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Abstract—Opinion formation in the population has attracted 
extensive research interest. Various models have been introduced 
and studied, including the ones with individuals’ free will 
allowing them to change their opinions. Such models, however, 
have not taken into account the fact that individuals with 
different opinions may have different levels of loyalty, and 
consequently, different probabilities of changing their opinions. 
In this work, we study on how the non-uniform distribution of 
the opinion changing probability may affect the final state of 
opinion distribution. By simulating a few different cases with 
different symmetric and asymmetric non-uniform patterns of 
opinion changing probabilities, we demonstrate the significant 
effects that the different loyalty levels of different opinions have 
on the final state of the opinion distribution.  
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I.  INTRODUCTION 
Opinions tend to be highly diversified in modern societies 

and the diversified opinions strongly affect almost every single 
aspect of our life, from as big as election [1, 2], nation-level or 
region-level policies, to as “small” as interpersonal relationship 
[3] and purchasing decisions, etc. There have been existing 
studies on the propagation of different opinions in social 
networks [4-6] and the impacts of opinion propagation on the 
social structures [7, 8], etc. An equally important topic is how 
people make consensus with each other, which is known as the 
opinion formation problem.  

Extensive studies have been carried out on the opinion 
formation problem and quite a few models have been proposed 
[9-19]. Among them include the voter model [9-11], which 
assumes that a randomly chosen individual (or a node in the 
network; hereafter “individuals” and “nodes” shall be used 
interchangeably) may adopt the opinion of his randomly 
selected neighbor; and bounded confidence model [12-14], 
assuming that the opinion of a randomly chosen individual may 
be the weighted average of all those neighbors whose opinions 
are not too much different from his own one. Another closely 
related popular model is the Deffuant model [15], which 
assumes that each time a randomly chosen node may interact 
with only one of its randomly selected neighbor. More 
specifically, an opinion tolerance d is introduced: if the 
difference between the opinions held by the two nodes is less 

than d, they may make consensus to further reduce the 
difference between their opinions; otherwise nothing would 
happen. Study results show that such a model would lead to a 
final state of opinion distribution with several groups, each of 
which holding its own local consensus. With a decreasing 
value of opinion tolerance d , the number of opinion groups 
increases and transits at certain set of values. 

Random change of individual’s opinion was introduced into 
the Deffuant model for the first time in [17]. Specifically, a 
node may randomly change its opinion at a certain rate. With 
the random change of opinion being introduced into the model, 
instead of reaching local consensus in the final state, opinions 
will have a well-defined distribution with several bell-curve-
style peaks. Follow-up work has been conducted to evaluate 
the impacts of initial state on the final opinion distribution [18]. 
Extensive simulation results show that, except for some 
extreme cases (e.g., the initial state is to have a single global 
consensus), different initial states essentially lead to the same 
final opinion distribution.  

An important issue, however, has been largely missed in 
these studies to the best of our knowledge. That is, how the 
different levels of “loyalty” to different opinions affect the final 
state of the opinion distribution. Our daily experiences may 
easily tell us that people holding certain opinions tend to 
change their opinions more easily or more difficultly than other 
opinion holders. An example may be the conversion between 
different religions [20].  

In this paper, we study on how different changing 
probabilities of different opinions may affect the final opinion 
distribution in the system. Specifically, we shall still adopt the 
Deffuant model to perform the simulations of opinion 
formation. However, instead of using a uniform distribution of 
opinion changing probability, we consider a few non-uniform 
distribution cases where individuals with different opinions 
have different probabilities to randomly change their mind. 
With some simulation results, our preliminary study reveals the 
strong impacts of non-uniform loyalty-level distribution on the 
final opinion distribution. 

The rest of the paper is organized as follows: section 2 
briefly introduces the Deffuant model with non-uniform 
random opinion changes. Simulation results and discussions  
are presented in Section 3. Section 4 concludes the paper. 



 

Figure 1.Different mutation probability functions ( )P x used in this paper: 
(a) asymmetric cases; (b) symmetric cases. 

 

II. MODEL DESCRIPTION 

A. Review of  the Deffuant model with random opnion 
change 
Deffuant model [15] assumes that time is slotted into time 

steps, and opinions are continuously and uniformly distributed 
in the interval [0,  1]  at the beginning. At each time step t , a 
randomly chosen node A and its randomly chosen neighbor B  
carry out the operation as follows. Denote their opinions at 
time t  as ( , )o t A and ( , )o t B  respectively. If the difference 
between ( , )o t A  and ( , )o t B is less than d , the two nodes shall 
make consensus following the rule below: 

 ( 1, ) ( , ) [ ( , ) ( , )];o t A o t A o t A o t Bμ+ = − −  (1)

 ( 1, ) ( , ) [ ( , ) ( , )].o t B o t B o t A o t Bμ+ = + −  

A smaller value of μ  may slow down the evolution process 
while it is believed that different values of μ , as long as it is 
within the range (0, ½], eventually lead to the same steady state 

[15]. Hereafter we let 1/ 2μ =  for simplicity, as that in most 
of the existing studies. The work of [17] first introduced noise 
to simulate the free will of individuals. Specifically, it assumes 
that at each time step, a randomly chosen node has a certain 
probability p  to randomly change its opinion. Hereafter we 
term such random change of opinion as mutation. To highlight 
that individuals holding different opinions may have different 
mutation probabilities, we introduce a mutation probability 
function ( )P x to reveal the probability that an individual 
holding opinion x may change its opinion in each time step.  

B. Non-uniform opinion change 
All the existing studies, to the best of our knowledge, have 

assumed a uniform distribution of mutation probability for 
different opinions, that is ( )P x p= for all x . In this work, we 
study on the case where P(x) could be of a non-uniform 
distribution.  

We consider several different symmetric and asymmetric 
mutation probability functions. For the asymmetric functions, 
we consider the simplest case where the mutation probability 
increases or decreases linearly with the opinion. Specifically, 
the class of asymmetric mutation probability function is 
defined as: 

( ) ( 0.5) ,P x x pα= − +  (2)

This allows us to examine the effects of different slopes of the 
function. 

For the class of symmetric functions, we examine the simple 
one where the mutation probability increases or decreases 
linearly with the distance to the central opinion. Specifically, 
we define the function as follows: 

( 0.25) ,   0 0.5;
( )

( 0.75) ,  0.5 1.
x p x

P x
x p x

α
α

− + ≤ ≤⎧
= ⎨− − + < ≤⎩

 

(3)

      For the asymmetric cases we set the slope value as 
0.02,  0.01,  0.01,  0.02α = − − ; and for the symmetric cases 

we let 0.04, 0.02, 0.02,  0.04.α = − −  Note that for all these 
cases, the average mutation probability remains the same as 
being equal to p . In the rest of the paper, we let 0.01p = . 
Figure 1 illustrates ( )P x for all the eight cases that we are going 
to examine in this paper. 

III. INFLUECNE OF MUTATION PROBABILITY 
We apply different mutation probability functions ( )P x  on 

the Deffuant model and observe the influences in two aspects: i) 
the change in bifurcation pattern, referring to the appearance, 
splitting and merging of peaks in the opinion distribution as we 
change the opinion tolerance d ; and ii) the change in the final 
opinion distribution.  

A. Bifurcation patterns 



 
Figure 2 Bifurcation pattern for (a) uniform P(x); asymmetric P(x)with (b) α=-0.02; (c) α=-0.01; (d) α=0.01 (e) α=0.02, and symmetric P(x)with (f) α=-0.04; (g) 
α=-0.02; (h) α=0.02; and (i) α=0.04. 

An important observation on the Deffuant model is its 
bifurcation pattern when system evolves. When we decrease 
the opinion tolerance d , transition of peak numbers would 
happen. In the existing results which assume ( )P x p=  for all 
opinion x , the number of peaks n  roughly follows ~ 1/ 2n d  
[16].  In this part, we shall observe how the bifurcation pattern 
changes with different mutation probability functions ( )P x .  

We carry out the simulation on the ER random network [21] 
with a size of 410N = and an average degree of 10. For each 

( )P x , we generate 10 networks and for each network, we 
increase the value of d from 0.1 to 0.75 with a step length of 
0.005. For every d value, we perform the simulation for 

75 10t = × time steps, long enough for the network to reach the 
final steady state.  For each round of simulation, we average 
the opinion distribution of the last 1000 steps as the final state 
opinion distribution.  

Figure 2 shows for different uniform and non-uniform 
functions P(x), the evolution of the bifurcation pattern with 
different values of d . The color map illustrates the average in 
10 networks. In all cases, we observe peaks in opinion 
distribution which are shown as red strips in the figures. Figure 
2(a) is for the case with the uniform mutation probability 
function where ( )P x p= . Figures 2(b) to 2(e) show the steady-
state opinion distribution when we adopt the asymmetric 
mutation probability function as defined in Equation (2) with 

0.02,  0.01,  0.01,  0.02α = − −  respectively; and Figures 2(f) 
to 2(i) are for the cases with symmetric mutation probability 
functions as defined in Equation (3) with 

0.04,  0.02,  0.02,  0.04α = − −  respectively.  

Figure 2(a) clearly illustrates the transitions in the number 
of peaks with a changling value of d ; between transitions, the 

steady-state distribution of opinion stays almost unchanged. 
This is consistent with the observations from previous studies 
[14-18]. Looking at Figures 2(b) to 2(e) where ( )P x  are 
asymmetric functions, we find a combined gradual and sudden 
changes in the steady-state opinion distribution as d changes, 
and for most time, the change is gradual and continuous. This 
becomes more obvious when d is of a relatively larger absolute 
value: as we could observe in Figures 2(b) and 2(e), the steady-
state opinion distribution basically changes continuously with d.  
Taking Figure 2(e) as an example, we see that as d increases, 
the locations of the peaks continuously shift towards larger 
values, and the peaks originally at high opinion values for 
small values of d slowly go diminished. For the cases with 
symmetric functions P(x), the opinion distribution also changes 
with d , yet in a symmetric pattern, and the evolution of the 
bifurcation pattern is quite different for different cases where 
the mutation rate at central opinion is of the highest or lowest 
value respectively. Take Figure 2(g) as an example where the 
opinions closer to central value have relatively lower mutation 
probabilities. We observe that as d increases, the locations of 
the peaks shift towards the central value. The two peaks closest 
to the center firstly merge into a single peak and gradually 
diminish. Meanwhile, the outside peaks continue to move 
towards the center, until finally merge into a single peak at the 
center after a transitional change when d is large enough. For 
the case where opinions closer to central value have realtively 
higher mutation probabilities, we may take Figure 2(i) as an 
example. We can observe when d increases from 0.1 to 0.2, 
the locations of peaks gradually shift away from the center. The 
trend of moving away from the center continues though it 
becomes weaker when d gets larger to be from 0.2 to 0.3. 
Finally, when d is large enough, a single peak emerges at the 
center.  



 
Figure 3 Steady-state pinion distribution for (a) uniform P(x), asymmetric P(x)with (b) α=-0.02; (c) α=-0.01; (d) α=0.01 (e) α=-0.02, and symmetric P(x)with (f) 
α=-0.04; (g) α=-0.02; (h) α=0.02; and (i) α=0.04. 

Combining the above discussions, the overall observation is 
that, for the cases with non-uniform mutation probability 
functions, the opinion distribution has a combination of gradual 
and sudden changes with the change of d. Generally speaking, 
when the opinion tolerance d increases, opinion peaks located 
at opinions with higher mutation probabilities would vanish 
first and peaks located at opinions with lower mutation 
probabilities would gradually shift towards the location of the 
just-disappeared peaks. Such observations are very interesting 
and request detailed further studies in the future.  

B. Opinion distribtion 
We now have a closer look at the steady-state opinion 

distribution. Figure 3 shows the scope of steady-state opinion 
distribution where 0.1d = for the 9 cases which are arranged in 
the same order as those in Figure 2. In Figure 3(a) where the 
mutation probability is uniform for all opinions, the several 
peaks have approximately the same height. Such observations 
are consistent with those in the existing studies [15-19]. For the 
8 non-uniform cases,  peaks would generally appear to be of a 
lower height at opinion values with relatively higher mutation 
probabilities. Comparing Figure 3(b) and Figure 3(c), we see 
that with greater value of | |α , which indicates a more 
heterogeneous mutation probability distribution for different 
opinions, the heights of different peaks also appears to be more 
heterogeneous. 

Overall, the results reported in this section may well 
resemble our daily observations: an opinion enjoying a higher 
level of loyalty among its followers tends to have a larger 
number of followers; and opinion groups with less tolerance to 
opinion change may also tend to grow up their size as long as 
the tolerance is not going too low to scare away potential 
followers (or equivalently, to lower the chance that individuals 
holding other opinions may change to hold this opinion).   

An interesting observation we should point out is that, as 
that in previous studies on cases with uniform mutation 
function, the steady-state opinion distribution under non-

uniform mutation function is also largely independent of the 
initial opinion distribution with the exception of only some 
very special cases (Detailed discussions on the independence of 
the final steady state to the initial state however have to be 
omitted in this paper due to length limit.). Such may open the 
new possibility to observe and estimate the loyalty levels of 
different opinions in a society by observing their evolution, and 
their (relatively) steady state if applicable.  

IV. CONCLUSION 
In this paper, we studied the influences of non-uinform 

opinion changes on the formation of different opinions in 
complex networks. Specifically, we adopted the Deffuant 
model with random opinion change. By simulating a few 
different cases where different opinion holders may have 
different probabilities to change their mind, we demonstrated 
the corresponding changes in the bifurcation pattern and the 
steady-state opinion distribution. Overall, the observation is 
that peaks located at the opinions with higher mutation 
probabilities tend to have lower values.   

Future studies will be carried out on (i) possibility and 
methods (if applicable) for estimating relative mutation rates of 
different opinions by observing the evolution and the state of 
different opinions; and (ii) evaluating the cases where target of 
opinion change is not randomly distributed, in other words, 
where  different opinions have different levels of attractiveness 
to holders of other opinions (which arguably may be related to 
the opinion’s tolerance towards “change of mind”). 
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