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Abstract: In today's communication systems, the most damaging security threats are not originating from the outsiders but from
the trusted insiders – both malicious insiders and negligent insiders. Always endowed with high privileges, insiders are
significantly prone to conduct acts that can cause catastrophic damages to the whole system either intentionally or
unintentionally. Characterised by the full and rapid integration of information and communication technologies, smart grid –
arguably the largest national critical engineering infrastructure – is suffering from a multitude of security threats initiated from
both outsiders and insiders. Without security guarantee, the promising benefits of achieving an efficient, green, and reliable
power grid would not be a success. In this study, the authors investigate the insider threats and summarise the existing threats
detection solutions in smart grid communication systems. In addition, a novel hybrid insider threats modelling, analysis, and
detection framework, which is based on stochastic Petri net and behaviour rule specifications, is proposed to contain insider
threats in smart grid communication systems.

1 Introduction
The rapid advances in information and communications
technologies (ICTs) and the exponential proliferation of intelligent
electronic devices (IEDs) have considerably facilitated the
emergence of the smart grid, which has been widely believed as a
revolutionary alternative for the existing power grid. To meet the
ever-increasing demands of electricity in the 21st century and
overcome the shortages of the existing power grid, the concept of
smart grid has been rolled out with the expectation of achieving an
efficient, green, and reliable power generation, transmission, and
distribution system [1]. Smart grid is a primary representative of
cyber-physical systems (CPSs). A CPS [2] is defined as a fusion
system incorporating physical infrastructure (physical space) with
communication and control system (cyber space) – see the
conceptual architecture of a CPS in Fig. 1. Through close
interactions between the cyber space and physical space, i.e. data
sensing and commands execution via communication networks,
CPSs are envisioned to enable real-time monitoring, accurate
coordination, and automatic control objectives over the physical
infrastructure. 

However, despite these promising benefits, contemporary
development of the smart grid (like any other CPSs) is still in its
infancy stage facing many critical challenges. Particularly, cyber
security issues have been rapidly emerged as primary concerns of
the smart grid communication systems over the years [3–7]. The

increasing interconnectivity and openness to the outside world
inevitably expose the potential vulnerabilities of not only the
conventional communication system in existing power grids but
also the newly-introduced ICTs. Without security guarantee, the
smart grid is susceptible to malicious penetrations and can easily
suffer from dire consequences, e.g. catastrophic physical damages,
enormous revenue losses, and immeasurable social impacts. The
potential adversaries in contemporary communication systems,
who can launch malignant cyber assaults by fully exploiting the
system vulnerabilities, can be classified into two categories:
insiders and outsiders [8]. Although in many industries the absolute
numbers of outsiders are still higher than those of insiders in being
responsible for publicly reported security incidents, the percentage
of insiders is experiencing a rapid rise in recent years [9]. More
importantly, the insiders are contributing to increasingly damaging
impacts during security incidents, compared to outsiders.
According to IBM X-Force Threat Intelligence Index 2018 [10],
misconfigured cloud servers and networked backup incidents
unintentionally exposed more than two billion records, which is
approximately 70% of the total number of compromised records
being tracked. There were 424% more records compromised as a
result of these types of incidents in 2017 than those in the previous
years. This implies that an increasing number of attackers may
have shifted their attack paradigms to employing the insiders over
the recent years. Insiders always have overwhelming superiorities
over the untrusted external adversaries in terms of conducting
malignant acts. Specifically, insiders are well aware of the existing
security mechanisms (e.g. firewalls, cyber access controls, physical
access controls etc.), thus they can fully utilise such knowledge to
easily circumvent the defenses in place. This is, however,
intractable for untrusted outsiders.

In smart grid communication systems, intensive research efforts
in recent years have been devoted towards detecting the outsider
threats, e.g. denial-of-service (DoS) attacks, man-in-the-middle
attacks, and eavesdropping, but seldom on insider threats [11]. As a
result, there must exist many limitations when applying existing
threats detection solutions directly to insider threats in smart grid
communication systems, because insider threats may have
completely distinct attack strategies and behaviours. To address
these limitations and provide useful insights for future research
studies, this paper focuses on insider threats detection solutions in

Fig. 1  Conceptual architecture of a CPS
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smart grid communication systems. Our research contributions are
in three-fold:

• We carefully investigate the insider threats in smart grid
communication systems and summarise the existing threats
detection solutions.

• Most importantly, we propose a novel hybrid insider threats
modelling, analysis, and detection framework for smart grid
communication systems, which is based on stochastic Petri net
and behaviour rule specifications. The effectiveness of the
proposed model is validated by PIPE2 [12].

• A learning algorithm of transition rates in the proposed
stochastic Petri net-based model is designed to achieve near
real-time evaluation of the system risk degree.

The remainder of this paper is organised as follows. Section 2
gives a high-level overview of the smart grid architecture with its
specific security requirements. Section 3 showcases a taxonomy of
existing insider attacks in smart grid communication systems.
Following this, existing threats detection solutions in smart grid
communication systems are categorised in Section 4. Our proposed
framework for insider threats modelling, analysis, and detection is
elaborated in Section 5, followed by the numerical results in
Section 6. Finally, Section 7 concludes this paper with future
research directions.

2 Smart grid architecture and security
requirements
In this section, we formalise the architecture of a smart grid and
identify its specific security requirements.

2.1 Architecture of smart grid

Smart grid is a fusion system comprising a physical space of power
grid as well as a cyber space of communication and control system
(as shown in Fig. 2). The physical space incorporates power
generation plants, transmission substations, distribution
substations, and customer premises (e.g. residential houses,
commercial buildings, and industrial factories). Phasor
measurement units (PMUs) are deployed at each bus or substation
along the power grid to measure the real-time status of the power
grid. In addition, smart meters are positioned at each customer site
to collect detailed electricity consumption data. Note that in smart
grid, not only the information flow but also the power delivery is
no longer restricted to a single direction [13]. Customers with
capabilities of producing renewable energies, e.g. solar, wind,

hydro etc., are allowed to supply their surplus energy back to the
power grid for other customers. 

In the cyber space, a variety of wired and wireless
communication networks, such as wireless sensor networks, 3G/4G
cellular networks, optical fibre networks etc., are integrated to
support diverse communication requirements in different parts of
the smart grid. These communication channels are responsible for
timely and efficient information transmission across the entire
power grid. Specifically, it includes transporting real-time
measurement and sensing data from PMUs and smart meters to the
system control centre, and delivering control commands from the
control centre to IEDs and actuators. The control centre is the core
component of the whole power grid, wherein reported data are
carefully analysed for multiple applications, e.g. state estimation,
event diagnostics, optimal power flow analysis etc. These
applications are planned to make optimal feedback decisions to
coordinate the demand–supply relations and optimise system
operations.

Strictly speaking, the smart grid cannot be distinctly divided
into cyber space and physical space, as the heavy interdependence
between the two spaces has fused them together as a whole system.
Sensing data analysis and control commands execution tightly
interconnect the power grid and communication networks, forming
into a strict and efficient close-loop control framework. This
framework enables automatic real-time supervision and control of
the power grid, and thereby boosts the efficiency, reliability, and
robustness of the system.

2.2 Security requirements of smart grid

The high reliability, efficiency, and robustness of a smart grid
heavily rely on the security guarantee of the entire system.
Therefore, a line of high-level security requirements must be
satisfied to ensure system security. Here, we discuss a few of these
security requirements, and show a few scenarios where inside
attackers can breach or misuse these requirements.

• Integrity: The integrity in smart grid refers to preventing
malicious modification, delay or drop of communication
information, such as sensing data, metering readings, and
control commands, by unauthorised parties. Inside attackers can
conduct false data injection attacks, data replay attacks, data
delay or drop attacks over the communication networks to
breach this requirement.

• Availability: The availability is concerned with ensuring that
legitimate access or use of information and/or communication
resources for authorised users cannot be delayed or denied by
unauthorised parties. For the smart grid, these resources include
all the IT elements of the system, like databases, operator
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workstations, management systems, defense mechanisms, as
well as the communication systems among these elements.
Successful implementation of attacks against this requirement
may cause significant safety issues and catastrophic physical
damages, considering that system operators may lose control of
the power grid over the disabled communication channels. This
requirement mainly includes defense against DoS attacks,
distributed DoS (DDoS) attacks, and delay of service attacks.

• Authentication: Authentication is a process of determining
whether an identity is declared to be a legitimate system user by
matching the credentials with those stored in the database.
Authentication is required before each communication session
starts, and between any two parties that have communication
needs. For example, the control centre has the need to
authenticate PMUs before accepting the measurement data, or
system actuators have the need to authenticate the control centre
before executing given commands. Without effective
authentication mechanisms in place, malicious attackers, for
example, may disguise as a legitimate PMU who can report false
measurement data to mislead the control centre into issuing
damaging commands. Authentication is of paramount
significance to distinguish between legitimate and illegitimate
users in smart grid. However, inside attackers can easily misuse
their legitimate identities to launch malicious attacks.

• Confidentiality and privacy: This requirement in smart grid is
concerned with preventing disclosure of secret information, such
as system topology and configurations, measurement data, and
customer power consumption data etc., to unauthorised parties.
Breach of this requirement may contribute to major security
issues. On the one hand, leakage of power grid status
information (i.e. topology and configurations, measurement
data) may cause significant security threats to the system, as
malicious attackers can benefit from such information to launch
false data injection attacks or more complicated cyber-physical
attacks. On the other hand, in case that the detailed customer
consumption data is exposed to the outside world, adversaries
with vicious intentions can gain insights into users' daily life
behaviours by analysing these data with a certain side
information. However, insiders with malicious intentions are
able to easily break this requirement by stealing and selling such
sensitive information to others.

• Authorisation: Also known as access control, authorisation in
smart grid refers to giving official permissions for specific users
or IEDs with full or limited access to certain system resources,
say databases, management systems etc. There are many
different roles and user groups in the smart grid, and they all
have diverse privileges and responsibilities, thereby an effective
authorisation mechanism is required to prevent system resources
from illegitimate access. Note that, since authorisation is able to
distinguish between legitimate and illegitimate users for specific
resources, it can also, to a certain extent, protect the integrity
and confidentiality. However, similar to that for authentication
requirement, insiders with legitimate privileges can easily carry
out malicious activities.

• Non-repudiability: In the context of smart grid, non-
repudiability deals with preserving the undeniable proofs of
whom initiated a specific action in the system, say issuing a
command or visiting a database. This security requirement
expects to establish accountability and liability in smart grid, by
which the actors can easily be identified with irrefutable proof
of their previous actions. This requirement provides effective
proofs to identify insider threats. Unfortunately, in some cases,
insiders may be able to ruin these proofs before being disclosed.

• Auditability: Auditability allows auditors to reconstruct the
complete operation history of a specific user or device based on
historical records, e.g. log files, duty schedules, of all its own or
relevant performed acts. This security requirement aims to
identify the reasons for any malfunction or security incident so
that perpetrators can easily be discovered, and the potential
vulnerabilities of the system can be identified and further fixed.
Such a requirement can be breached by malignant insiders who
may access these historical records and delete or ruin them
permanently.

3 Insider threats in smart grid
To clearly identify the attack strategies, objectives, and potential
impacts of insider threats, here we develop a taxonomy of existing
insider threats in smart grid. We then introduce three types of
attack behaviours of these insider threats. Note that insiders
considered in this paper are those who can play an authorised role
in the whole smart grid communication systems. In other words,
insiders have authorised entities with legitimate credentials to
access the communication system including system operators,
utility employees, third-party service providers, end users, and
particularly, all IEDs joining in this system.

3.1 Taxonomy of existing insider threats

As summarised in Table 1, we present a taxonomy of existing
insider threats in smart grid. In this taxonomy, there are four types
of insider threats: false data injection, false command injection,
delay of service, and insider data theft. The attack strategies,
objectives, and impacts on the system are shown as follows: 

3.1.1 False data injection.: A false data injection attack refers to
reporting fake measurement data to the control centre from
compromised metering devices, say PMUs and smart meters, with
a purpose to mislead the control centre into making false decisions
[14]. False data injection attacks are able to easily circumvent the
traditional false data detection (FDD) system in smart grid, with
the assumption that attackers are equipped with the knowledge of
system topology and configurations. Through a line of
compromised PMUs, these attackers can simultaneously falsify a
set of measurement data in a desired manner, which can effectively
blind the state estimator used for conventional FDD. Let us brief
the state estimation first. Assume that x = (x1, x2, …, xn)′ is the real
system states vector of the power grid, and z = (z1, z2, …, zm)′ is the
measurement data collected from the PMUs, where n and m are
positive integers, and xi, zj ∈ ℝ for i = 1, 2, …, n and
j = 1, 2, …, m. With the DC power flow model, the relation
between PMU readings and the system real status can be expressed
as

z = Hx + η, (1)

where H is an m × n measurement Jacobian matrix, implying the
knowledge of grid topology and configurations.
η = (η1, η2, …, ηm)′ ∼ ℕ(0, W) is an independent measurement error
vector with zero-mean and covariance W, a diagonal matrix.
Statistical estimation method, like maximum likelihood estimation,
is exploited to estimate the real system state variables by

x^ = [H⊺W−1H]−1H⊺W−1z . (2)

The measurement residual r = z − Hx̂ is then calculated, and the
L2-norm of the normalised measurement residual ∥ r̄ ∥ can be
utilised to detect the presence of false data.

On basis of the traditional state estimation, false data injection
attackers with knowledge of H can employ a number of

Table 1 Taxonomy of existing insider attacks in smart grid
Name Description
false data injection compromised meter devices (e.g. PMUs and

smart meters) report fake data to the control
centre

false command
injection

system operators or local control agents issue
fake commands to actuators, say line breakers

and generators
delay of service IEDs create delays in latency-sensitive services,

e.g. delayed report of real-time measurement
data

confidential data
theft

utilities employees or compromised devices
steal sensitive information or intellectual

property
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compromised PMUs to collaboratively construct a set of bad
measurement data zbad as

zbad = z + Hc, (3)

where c is the desired offset to be injected to x. As such, fake
system states are estimated by

x^bad = [H⊺W−1H]−1H⊺W−1zbad

= [H⊺W−1H]−1H⊺W−1(z + Hc)
= x̂ + c .

(4)

With such a set of fake data being undetected, the system control
centre is much likely to issue false feedback commands to the
power grid, resulting in serious damages.

3.1.2 False command injection.: A false command injection
attack attempts to inject illicit control commands to the system
actuators to mislead the normal physical processes [4]. This kind of
attack can be implemented by not only inside system operators (say
disgruntled employees) but also IEDs (say decentralised control
agents). Inside system operators, who oversee the entire power grid
with high privileges, can easily inject illicit commands. Likewise,
IEDs controlled by remote hackers can also directly inject fake
commands, e.g. abnormally opening a circuit breaker to cause
power outage, or exceptionally turning on a generator to mess up
normal demand–supply relations.

False command injection attacks usually lead to more severe
damages for CPSs than false data injection attacks, as attackers can
directly manipulate the control units and all its operations. For
example, in 2000 an Australia sewage control system was invaded
by an ex-contractor, with a motive of revenge, who injected fake
commands to open the flood gates. These malignant acts resulted in
more than one million litres of raw sewage being poured into two
local fresh water streams, which polluted the water for the
subsequent three months. Unfortunately, only a few research
studies have paid attention to this kind of attacks in the smart grid.
One rare example is that Gao et al. in 2010 investigated the false
command injection attacks in smart grid supervisory control and
data acquisition (SCADA) system and the relevant detection
techniques [15]. More research efforts are demanded towards
preventing and detecting false command injection attacks in smart
grid.

3.1.3 Delay of service.: Instead of denying services (e.g.
dropping data) or offering bad services (e.g. falsifying data), delay
of service attacks prefer to compromise the quality of services by
creating delays when offering latency-sensitive services. In other
words, similar to DoS attacks, delay of service attacks target at the
availability requirement in smart grid [16]. This kind of inside
attackers can employ distinct strategies in real-world applications,
as various services may have different latency requirements. For
example, the power grid can tolerate up to 4 ms for protective
relaying service, a few seconds for SCADA data transmission,
several minutes for real-time market pricing information, and some
hours for smart meter readings etc.

3.1.4 Confidential data theft.: A confidential data theft attack in
smart grid is concerned with illicit insider acts of stealing sensitive
data stored on database servers, desktop computers, or other
internal devices. Specifically, disgruntled employees or
compromised IEDs with legitimate access to data resources are
able to launch data theft attacks by stealing information such as the
system topology and configurations data, user power consumption
data, intellectual property etc. Once these data are leaked or sold to
the third parties, e.g. marketers, maintenance utilities, household
appliance enterprises, or even criminals, they can be exploited for
different purposes. For example, customer electricity consumption
data may reveal the daily lifestyle of an individual house, as each
appliance has a unique electricity usage profile. Criminals, if
having such data, may figure out the daily routines of a family and

commit burglary when people are absent, or cause personal injuries
when someone is at home alone.

Confidential data theft attack has been a growing critical
problem for corporations and organisations over the years.
According to the 2018 Data Breach Investigations Report [17] by
Verizon, the year 2017 has confirmed 2216 data breaches across 65
countries. In particular, the healthcare, education, professional, and
public domains have experienced an ever-growing number of data
breaches.

3.2 Attack prototypes

In this subsection, we show three attack prototypes in terms of
malicious insiders' attack strategies. With different illegitimate
intentions and under different circumstances, inside attackers may
behave in distinct manners. Some may prefer to lurk behind the
power grid as long time as possible by performing less malicious
acts, while others may prefer to cause as extensive damages as
possible by carrying out malicious acts whenever having an
opportunity. In this paper, insider attacks are categorised into three
prototypes: reckless, random, and opportunistic attacks [8].

• Reckless attacks are carried out without hesitation whenever the
attackers have the capability and have not been detected yet. The
attacking probability of a reckless attack can be defined as Patt = 1,
wherein these attacks behave in a rude manner with the intention to
cause as extensive damages as possible. Reckless attacks are,
therefore, the easiest type of attacks to be identified by existing
detection techniques.
• Random attacks are conducted with a certain attacking
probability, i.e. Patt = ρ, where ρ ∈ [0, 1]. Unlike reckless attacks,
these attacks are performed with consideration to balance between
the damages they may cause and the chances they could be
identified. Hence, such attacks are carried out in a relatively
moderate mode. Usually, it will cost the detection system a certain
efforts to detect these random attacks.
• Opportunistic attacks are the most cunning attacks, which are
usually implemented based on the system noise level with an
attacking probability of

Patt = f (α, β, γ) ⋅ Pn
ϵ, (5)

where f (α, β, γ) is a coefficient function. α, β, and γ denote the
difficulty level of the attack mission, operating time of the insider
(employee or device), and the latent period since the insider has
been compromised, respectively. In addition, ϵ denotes a scalar of
the system noise level Pn, where Pn ∈ [0, 1]. In particular, ϵ > 1
represents conservative opportunistic attacks, while ϵ < 1
represents aggressive ones. From (5), we see that the higher the
system noise level Pn is, the larger the attacking probability Patt is,
and vice versa. This reveals that opportunistic attackers are good at
hiding themselves based on the system noise level. As a result, it is
usually hard to detect these attacks.

4 Existing detection countermeasures for
security threats in smart grid
In this section, we give an overview of state-of-the-art threats
detection approaches in smart grid, including signature-, anomaly-,
and specification-based approaches. These detection approaches
are all grounded on data forensics and network surveillance
techniques, for example by comparing the collected measurement
data with the predefined rule specifications, or matching the traffic
flow patterns with those stored in databases. Features of different
detection approaches usually vary a lot, resulting in a wide variety
of superiorities and limitations while solving threats detection
problems in smart grid. We summarise and compare the
mechanisms, advantages, and disadvantages of the these
approaches in Table 2. 
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4.1 Signature-based detection

Signature-based detection approaches, also known as misuse
detection approaches, aim to look for patterns of malicious
behaviours by matching the observed runtime features with known-
attack signatures from a pre-established database. These type of
approaches have been widely used in existing CPS communication
networks. For example, in order to detect known suspicious or
malicious communication activities in smart grid, Yang et al. [18]
utilised a signature-based detection scheme by specifying a line of
attack behaviours (e.g. spontaneous messages storm, unauthorised
interrogation commands to a server, reset process command from
unauthorised client etc.), and matching user profiles with these
attack behaviours to identify potential cyber attacks.

The main advantage of signature-based detection approach is
the high efficiency for known-pattern attacks detection, as it can
quickly respond to known attacks with the blacklist database in
hand. As a result, this type of approach usually maintains
significantly low false positive rates. However, since the pre-
established database cannot accommodate all the attack signatures,
the major disadvantage is obviously the inefficiency for new-
pattern attacks detection, usually yielding high false negative rates.

4.2 Anomaly-based detection

Anomaly-based detection approaches look for deviations from a
pre-established database of normal behaviour profiles via statistical
methods. These normal behaviour profiles are established based on
a collection of historical observations (unsupervised) or a set of
training data (semi-supervised). Anomaly-based detection
technique is valuable to thwart malicious activities in CPS
communication networks. For instance, Faisal et al. [19] employed
an anomaly-based detection system using data mining techniques
to secure the advanced metering infrastructure of the smart grid.
Unlike legacy static data mining techniques, they opted to stream
data mining technique, which they believe is a more realistic
approach in real-world applications.

The key advantage of anomaly-based approaches is that they
are capable of identifying new-pattern attacks, as they aim to only
differentiate normal and abnormal behaviours regardless of new- or
known-pattern attacks. Therefore, this approach eliminates the
efforts for collecting as many known attack patterns as those for
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signature-based approach to keep the database up-to-date.
However, the major disadvantage of this category is the
susceptibility to false positives. Since the user's normal behaviours
may change over time under different circumstances, thus some of
these changed behaviours may easily be considered as abnormal.
Moreover, this type of approaches may also suffer from heavy
computational burden while matching the observed behaviours
with nearly all the normal behaviour patterns in the databse.

4.3 Specification-based detection

Specification-based detection approaches look for abnormal
behaviours by comparing the actual behaviours with the pre-built
normal behaviour model, which is based on a set of either man-
made or mined rule specifications. Unlike anomaly-based detection
approaches which compare to specific limited normal user profiles,
specification-based detection approaches formally define legitimate
specification model and identify potential attacks when deviations
from this behaviour model is observed. One key advantage of
specification-based detection approaches is that they can not only
be utilised to effectively detect known-pattern attacks but also new-
pattern attacks, with low false alarms. Its major disadvantage,
however, is the efforts cost to manually develop a complete and
detailed set of legitimate specifications in a complicated network.

BLITHE [8] is a representative work of specification-based
detection approaches for smart grid communication systems. In
BLITHE, PMUs are assumed to be the possible compromised IEDs
that can launch false data injection attacks. To identify the potential
compromised PMUs, BLITHE first employs a set of manually
developed normal rule specifications for the measurement data,
which are then used to build up a normal behaviour model. With
this model, BLITHE is able to assess the compliance degree of
each PMU. By comparing the compliance degree with a pre-
defined threshold for benign PMUs, BLITHE can then identify
whether a PMU is compromised or not and further whether a false
data injection attack is launched.

5 Proposed framework
In this section, we elaborate our proposed insider threats
modelling, analysis, and detection framework. This framework is
designed based on stochastic Petri net and behaviour rule
specifications (see Fig. 3 for the proposed stochastic Petri net
model). A stochastic Petri net [20] is an extended Petri net, where
the time intervals of state transitions are characterised by random
distributions and usually exponential distributions are used.
Stochastic Petri nets have the advantage of being easily
transformed to discrete time Markov processes, allowing further
steady-state analysis. In our proposed framework, the stochastic
Petri net is used to model the behaviours of insiders, analyse the
steady-state risk degree of the whole system, and detect the
malicious insiders including both intentional and unintentional
ones. 

5.1 Introduction of the proposed stochastic Petri net model

A basic Petri net can be described as a 4-tuple (ℙ, T , F , M), where
ℙ is a finite set of places, T  is a finite set of transitions (or actions),
F ⊂ (ℙ × T ) ∪ (T × ℙ) is a finite set of input and output arcs, and
M is a finite set of markings denoting the number of tokens in each
place at a time instant. Here, a token in a place represents an object
that holds a specific condition or the occurrence of a specific event
that the specific place defines. Tokens can be transferred from one
place to another when a transition is fired once a specific condition
changes, or when an event occurs. In our proposed stochastic Petri
net model, there are three places and five transitions, which are
summarised in Tables 3 and 4. 

5.2 Behaviour rule specifications

The behaviours of insiders are the essential evidences to assess
their operating status. In our framework, we consider two
categories of insider behaviours: suspicious and malicious.
Specifically, suspicious behaviours are unauthorised behaviours or

Table 2 Comparison of existing threat detection
approaches
Detection
approach

Signature-
based

Anomaly-based Specification-
based

mechanism data mining
methods are

utilised to
detect possible
attacks based

on known
attack patterns

(with a pre-
established

blacklist)

statistical
techniques are

utilised to
differentiate
between the
normal and
abnormal

behaviours (with
a pre-established

whitelist)

normal behaviour
model is built based

on either man-
made or mined rule

specifications to
detect non-

specification-
comply behaviours

advantage extremely
efficient for

known-pattern
attacks; low
false positive

rate

capable of
detecting both

new-pattern and
known-pattern

attacks although
not highly
effective

able to effectively
detect not only

known-pattern but
also new-pattern
attacks; low false

alarms

disadvantage inefficient for
new-pattern
attacks; high
false negative

rate

suffering from
heavy

computational
burden; high

false positive rate

costly efforts to
manually develop a

complete and
detailed set of
legitimate rule

specifications for
complicated

networks
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warned acts that may not cause damages or could only lead to
minor impacts, while malicious behaviours are unauthorised
behaviours or prohibited acts that can cause great damages or have
high risks of contributing to significant impacts. Correspondingly,
the behaviour rule specifications used in our framework are also
classified into two categories: suspicious rules and malicious rules.
Since there are many existing studies introducing the construction
of rules, we will not focus on that point, but give some example
useful rules to illustrate our framework (see Tables 5 and 6). 

5.3 Insiders behaviour modelling, analysis, and detection

In this subsection, we introduce several events to show the
construction of the proposed stochastic Petri net model and the
transitions of tokens triggered by various insider behaviours.

• System initialisation: In the proposed stochastic Petri net model,
each token in a place denotes an insider meeting the conditions
specified by that place. Assume that there are N insiders in the
considered smart grid communication systems, and in the initial
stage, all of them are benign. An initial marking is, therefore, given
by M0 = {M0

P_BI, M0
P_SI, M0

P_MI} = {N, 0, 0}, where M0
P_BI, M0

P_SI,
and M0

P_MI are the numbers of tokens in places P_BI, P_SI, and
P_MI at time instant 0, respectively.
• The first event: In the first event, we consider a utility employee
visiting a website with untrusted certificate after the system
initialisation. In this case, complying with rule RS2 fires transition
T_S, as a result of which one token from place P_BI is transferred
to place P_SI. The marking now shall be updated from
M0 = {N, 0, 0} to M1 = {N − 1, 1, 0}.
• The second event: In the second event, we consider a system
operator issuing an incorrect control command after the first event.
Performing a malicious act as RM1 describes leads to firing of
transition T_BM. Then, a token from place P_BI is transferred to
place P_MI. The current marking is updated from
M1 = {N − 1, 1, 0} to M2 = {N − 2, 1, 1}.
• The third event: In the third event, we consider the utility
employee in place P_SI visiting an unsafe or prohibited website
after the second event. In this case, transition T_SM is triggered,
and one token from place P_SI is transferred to place P_MI. The
current marking is updated from M2 = {N − 2, 1, 1} to
M3 = {N − 2, 0, 2}.
• The fourth event: In the fourth event, we consider that a detected
malicious insider in place P_MI, e.g. the system operator in the
second event, is fired by the company and a new operator is hired.
In this case, ‘resetting’ an insider fires transition T_R, pulling one
token from place P_MI to place P_BI. The current marking is
updated from M3 = {N − 2, 0, 2} to M4 = {N − 1, 0, 1}.
• The fifth event: In the fifth event, we consider that a suspicious
insider in place P_SI is observed with long time benign behaviours.
In this case, it is reasonable to conclude that this insider was
considered being suspicious because of an unintentional suspicious
act and now it can be cleared of suspicion. In this way, transition
T_C is fired and a token from place P_SI is transferred to P_BI.
Assume that the last time instant marking is Mt − 1 = {N − 3, 3, 0},
then the current marking is updated to Mt = {N − 2, 2, 0}.

As we can see, the proposed stochastic Petri net model can be
used to model and analyse the insider behaviours, and detect
suspicious or malicious insiders. Note that, a threshold Tth can be
defined based on expert knowledge or history experience as the
monitoring time window of suspicious insiders. If no more
suspicious or malicious behaviours of these suspicious insiders are
observed, they can be considered as benign insiders. In addition,
insiders in place P_MI can be naturally regarded as being
malicious. Close investigations or other further actions are
recommended to clear such insider threats.

5.4 Steady-state analysis of system risk degree

As aforementioned, the stochastic Petri net is employed to achieve
steady-state analysis.

5.4.1 Definition of risk degree.: In steady states of a discrete
time Markov model transferred from the stochastic Petri net, the
steady state probabilities for each state (i.e. marking here) can be
obtained. In this way, the steady state numbers of tokens Nb, Ns,
and Nm in place of P_BI, P_SI, and P_MI, respectively, can also be
easily harvested. Based on these data, we define a metric risk
degree to assess the overall operating status of the whole
communication system, which is given by

Fig. 3  Proposed stochastic Petri net model
 

Table 3 Places in the proposed stochastic Petri net
Place Meaning
P_BI place of benign insiders
P_SI place of suspicious insiders
P_MI place of malicious insiders
 

Table 4 Transitions in the proposed stochastic Petri net
Transition Meaning
T_BS transition that a benign insider commits a suspicious act
T_BM transition that a benign insider commits a malicious act
T_SM transition that a suspicious insider commits a malicious

act
T_SB transition that a suspicious insider is cleared from

suspicion
T_MB transition that a detected malicious insider is reset to

benign
 

Table 5 Some example suspicious rules
Rule Description
RS1 a system operator issues an inaccurate control command
RS2 utility employee visits a website w/ untrusted certificate
RS3 third-party service provider keeps secret information w/o

authorisation
RS4 IED delays reporting measurement or sensing data
 

Table 6 Some example malicious rules
Rule Description
RM1 system operator issues an incorrect control command
RM2 utility employee visits an unsafe/prohibited website
RM3 third-party service provider leaks secret information w/o

authorisation
RM4 IED declines or fails to report measurement or sensing data
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R = 1 − wbNb + wsNs + wmNm
Nb + Ns + Nm

, (6)

where wb, ws, and wm are the impact factors denoting the
contributions that each type of insiders (benign, suspicious, and
malicious) can create on the overall system operating status,
respectively.

To obtain the values of Nb, Ns, and Nm, we need to calculate the
steady state probabilities of the underlying discrete time Markov
model. Prior to that, we introduce the concept of firing rates first.
The firing rate of a transition refers to the average number of
tokens transferred through this transition in a unit time. We use
λ = (λbs, λsb, λmb, λbm, λsm) to denote the firing rates for transitions
T_BS, T_SB, T_MB, T_BM, and T_SM, respectively. Let A(λ) be
the transition matrix of the Markov model obtained from the
reachability graph and the firing rate vector λ. Then, the steady-
state probabilities π = (π1, π2, …, πK) can be solved by

πA(λ) = π (7a)

∑
i = 1

K
π = 1, (7b)

where K is the total number of states in the Markov model, i.e. the
total number of markings in the stochastic Petri net. With the
steady-state probabilities, Nb, Ns, and Nm can be computed by

Nb = ∑
i = 1

K
Mi(P_BI) ⋅ πi (8a)

Ns = ∑
i = 1

K
Mi(P_SI) ⋅ πi (8b)

Nm = ∑
i = 1

K
Mi(P_MI) ⋅ πi, (8c)

where Mi(P_BI), Mi(P_SI), and Mi(P_MI) denote the number of
tokens in places P_BI, P_SI, and P_MI in state Mi, respectively.

5.4.2 Learning of the transition matrix.: To achieve steady-state
analysis and obtain the risk degree, system defenders need to know
the transition matrix A(λ). An initial transition matrix A0(λ) can be
learned based on historical data by Algorithm 1 (see, Fig. 4). Then,
given new observations of insiders' behaviours, the real-time
transition matrix A(λ) can be obtained also by using Algorithm 1
with an updating strategy, such as periodically updating it in a
fixed unit time T0. 

To help learn the transition matrix, each piece of an insider's
behaviours of interest can be recorded in the following format in
chronological order (see Fig. 5): 

Each insider is assigned with an Insider_ID. Behaviours of
interest (denoted by Behaviour_o f _Interest) includes proactive
behaviours breaking suspicious or malicious rules and passive
behaviours being cleared of suspicion or reset to benign.
Place_o f _Origin and Place_at_Present denotes the current place
this insider should stay. Insider_Score evaluates the overall
anomalous level of an insider, taking values from 0 to 2. Note that,
based on an insider's Behaviour_o f _Interest and
Place_o f _Origin, the values of Insider_Score as well as the
Place_at_Present can be determined by Algorithm 1 (Fig. 4). Note
that M is the number of insiders, Ks the number of suspicious rules,
and Km the number of malicious rules. Ks = {1, 2, …, Ks} and
Km = {1, 2, …, Km} denote the set of indices for suspicious and
malicious rules, respectively. Ti denotes the time duration since a
suspicious insider i stays in place P_SI and Ti = 0 otherwise.
Correspondingly, Tth is a safety threshold for duration of stay in
place P_SI. If Ti exceeds Tth, insider i can be cleared of suspicion

Q3 and considered as benign. Δs is defined as the increment of
Insider_Score (e.g. 0.2) for insiders in place P_SI breaking
suspicious rules.

6 Numerical results
In this section, we conduct simulations to evaluate the effectiveness
of the proposed framework using PIPE2 and MATLAB.
Specifically, we conduct two groups of simulations, where the first
group is to evaluate the relationship between the risk degree R and
the firing rates (i.e. λs, λbm, λsm, λc, and λr) and the second is for the
relationship between the risk degree R and the impact factors (i.e.
wb, ws, and wm).

In the first group of simulations, we fix wb = 1.0, ws = 0.5, and
wm = 0.1 for the impact factors. Note that we would like to
evaluate the relationship between risk degree R and the insiders
behaviours using the proposed stochastic Petri net model, thus we
also fix λr = 0.15 and λc = 0.2 which represent the risk handling
capabilities of a system. As Fig. 6 shows, the numerical results of R
versus λs with various values of λbm are plotted. It can be seen that,
given wb = 1.0, ws = 0.5, wm = 0.1, λr = 0.15, λc = 0.2, and
λsm = 0.1, the risk degree R of a communication system increases
as λs grows. It means that, the more benign insiders conduct
suspicious acts, the more tokens from place P_BI transferred to
place P_SI, and as a result, the higher the system risk degree. In

Fig. 4  Algorithm 1: transition rates learning algorithm
 

Fig. 5  Reference data format for each piece of an insider's behaviours of
interest
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addition, we see that given a fixed value of λs, a larger λbm leads to
a higher risk degree. It is natural that, the more benign insiders
conduct malicious acts, the higher the system risk degree.

In Fig. 7, the numerical results of the risk degree R versus λsm
with various values of λbm are plotted. Given
wb = 1.0, ws = 0.5, wm = 0.1, λr = 0.15, λc = 0.2, and λsm = 0.1, the
risk degree R of a communication system increases as λsm grows.
This indicates that, when the number of suspicious insiders

conducting malicious acts are increasing, there will be more
insiders transferring from P_SI to P_MI, leading to an increased
system risk degree. Also, we can see that given a fixed values of
λsm, the larger the λbm, the higher the system risk degree. Intuitively,
if the number of benign insiders conducting malicious acts are
increasing, there will be more insiders transferring from P_BI to
P_MI, leading to an increased system risk degree. 

When it comes to the second group, we carry out simulations to
evaluate the relationship between the risk degree R and the impact
factors. In this group, we set
λs = 0.2, λsm = 0.1, λbm = 0.05, λr = 0.15, and λc = 0.2. Hence we
have Nb = 24.52743, Ns = 3.47627, and Nm = 1.99631 in steady
states. Limit the values of ws and wm to the range of [0, 0.5]. The
numerical results of the risk degree R versus ws and wm are plotted
in Fig. 8. It can be easily seen that large values of ws and wm always
result in high risk degrees. This is because that, according to (7b),
large values of ws and wm lead to small values of wb, contributing to
high risk degrees with given parameter settings. Particularly, if
ws = wm = 0, then wb = 1. It means that in this case, the risk degree
is only determined by Nb, and consequently R = 0.182, the lowest
risk degree with given parameter settings. In addition, if
ws = wm = 0.5, then wb = 0. It means that in this case, the risk
degree is only determined by Ns and Nm, and R = 0.909, the
highest risk degree with given parameter settings. 

7 Conclusion
In this paper, we investigated the insider threats in smart grid
communication systems. The architecture of a smart grid and its
specific security requirements were first introduced. Then, we
developed a taxonomy of existing insider threats, and investigated
the corresponding attack prototypes. In addition, a summary and
the comparison of existing insider threat detection approaches for
smart grid communication systems were presented. Most
importantly, a novel hybrid insider threats modelling, analysis, and
detection framework, which is based on stochastic Petri net and
behaviour rule specifications, was proposed for smart grid
communication systems. In future work, we aim to conduct
research studies on fine-grained access control and granular data
auditing to help prevent and mitigate insider threats in smart grid
communication systems.
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