensive simulation results show that the proposed algorithms are efficient and steadily achieve 

satisfactory performance.   

The reminder of this paper is organized as follows. Design and analysis on single-cluster algorithm is 

proposed in Section 2. In Section 3, the algorithm is extended to multi-cluster networks, with and without 

ad-hoc transmission between CHs respectively. Extensive simulation results and discussions are 

presented in Section 4. Finally, Section 5 concludes the paper.   

2. Single cluster head allocation (SCHA) algorithm  

We first propose an algorithm for finding the optimal location of the CH in a single given cluster. As that 

in many existing work (e.g., [5]), we consider Friss free space model (also termed as free space model. In 

this paper, the two names are used interchangeably.) where energy consumption for data transmission is 

proportional to the square of transmission distance, and multipath model where energy consumption is 



proportional to the fourth power of transmission distance, respectively. The former model applies to the 

cases where transmission distance is relatively short, while the latter one better resembles the energy 

consumption in longer-distance data transmission [45]. Note that in this paper, when we refer to the 

“multipath model case”, we make the assumption that transmissions between CHs and/or between CH 

and BS follow the multipath model while transmissions between CH and its non-CHs still follow the free 

space model. This makes sense since a cluster is typically of a limited area. The proposed algorithms 

however can be easily extended to the case where the multi-path model is also used between CH and its 

non-CHs. Such extensions are omitted in this paper due to their limited significance in real-life 

applications. 

Unless otherwise specified, we adopt the same assumptions and notations as those in [5]. The definitions 

of the notations used in equations and their typical values adopted in simulation are summarized in Table 

1. For a given cluster with N non-CHs, the position of each node is represented as ( , )i ix y , 1,  2... .i N=  

The objective of the algorithm is to find the optimal location for CH (an N+1-th node) leading to the 

minimum overall energy consumption of the cluster.  

For the Friss free space model, the energy consumption of a WSN can be calculated as follows  
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and substitute Eq. (2) into Eq. (1), we have  
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Without loss of generality, we denote the location of BS as the original point (0,0) . Denote the ideal 

location of CH as * *( , )x y . According to Eq. (3), the overall energy consumption of the given cluster is 

derived as below.  
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where  

 1 3 2 elec DAC C C lE lE= + = + .      (5) 

Using ( , )F x y  to represent the overall energy consumption of the cluster as a function of the CH 

location ( , )x y , we have 
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which easily leads to  
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From Eq. (9), we have that the optimal position of CH is lying on the straight line connecting BS and the 

weight center of the cluster, as illustrated in Fig. 1. 

Let 
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Substitute Eq. (10) into Eq. (8), we get that the ideal position of CH is ( , )i ix y
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Substituting Eqs. (10) and (11) into Eq. (4), we get the energy equation as follows 
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An interesting observation from Eq. (12) is that the third and fourth items on the right-hand side may be 

viewed as calculating the variance of N+1 locations including ( , ),  1,2,...,i ix y i N=  and (0, 0). Since 

these two items typically dominate the energy consumption of a sensor cluster, for a cluster with a large 

enough number of sensors (i.e., a large enough value of N) following the uniformly random distribution, 

the effects of the location (0,0) may be neglected and consequently, the overall energy consumption is 

approximately proportional to the number of sensors.  



Another observation is that the overall energy consumption of the free space model is symmetric to the 

best location of CH (
1
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∑ ). Specifically, from Eq. (6) we have 
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We now proceed to analyze the best CH location for the multipath model. Similar to the earlier 

discussions, we shall have  
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By adopting analysis similar to that for the free space model case, we have that since 
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which is obviously negative for any 0 1ρ< ≤ , we have that ( )G ρ is a monotonic function in the interval 

(0, 1]. The value of ρ satisfying Eq. (17) therefore can be calculated by many numerical computational 

methods, e.g., the bisection method.  

Finally, we summarize the cluster head allocation algorithm as follows: 

Single Cluster Head Allocation Algorithm (SCHA) 

1. Calculate ix
N
∑ and iy

N
∑ . 

2. Find out the optimal solution of ρ through Eq. (11) for the free space model and Eq. (17) for the 

multipath model, respectively. 

3. Calculate the optimal CH location ( , )i ix y
N N

ρ ρ∑ ∑ . □ 

Remark: In the above algorithm, we assume that all the N sensors serve as non-CHs and the objective is 

to find the optimal location of the CH as an N+1-th sensor. The algorithm can be easily revised to find the 

best location of CH where one of the N sensors has to serve as CH. For example, we may choose the 

sensor closest to the ideal position to be the CH. Detailed designs and performance evaluation of such 

extensions, however, are out of the scope of this paper. Note that, to handle the extension case as stated 

above, the number of non-CHs needs to be changed from N to N-1 in a few equations. □ 



The algorithm above is of a low complexity O(1) which is independent of cluster size. As implicated from 

the algorithm, it applies to the cases with either the knowledge of every node’s position or only the 

knowledge of the location distribution of all nodes since the algorithm only needs calculating the weight 

center of all the sensors. 

3. Algorithms for optimizing multi-cluster head locations  

3.1 Algorithms for finding multi-cluster head allocations without ad hoc transmission between CHs 

The low complexity of the SCHA algorithm allows it to be extensively utilized to minimize the overall 

energy consumptions of multi-cluster WSNs. In this subsection, we consider the case where there is no ad 

hoc transmission between CHs.  

If we ignore the energy consumptions for transmitting data from CHs to BS and only try to minimize the 

energy consumptions by NCHs to transmit data to CHs, the problem reduces to the planar k-means 

problem [46], which is known to be NP-hard. Specifically, the classic planar k-means problem is defined 

as follows. Given N points in a plane, find k centers which minimize the sum of square of the Euclidean 

distance of each point to its nearest center. Below we design a heuristic algorithm for the multi-cluster 

head allocation problem.  

Assume a total of K clusters need to be set up. The heuristic algorithm is depicted as follows: 

Multi-Cluster Head Allocation Algorithm for WSNs without ad-hoc transmission (MCHA-I) 

1. Randomly choose K locations in the interested area as CHs positions. 

2. Each of the other sensors joins the CH with the closest distance to form up clusters. 

3. Apply the SCHA algorithm proposed in Section 2 to select the optimal CH location for each cluster. 

Implement Step 2 and Step 3 iteratively until no further improvements can be made. □  



We repeat the MCHA-I algorithm above for a large enough times, each time with a different initial set of 

CHs, and finally select among them the one with the lowest energy consumption as the solution.  

It can be easily proven that the MCHA-I algorithm converges in finite iterations. Specifically, as we can 

see, each time when Step 3 is executed, the overall energy consumption either remains unchanged (where 

each CH is already at the best location for its cluster) or lowered (where a better location is found). The 

energy may be further lowered or kept unchanged in Step 2 when every sensor joins the cluster with the 

closest CH. In short, the overall energy consumption monotonically decreases in each iteration until a 

local optimum is reached. 

The time complexity of the MCHA-I algorithm is low. Specifically, the calculations mainly come from 

step 2, which has a complexity of O(KN). Step 3, as discussed earlier, has a complexity of O(1).  

Remark: Starting from a set of randomly selected CHs, the MCHA-I algorithm can only ensure achieve a 

local optimum solution. Repetitively running the algorithm from different initial sets of CHs helps 

improve the chance that the global optimal or sub-optimal solution is found. □ 

3.2 Algorithm for multi-cluster head allocation in WSNs with ad hoc transmission between CHs 

We consider the case in multi-cluster WSNs where CHs can transmit to BS through ad-hoc 

communication with other CHs. The objective is still to minimize the overall energy consumption. There 

are two options for each CH to communicate to BS in such networks: to communicate directly to BS; or 

to ad-hoc through another CH. The main idea of the proposed algorithm is to find the optimal solution for 

each of these two options and then choose among them the one with a lower overall energy consumption. 

Obviously the SCHA algorithm can be directly applied to find out the optimal solution for the first option. 

For the second option, we calculate the best solution of CH location where each of the nearby CHs is 

serving as the next-hop station in ad-hoc transmission and then select the best one among them. It is 

noteworthy that the best solution means the solution leading to the lowest overall energy consumption, 

which does not necessarily lead to the lowest energy consumption of the cluster being considered. The 



algorithm for finding the optimal position of CH for ad-hoc transmission through other CHs can be 

regarded as a simple extension of the SCHA algorithm, where BS is not located at the origin point but at 

the position of the next CH in the path of ad hoc transmission to BS (hereafter termed as next-hop CH for 

convenience of discussion). With ad hoc transmission through a certain next-hop CH, the energy 

consumption of a cluster with N nodes in the free-space model can be derived as follows:  
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The overall power consumption can be expressed as follows: 
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 where ( , )nxt nxtx y  represents the location of the next-hop CH being considered. Definitions of the other 

notations can be found in Table 1. Let 
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Following the same derivation as that for the SCHA algorithm, we have  
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Be using similar approach, we can easily develop analysis for the case with multi-path model 

transmission between CHs. In this paper, we omit discussions on such case since the extension is 

straightforward. 



With the extended SCHA algorithm (termed as ECHA algorithm hereafter) as stated above, we can 

proceed to develop the CH allocation algorithm for multi-cluster WSNs with ad hoc transmission between 

CHs. In this paper, we assume that energy consumption for ad-hoc transmission from a CH to BS equals 

the sum of the power consumption for transmitting from this CH to its next-hop CH (CHnxt) plus the 

energy consumption for forwarding the aggregated information of its next-hop CH’s cluster to BS. An 

example is depicted in Fig. 2: if CH2 is serving as the next-hop CH for CH3, then the energy consumption 

for ad hoc transmission from CH3 to BS equals the energy consumption from CH3 to CH2 plus the energy 

consumption for transmitting the aggregated information of CH2’s own cluster to BS, with or without 

further ad hoc transmission through other CHs.  

The multi-cluster head allocation algorithm for WSNs with ad hoc transmission between CHs is depicted 

as follows.  

Multi-Cluster Head Allocation Algorithm for WSNs with ad-hoc transmission between CHs 

(MCHA-II) 

First Iteration: 

1. Initialization: Randomly select K sensors as CHs. The other sensors join the cluster with the closest 

CH. 

2. Sorting: Sort all the CHs in an increasing order of their distances to BS. When there is a tie, break it 

randomly. Denote these clusters as 1 2, ,..., ,KC C C and their respective CHs as 1 2, ,..., KCH CH CH .  

3. CH location: 

a. Use the SCHA algorithm to find the new 1,CH  

b. For iC  (1 i K< ≤ ) 



i. Use the SCHA algorithm to find the new iCH assuming that CH is communicating directly to 

BS. Calculate the energy consumption by iCH for forwarding the aggregated information to 

BS (denoted as f
iP ) as well as cluster Ci’s overall energy consumption (denoted as all

iP ). 

ii. For each 1 j i≤ < , use the ECHA algorithm to find the new iCH  assuming that iCH  uses 

jCH  as the next-hop CH in its ad-hoc transmission to BS. Calculate the corresponding 

all f
i jP P+   (Note that, as mentioned earlier, we assume that f

jP  equals the additional energy 

consumption iCH  imposes on the other CHs for the case where it uses  jCH  as the next-hop 

CH in its ad hoc transmission to BS).  

iii. Compare power consumption calculated in Steps 3.b.i and 3.b.ii and select among them the one 

with the lowest value of all f
i jP P+ . If the best solution has been achieved in Step 3.b.ii where 

iCH  communicates with BS through a certain *jCH  as the next-hop CH, update f
iP  as being 

equaling to *
f

jP  plus the energy consumption for communicating between iCH  and *jCH . 

4. Re-clustering: Each sensor joins the cluster with the closest CH. 

Following Iterations: 

In the following iterations, we basically repeat Steps 2-4 of the first iteration, with only one revision in the 

SCHA and ECHA algorithms: if in the last iteration, *jCH  has been chosen as the next-hop CH for 

iCH ’s ad-hoc transmission to BS, then in the Step 3 of the next iteration, the new *jCH  should be 

calculated as if there were a non-CH of cluster *jC  at the position of iCH . If iCH  is not only 

forwarding its own cluster’s aggregated information to jCH  but k other clusters’ information as well, the 

new *jCH  should be calculated as if there were k+1 non-CHs of cluster *jC  at the position of iCH . For 



example, in Fig. 2, if according to the calculation results, 2CH should send its own cluster’s information 

as well as information from 3CH  and 4CH  to 1CH , in the next iteration, the ideal position of 1CH  

should be calculated as if there were three non-CHs of cluster 1C  at the position of 2CH . □ 

The iterative calculations terminate when no further improvements could be made. 

Again, it is easy to prove that the overall energy consumption monotonically decreases in each iteration. 

Therefore, the algorithm converges to a local optimum in a finite number of iterations. Repetitively 

running the algorithm from different initial sets of CHs helps improve the chance that the global optimal 

or sub-optimal solution is achieved. 

The time complexity of each iteration in the MCHA-II algorithm remains the same as that of the MCHA-I 

algorithm at O(KN), which comes from step 4. The step 3.b.ii has a complexity of O(K2) which is lower 

than O(KN).   

4.  Simulation results and discussions 

The performances of the proposed algorithms have been evaluated by extensive numerical simulations. 

Due to length limit, only a few representative results are presented in this paper while the conclusions 

hold in all the other cases we have tested. All figures and tables showing average values of a number of 

realizations are presented with 95% confidence interval unless otherwise specified. The confidence 

intervals of the proposed algorithms are generally quite small; in some figures they may be smaller than 

the symbols, making these figures look like not showing confidence interval. In this paper, we simulate 

the cases where sensors are distributed in a square region with a uniformly random distribution. The 

proposed algorithms certainly also work for any other non-uniform distribution in less regular regions.   

We firstly compare the results obtained by the SCHA algorithm with the solutions of the brute force 

method. Specifically, we calculate the optimal location of CH by using the SCHA algorithm and then 



assign the sensor closest to the optimal location as the CH. While using the brute force method, we assign 

each of N  sensors as CH and find among them the best one. The results are presented in Fig. 3. We 

assume that the sensor distribution areas are 0 , 100x y≤ ≤ for the free space model and 

100 , 200x y≤ ≤ for the multi-path model respectively; the length unit is meter. Without loss of generality, 

BS is always located at (0,  0) . There are 100 realizations for each of the two models, each realization 

with a different randomly generated network; and we show the average results of all the realizations. As 

shown in Figs. 3(a) and 3(b), the results obtained from the SCHA algorithm match those from the brute 

force method, which verifies the correctness of the SCHA algorithm. The calculation time for each 

realization has always been in sub-second scale on a PC with Intel Core 2 Duo CPU 2.66GHz and 2.0GB 

of RAM. From Fig. 3 we also see that the overall energy consumption is approximately proportional to 

the number of nodes, which verifies our discussion in Section 2.  

In Fig. 4, we illustrate the relationship between the overall energy consumption and the CH location in 

relevance to the optimal location. We can see that for the case where sensors follow a uniformly random 

distribution, the overall energy consumption is symmetric to the optimal location of (
1
ix

N +
∑ ,

1
iy

N +
∑ ), as 

we have proved in Section 2. 

We then present simulation results obtained by using the MCHA-I algorithm, assuming there is no ad hoc 

transmission between CHs. The sensor distribution areas remain the same as those for the single cluster 

networks, and 4 clusters need to be formed up by 100 sensors randomly distributed in the areas. For each 

case, 100 independent simulation realizations have been carried out, each time with a different randomly 

selected set of 4 sensors as initial CHs. Fig. 5(a) and Fig. 5(b) depict the best results of these 100 

realizations for the free space and multi-path model cases respectively. Specifically, we show for the 

realization which achieves the best result the fast convergence of overall energy consumptions in only a 

few iterations. To further demonstrate the efficiency of the algorithm, Figs. 6(a) and 6(b) illustrate the 

distribution of the numbers of iterations needed to achieve the final results in all the 100 realizations. As 



we can see, the majority of the 100 realizations converge in no more than 7 iterations (94% for the free 

space model and 91% for the multi-path model respectively), and we never need to have more than 9 

iterations before the calculations converge.  

As discussed earlier in Section 3, for multi-cluster networks, the proposed algorithm can only ensure 

achieving local optimum in each realization. It is therefore important to have an idea on how quickly the 

results can be improved with the number of realizations. Figure 7 shows for 100 different randomly 

generated networks, the improvements of the best results with the number of realizations, each realization 

with a different set of randomly selected CHs in the initialization step of the MCHA-I algorithm. We see 

that having 60-100 realizations is generally sufficient for achieving satisfactory results while having 

further more realizations may not significantly help. Also we note that for the multi-cluster networks, the 

calculation results on different networks have a larger 95% confidence interval than that for a single-

cluster network though it is still quite small: the 95% confidence interval is smaller than 1% of the overall 

energy consumption, meaning that the optimal clustering does not change drastically in different networks 

as long as these networks are with the same number of sensors distributed in the same region following 

the same uniform random distribution.  

As aforementioned in Section 1, among all the existing methods, DCC algorithm adopts the most similar 

assumptions and design objective to those of the proposed algorithm, more specifically, the MCHA-I 

algorithm. Therefore we compare the performances of these two methods. We test 9 different cases where 

the number of sensors varies from 100 to 900 and they are dispersed in the area of 0 , 200x y≤ ≤ . For 

each case, we firstly find out the optimal number of clusters by using the DCC algorithm (i.e., the number 

of clusters is optimized for the DCC algorithm), and then adopt the same number of clusters in the 

MCHA-I algorithm. To simplify the discussions, we assume that the multipath model case is adopted in 

calculating the energy consumptions which means transmissions between CHs and/or between CH and 

BS follow the multipath model while transmissions between CH and its non-CHs still follow the free 

space model. While using the MCHA-I algorithm, we implement 100 independent realizations for each 



network and choose the best solution among them. Figure 8 shows the average results from 100 different 

randomly generated networks. Specifically, Fig. 8(a) shows the results where sensors have a uniform 

random distribution in the region; while Fig. 8(b) is for the case where the x- and y-coordinates of each 

sensor independently follow an exponential distribution with an expected value of 30 (For convenience, 

hereafter we term such case as the exponential distribution model.). We see that MCHA-I outperforms 

DCC by 5.09%-15.62% in the overall energy consumptions for the uniform distribution model and by 

6.80%-8.89% for the exponential distribution model. Note that for both algorithms the confidence 

intervals are rather small for both of the two distribution models, making them hardly visible in the 

figures. 

We now further evaluate the efficiency of MCHA-II algorithm and equally important, how much the ad 

hoc transmission between CHs can help lower overall energy consumptions. We assume that the 

interested areas remain the same as before and 4 clusters are to be formed up. We find that MCHA-II 

algorithm converges almost as quickly as the MCHA-I algorithm. Due to length limit, we omit detailed 

results on the convergence speed. As to the effects of allowing ad hoc transmission between CHs on 

lowering overall energy consumptions, the results are summarized in Tables 2 and 3 for the free space and 

multi-path models respectively.   

As we can see in Tables 2 and 3, for both of the two models, allowing ad hoc transmission between CHs 

helps lower overall energy consumptions. The effects however are much more significant in the multi-

path model case than those in the free space model case. This can be easily understood: in the multi-path 

model case, the energy consumption for CHs to communicate to BS is proportional to the fourth power of 

the distance between them; hence it accounts for a substantial portion of the overall energy consumption. 

Ad hoc transmission between CHs, by drastically reducing this portion, helps lower the overall energy 

consumption by 4.90%-9.31%. Such effects however become much less significant in the free space 

model case where energy consumption for CHs to communicate BS accounts for only a small fraction of 



the overall consumption: reducing this small fraction only helps lower the overall energy consumption by 

a marginal value of 0.03%-0.88%. 

Lastly we discuss on the relationship between the number of clusters and the overall energy consumption 

for both the free space and multipath model cases, with and without ad hoc transmissions between CHs 

respectively. We still adopt the same parameter values as those in earlier calculations and assume that 

sensors have a uniform random distribution in the areas. Figures 9(a) and 9(b) illustrate the results for the 

free space and multipath model cases respectively. Figure 9(a) shows that, for the free space model case, 

the overall energy consumptions firstly decrease with the number of clusters, achieving the minimum 

values where there are 5 (w/o ad hoc transmission) or 6 (with ad hoc transmission) clusters, and then go 

up. As to the multipath model case, the observations are very different: the energy consumptions steadily 

go up with the number of clusters. This can be easily understood: in the multipath model case, the energy 

consumption for the transmission from CH to BS dominates; thus having more clusters increases the 

overall energy consumptions. Note that, however, this is based on the assumption that the energy 

consumption for data transmission from non-CHs to CHs always fits into the free space model. When 

there are too few clusters, some non-CHs may be far away from any CH, making the free space model 

invalid for describing the energy consumptions for data transmission from these non-CHs to their CHs. 

Optimization algorithms can be designed for distance-based, combined free space/multipath models, 

which are not very difficult yet request rather lengthy discussions on algorithm design and performance 

evaluations. Such discussions therefore have to be left to a separate report.  

Figure 9 also shows that for both the free space and multipath model cases, having ad hoc transmission 

between CHs helps lower overall energy consumption. Specifically, when the number of clusters varies 

from 2 to 10, having ad hoc transmission between CHs lowers the overall energy consumption by 0.13% 

to 1.52% in the free space model case, and 4.07% to 19.75% in the multipath model case.  

5. Conclusions 



In this paper, we studied algorithms for finding the best locations of cluster heads in WSNs based on 

global information of sensor locations, with the main objective of minimizing the overall energy 

consumption of the whole network. We considered different cases with a single or multiple clusters, with 

and without ad hoc transmission between CHs respectively. For each case, algorithms were designed for 

both free space and multipath models, respectively. Theoretical analysis and extensive simulation results 

verified the correctness and high efficiency of all the proposed algorithms. The calculation results of the 

proposed algorithms provided a useful benchmark for evaluating various local information-based 

distributed clustering schemes or schemes based on partial or inaccurate global information.   
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Fig. 1: Illustration of the ideal position of CH. 
 
 
 
 
 
 
 
 
 



 
Fig. 2: An example of ad hoc transmission between CHs. 
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Fig. 3: Comparisons of the energy consumptions in a single cluster calculated by the SCHA algorithm and 

the brute force method respectively: (a) free space model in the region of 0 , 100x y≤ ≤ ; (b) multi-
path model in the region of 100 , 200x y≤ ≤ . 
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Fig. 4: The overall energy consumption corresponding to different CH locations in a 100-sensor, single-

cluster network with uniform random distribution: (a) free space model; (b) multi-path model; (c) 
the contour line of energy consumptions in the free space model. 
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Fig. 5: Performance of the MCHA-I algorithm in a 100-sensor network with 4 clusters. The curves show 

the best results of 100 independent realizations: (a) free space model in the region of 
0 , 100x y≤ ≤ ; (b) multi-path model in the region of 100 , 200x y≤ ≤ . 
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Fig. 6: Convergence speed of the MCHA-I algorithm: distribution of the number of iterations for the 

calculations to converge in 100 independent realizations in a 100-sensor network. (a) free space 
model in the region of 0 , 100x y≤ ≤ ; (b) multi-path model in the region of 100 , 200x y≤ ≤ . 
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Fig. 7: Overall energy consumption vs. the number of realizations of the MCHA-I algorithm. Assume 

100 sensors are distributed in the region of 100 , 200x y≤ ≤  and 4 clusters need to be set up.  
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Fig. 8: Performance comparisons between the DCC and the MCHA-I algorithms with different numbers 

of sensors in the region of 0 , 200x y≤ ≤ : (a) uniform distribution model; (b) exponential 
distribution model. 
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Fig. 9: Overall energy consumption vs. the number of clusters in a 100-sensor network with uniform 
random distribution in the areas: (a) free space model in the region of 0 , 100x y≤ ≤ ; (b) multi 
path model in the region of 100 , 200x y≤ ≤ . 

 
 
 



Table 1  
Summaries of the definitions of notations and their typical values 
 
Notations Meanings Values 
l  No. of bits in each data message    4000 bits 

N  No. of nodes in each cluster    N.A. 

elecE    Energy consumption for processing each bit of data  50 nJ/bit 

DAE    Energy consumption for data aggregation   5 nJ/bit/signal 

mpξ    Coefficient of amplifier energy in multi-path model 0.0013 pJ/bit/m4 

fsξ    Coefficient of amplifier energy in free space model 10 pJ/bit/m2 

d    Distance between communicating nodes    N.A. 

CHE    Energy consumption for CH    N.A. 

non CHE −    Energy consumption for non-CH member node    N.A. 

 

 



Table 2 

Comparisons of the overall energy consumption for the free space model cases with and without ad hoc 

transmission between CHs respectively. Assume sensors are distributed in the region of 0 , 100x y≤ ≤ and 

4 clusters need to be set up. The results in the table are average results from 100 independent realizations. 

 
100 200 300 400 500 

W/o ad-hoc transmission (nJ x 107) 4.4949 8.9221 13.2400 17.5710 22.015 

With ad-hoc transmission (nJ x 107) 4.4778 8.8434 13.2360 17.5630 21.9850 

 
 

 

Table 3 

Comparisons of the overall energy consumption for the multipath model cases with and without ad hoc 

transmission between CHs respectively. Assume sensors are distributed in the region of 100 , 200x y≤ ≤  

and 4 clusters need to be set up. The results in the table are average results from 100 independent 

realizations. 

 100 200 300 400 500 

W/o ad-hoc transmission (nJ x 107) 6.7554 11.5390 16.1820 20.7080 25.3640 

With ad-hoc transmission  (nJ x 107) 6.1262 10.8870 15.2480 19.7620 24.1200 
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