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Abstract – Most individuals, if not all, live in various social networks. The formation of opin-
ion systems is an outcome of social interactions and information propagation occurring in such
networks. We study the opinion formation with a new rule of pair-wise interactions in the novel
version of the well-known Deffuant model on multiplex networks composed of two layers, each of
which is a scale-free network. It is found that in a duplex network composed of two identical lay-
ers, the presence of the multiplexity helps either diminish or enhance opinion diversity depending
on the relative magnitudes of tolerance ranges characterizing the degree of openness/tolerance on
both layers: there is a steady separation between different regions of tolerance range values on two
network layers where multiplexity plays two different roles respectively. Additionally, the two crit-
ical tolerance ranges follow a one-sum rule; that is, each of the layers reaches a complete consensus
only if the sum of the tolerance ranges on the two layers is greater than a constant approximately
equaling 1, a double of the critical bound on a corresponding isolated network. A further investi-
gation of the coupling between constituent layers quantified by a link overlap parameter reveals
that as the layers are loosely coupled, the two opinion systems co-evolve independently, but when
the inter-layer coupling is sufficiently strong, a monotonic behavior is observed: an increase in the
tolerance range of a layer causes a decline in the opinion diversity on the other layer regardless of
the magnitudes of tolerance ranges associated with the layers in question.

Introduction. – Opinion formation is an interesting
topic in the studies on complex networks [1, 2]. It helps to
predict opinion distribution in a population after a tempo-
ral process of spreading through social interactions [3, 4].
Such studies may reveal that local pair-wise interactions of
individuals eventually form a global equilibrium. Numer-
ous opinion spreading models have been proposed to reveal
the properties of opinion systems by introducing various
rules of communication between individuals. Some of the
most well-known models include Voter model [5, 6], major
rule model [7], Sznajd model [2], etc.

Proposed by Deffuant et al. in 2000, the Deffuant model
[8], as one of the most popular bounded confidence models,
has grabbed much attention over the past decades.

The model employs the parameter of tolerance range.
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Such a parameter to a certain extent reflects the concept
of selective exposure, which describes one’s tendency to
involve himself/herself in social interactions that support
his/her opinions [9, 10, 11].

It is found that the tolerance bound (also interpreted
as confidence bound, tolerance range, or uncertainty
threshold [12, 13, 14]) plays an important role in opin-
ion formation processes. The numerical experiments re-
veal an interesting result, that is, the number of coexist-
ing opinion clusters in the steady state is approximately
1/(2 ∗ tolerance range) [8, 15]. A notion of critical confi-
dence bound is also captured to refer to a threshold be-
yond which an opinion system eventually converges to a
single cluster sharing the same opinion that equals the
average of first impression [8, 16, 17]. Some analytical
frameworks have been developed using the mean-field ap-
proach [18, 19, 20].
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The model is also deliberately modified by replacing
continuous-valued opinion with discretized values [21].

Though the studies on opinion formation have achieved
remarkable results, most of the existing works have been
focusing on non-interacting isolated networks. Meanwhile,
it has been widely realized that many real-life systems,
including most of the social networks, are often composed
of multiple layers coupled together. Such networks are
termed as multiplex networks [22, 23, 24].

There has been a wide range of studies on the influ-
ence of interplay between constituent layers on topologi-
cal structures and dynamic processes upon multiplex net-
works, e.g. diffusion dynamics, random walk and epi-
demics spreading [25, 26, 27]. In computational sociology,
some first-step work has also been proposed to discover
new properties of opinion formation on multiplex net-
works. The authors in [28] developed an analytical frame-
work examining the Deffuant model on a one-dimensional
multiplex network in which each layer is a network on Z
domain. The work was rigorously conducted to draw an
interesting conclusion that under a predefined configura-
tion of multiplexity, the existence of interconnected layers
impedes the convergence. However, it is not exhaustive
to obtain a universal conclusion in general cases where
network structures are diverse. For instance, another con-
sensus model validated in allocation problems; in contrast,
concludes that more dimensions of opinions lead to better
chances for consensus [29].

We study opinion dynamics under the inter-layer inter-
play on duplex scale-free networks. On each layer, the
agents hold an opinion on a certain issue associated with
the underlying layer. The regime of inter-layer interac-
tions mimics the compromise phenomenon in real-life so-
cial networks where one’s viewpoint on a subject may be
influenced by his/her opinion on other subjects, resulting
in their decisions on compromising or neglecting others’
views. It is found that in duplex networks of identical
layers, a weakened-enhanced opinion diversity transition
exists and varies as the function of the magnitudes of the
tolerance ranges of both layers in a non-monotonic way.
An extensive investigation is also carried out to examine
the impact of the inter-layer coupling on the opinion for-
mation.

To be simple, here we consider multiplex networks com-
posed of two scale-free networks (due to their ubiquity in
natural and social networks), while validation of the re-
sults can also be supported by Erdos Renyi (ER) random
networks.

Duplex Opinion Dynamics Model. – We con-
struct a duplex network composed of 2 layers. The duplex
network is a pair G = (V,E) consisting of 2 layers G1 and
G2, each of which is a scale-free network Gi = (V,Ei),
where V is the set of vertices representing individuals in a
population and Ei ⊆ V × V is the set of edges on layer i,
i = 1, 2. The edge set of G, denoted by E, consists of 2 sets
of edges on the two layers respectively, implying two types

of social relationships: E = E1 ∪ E2. The artificial scale-
free networks are constructed using the generative model
[30]. Given an average degree 〈k〉, the scaling exponent
of the power-law function can be obtained by numerically
solving the following equation:∑

k
kp(k) = 〈k〉 , (1)

where

p(k) =
k−γ

ζ(γ, kmin)− ζ(γ, kmax)
, (2)

where kmin and kmax are the minimum and maximum
degrees respectively and ζ(γ, k) is the Hurwitz ζ function
[31, 32].

The connectivity in a layer is independent of that in the
other layer but the overlap of the links may have signifi-
cant effects on the universal opinion formation. We quan-
tify this inter-layer interplay as a link overlap parameter
denoted by η which can be obtained as follows:

η =
| E1 ∩ E2 |
| E1 |

. (3)

In order to make a comparison focusing on effects of the
overlap parameter value, we deliberately keep the degree
of all nodes on both the layers to be the same. Specif-
ically, given a network G1, a scheme for constructing a
layer G2 that meets a desired η is described as follows:
in case of η = 1, the two layers are of exactly the same
topology; otherwise, perform the following rewiring pro-
cess: starting with an initial G2 ≡ G1; randomly choos-
ing nodes A,B,C,D ∈ V where links {A,B} , {C,D} ∈
E2 and {A,C} , {B,D} 6∈ E2, then replacing the links
{A,B} , {C,D} with {A,C} , {B,D}, respectively in E2.
Repeat such rewiring operations until the pre-specified η
is met. All nodes in the resulting layer G2 have the same
nodal degree as their corresponding nodes have in G1.

We here introduce a rule of pair-wise communication
between individuals on each layer (termed as intralayer
interaction [33]) under the influence of the multiplexity.
Firstly, we recall the rule of compromise making in a sin-
gle network following the Deffuant model: initially, each
node in the network is assigned a continuous-valued opin-
ion drawn from a uniform distribution on the region [0,1].
At time step t, if a randomly selected edge e = {u, v} is
active, the opinions held by u and v at time step t+ 1 are
determined by the following rule: if |o(u, t)− o(v, t)| ≤ d,
where o(u, t) and o(v, t) denote the opinions held by the
nodes u and v respectively at time step t, and d is the
tolerance bound homogeneous across the population, then
the two nodes make consensus:

o(u, t+ 1) = o(u, t) + µ(o(v, t)− o(u, t)),
o(v, t+ 1) = o(v, t) + µ(o(u, t)− o(v, t)), (4)

where µ ∈ (0, 1/2] is convergence parameter; otherwise,
they maintain their current opinions. According to most
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of the existing studies, µ only affects the convergence time
[8, 11, 34]. We thus fix µ = 1/2 in the remainder of this
letter.

At the beginning, on each of the layers, say l, each node
v holds an opinion value, denoted by ol(v), drawn from a
uniform distribution over the region [0,1]. At time step t,
each of the two layers is active with an equal probability
0.5. On the active layer, randomly choose a node u and
then pick a neighbor node v at random. The rule of inter-
layer compromise making is described as follows: if u and
v have a connection only on the active layer, e.g. layer 1,
they behave the same as that in a single-layer network. In
other words, if they are not connected on the other layer,
i.e. layer 2, their opinions on layer 2 do not interfere in the
opinion exchange process occurring on the current layer.
Otherwise, they make consensus on layer 1 if and only if
the following condition holds:

|o1(u, t)− o1(v, t)|+ |o2(u, t)− o2(v, t)|
2

≤ d1 + d2
2

⇔ |o1(u, t)− o1(v, t)|+ |o2(u, t)− o2(v, t)| ≤ d1 + d2, (5)

where di, i ∈ {1, 2}, is the confidence bound on layer i
which is independent of each other. The opinion updating
process proceeds until both layers reach a quasi-steady
state at which all agents either maintain their opinions
or change their opinions by an amount less than a small
fluctuation range (set at 10−3 in our study) in any future
contacts. The condition holds when on each layer, all pairs
of neighboring nodes either share approximately identical
opinions or would never make local consensus according
to the compromise rule as defined.

Equation (5) reflects a simple case where connected in-
dividuals weigh the total differences between their opin-
ions on a few different issues to decide whether they would
like to compromise to make a consensus. In the present
model, component layers are supposed to play the same
role, i.e., they are un-weighted layers. Therefore, the opin-
ion spreading processes on both layers occur concurrently
and similarly. For this reason, we mainly discuss the opin-
ion dynamics on layer 1 under the effects of layer 2’s opin-
ion system in comparison to the cases of those in isolated
single-layer networks.

Results. – To evaluate the degree of consensus as well
as the opinion diversity, we employ the quantity of the
number of opinion clusters coexisting at the equilibrium
state. Such a number of clusters on each layer is calcu-
lated by firstly removing links connecting dissenters and
then computing the number of disconnected components
in each layer by using the Dulmage-Mendelsohn decompo-
sition algorithm [35]. Note that the term global consensus
is defined in the strictest sense, implying that in the final
state, the whole population finally concurs and the num-
ber of surviving cluster, therefore, equals 1. Generally,
for some cases, even when a giant fraction of the popula-
tion already converges to a major opinion cluster, several
minor groups, though of small sizes sometimes containing

Fig. 1: Number of coexisting opinion clusters on layer 1 at
steady state as a function of tolerance ranges d1 and d2 when
η = 0 (a), 0.5 (b), and 1 (c), respectively. The number of clus-
ters is shown in color scale. Each layer is a scale-free network
with a size N = 5000, an average degree 〈k〉 = 10, a minimum
degree of 4, and a cutoff degree of 70. Dash lines are boundaries
of critical regions in which a single opinion cluster is formed on
layer 1.

only a single node (called isolated agents or outliers in
some existing studies [21, 36]), still exist in the final state,
and maintain their opinions. The corresponding critical
confidence bound, hence, may vary according to criteria
for global consensus.

To get a first insight, we plot the number of opinion clus-
ters co-existing on layer 1 in the steady state as a function
of d1 and d2 in different cases of η. When η = 0, no pair of
the nodes concurrently has connections on both the lay-
ers. The cluster formation on the layer 1, therefore, is not
influenced by d2 as observed in Fig. 1(a). For η = 1, the
layers are fully coupled. As a result, d2 has a significant
effect on the formation of opinion clusters on layer 1. To
be specific, the number of clusters declines as either d1
or d2 increases but roughly remains unchanged along the
lines d1 +d2 = constant. The phenomenon becomes much
more complicated when η = 0.5 that will be discussed in
detail later. Here we proceed to get deeper insights by
starting with a duplex network of identical layers.

Figure 2 provides a more detailed look on the diversity
of opinion sytems as d2 changes. Similarly to the case
of monoplex networks, the number of opinion groups de-
clines as d1 increases. The formation of opinion clusters
on layer 1 is affected significantly by the presence of layer
2 characterized by various d2. At a very small d2, e.g.
d2 = 0.01, the number of surviving clusters saturates at
the size of the network when d1 approaches 0. However,
the fragmentation of the opinion system is severer since
when d2 → 0, two nodes on layer 1 make a local consen-
sus only if |o1(u, t) − o1(v, t)| + |o2(u, t) − o2(v, t)| ≤ d1,
meaning the closeness in the nodes’ opinions needs to be
below a value less than its layer’s own tolerance bound
d1, making the individuals harder to make compromise
in pair-wise communication sessions and finally diverse to
different opinion groups. Note that, though the conclu-
sion above, and all the conclusions reported in the next a
few paragraphs, hold in the ER random networks, in an
ER network with the same average nodal degree as that
of a SF network, the number of clusters tends to be rela-
tively smaller as there are fewer low-degree nodes in the
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Fig. 2: Number of clusters at steady state as a function of d1 on
duplex network with a size of 5000 and various average nodal
degrees in three cases of d2: 0.01 (diamonds), 0.2 (triangles)
and 0.4 (circles). Plot for single network case (squares) is added
for reference. The results are averaged over 10 independent
realizations.

ER network than in the SF network.
Noticeably, the consensus-to-polarized transition point

(a point on the tolerance range below which the final state
of the population’s opinion jumps from having a single
largest cluster to having two co-existent dominant largest
clusters, as termed in [13]) shifts to the left along d1 axis
as d2 increases and vanishes when d2 is sufficiently large,
e.g. d2 ≥ 0.4 (see Fig. 3). It is because under the influence
of layer 2 with great openness characterized by a large d2,
a giant cluster on layer 1 containing a large proportion of
the population tends to be formed even at small values of
d1. This also causes the extinction of the second largest
clusters and the proliferation of microscopic clusters with
opinion values distributing over the entire opinion spec-
trum as seen in Fig. 4(a).

Also seen in Fig. 2, for a certain value of d2, there ex-
ists a corresponding value of d1, below (above) which the

Fig. 3: Sizes of biggest (solid lines) and second biggest (dash
lines) clusters in the final state on single network (black) and
layer 1 of duplex network with d2 = 0.01 (red), 0.2 (green) and
0.4 (blue), respectively. All networks have a size of 5000 and
an average degree of 10.

Fig. 4: Opinion distribution on a single network with d1 = 0.1
(d) and layer 1 of a duplex network at steady state with d1 =
0.1 and various d2: 0.4 (a), 0.2 (b) and 0.01 (c). The network
size is 5000 nodes and 〈k〉 = 10. The inset in (a) is the same
plot zoomed into small values of opinion density.

number of opinion clusters on layer 1 is smaller (larger)
than that in the single network. We term such a point as
weaken-enhance transition on the d1−d2 plane. As shown
in Fig. 5, the weakened diversity region implies that the
multiplexity facilitates the consensus formation; in other
words, the inter-layer interplay declines the diversity of
the opinion system compared to the case in single-layer
networks. Enhanced diversity indicates the region where
the multiplexity makes the number of clusters larger than
that in a single network. Lastly, global consensus shows
the region where the duplex network reaches a global con-
sensus, i.e, only a single giant cluster of opinion survives.
The figure shows that for small values of d2, the multiplex-
ity always increases the opinion diversity. As d2 increases,
the weaken-enhance transition shifts to the right along the
d1-axis. Noticeably, as d1 increases beyond 0.25, the tran-
sition point starts to plunge until d1 reaches around 0.4. It
is because in duplex networks, the consensus-to-polarized
transition tends to vanish at large values of d2 as aforemen-
tioned, while in single networks, this point clearly exists
at d1 ≈ 0.25, causing a surge in the number of opinion
clusters since the second largest cluster is broken into mi-
nor parts [13]. Note that in multiple rounds of numerical
simulations, the boundaries between different regions ap-
pear to be largely steady, with differences of only small
fluctuations in between.

A question comes naturally that given a layer 2 with
a certain degree of openness quantified by d2, at which
confidence bound the layer 1 reaches a complete consen-
sus. In single networks, the critical threshold dc is 0.5
[16]. In duplex networks, the phenomenon becomes more
complex since the tolerance range of one layer may inter-
fere in the opinion formation on the other layer coupled
with it. dc1, therefore, may change accordingly. We pro-
ceed to quantitatively determine the critical bound dc1 for
various d2. A trial-and-error approach is adopted. Specif-
ically, for each d2, dlower1 and dupper1 are set at 0.01 and
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Fig. 5: The effect of multiplexity on the diversity of opinion
clusters in comparison to the opinion dynamics on single net-
works.

Fig. 6: Critical confidence bound on layer 1 as a function of
d2. For each d2, the corresponding dc1 is the average of 10
realizations. Errors bars represent 95% confidence intervals.

1 respectively; the process of opinion exchanging with a

tolerance range d1 =
dlower
1 +dupper

1

2 starts until the opinion
systems on both layers enter the steady state. The num-
ber of opinion clusters on layer 1, denoted by Nclusters,
is then calculated: if Nclusters > 1, dlower1 is reset at d1;
otherwise, dupper1 adopts d1 as a new boundary. Then the
entire process starts over until dlower1 deviates from dupper1

by an amount less than 0.01. The corresponding value

of d1, being equal to
dlower
1 +dupper

1

2 , is considered as the
critical tolerance range dc1.

As shown in Fig. 6, critical bound dc1 descends mono-
tonically with respect to the increase of d2. The numerical
result shows the sum dc1 +d2 is consistent and around 0.9.
We assure that this sum reaches 1, a double of critical
confidence bound in an isolated network, as the network
size approaches infinity. It can be understood that the
full coupling of two layers strengthens the reciprocal tie of
the layers, leading to a manner that a great receptiveness
of layer 2 characterized by a large value of d2 makes
layer 1 easier to reach a complete consensus and vice versa.

We here turn to a deeper look at the effects of overlap
factor η by examining the survival opinion clusters on layer
1 under fixed values of d2 for various η. When d2 is of a
small value, e.g. 0.2 in Fig. 7(a), the system behaves
in a non-monotonic way: for small values of d1, a tight
inter-layer coupling, i.e. a larger η, reduces the number of
opinion clusters on layer 1, but for large values of d1, the
larger η is, the greater the number of clusters becomes;
that is, under the influence of layer 2 with small d2, the
inter-layer coupling becomes an enhancing factor of the
opinion diversity on layer 1. Extensive simulations carried
out on networks with various sizes confirm that when d2 ≥
0.5, this non-monotonic behavior vanishes and the number
of opinion clusters decreases with the increase of η for all
d1 ∈ (0, 0.5) (see Figs. 7(b) and 7(c)). For these cases, it
can be explained that a layer with a large tolerance range
tends to weaken the opinion diversity on its coupled layer.
Furthermore, the stronger the inter-layer coupling is, the
stronger the effect becomes, regardless of the confidence
bound on the layer in question.

Figure 8 shows the effects of d2 for different cases of
η. In loosely-coupled duplex networks, the probability of
two nodes having connections on both layers is low, caus-
ing a layer seldom interferes in the opinion formation on
the other layer. As a result, the effect of d2 on the num-
ber of opinion clusters on layer 1 is not obvious as seen
in Fig. 8(a). However, it is found that when η increases
beyond 0.5, the system starts exhibiting a monotonic be-
havior: an increase of d2 causes a decline in the diversity
of the opinion system irrespective of d1.

By adopting the same trial-and-error approach, we de-
termine dc1 in different cases of link overlap. Scale-free
networks with a size of 10000 and an average degree of 10
are employed. The results are averaged over 10 different
realizations, each corresponding to a randomly generated
network. An interesting observation is shown in Fig. 9:
for a range of d2 less than 0.5, the increase in the over-
lap of the two layers enlarges critical tolerance range in
layer 1, meaning that layer 1 requires a higher threshold
to reach a global consensus. This can be understood that
an increase of η intensifies the impact of layer 2’s opinion
system on opinion formation on layer 1. Therefore, with a
d2 less than the critical threshold in isolated networks, a

Fig. 7: Number of steady-state opinion clusters on layer 1 of
duplex network with a size N = 5000 for d2 = 0.2 (a) and
d2 = 0.5 (b), and d2 = 0.6 (c). Each subplot shows results in
three cases of η: 0.2 (squares), 0.6 (triangles) and 1 (circles).
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Fig. 8: Number of steady-state opinion clusters on layer 1 of
duplex network with a size N = 5000 for η = 0.2 (a), and
0.5 (b), and 0.6 (c). Each subplot shows results in different
cases of d2: 0.01 (squares), 0.2 (triangles), 0.4 (circles), and
0.6 (diamonds).

larger critical bound on layer 1 is needed as a mechanism
to compensate potential fragmentation on layer 2 due to
a small d2. However, for d2 > 0.5, dc1 no longer declines
with an increase in d2. It is found that for d2 > 0.5, dc1
remains at around 0.5 since there are always a number of
minor opinion groups insisting on their different opinions
from that in the giant cluster.

Fig. 9: Critical bound dc1 as a function of d2 for various values
of link overlap parameter: η = 0.2 (red), η = 0.4 (green) and
η = 0.8 (blue). Errors bars represent 95% confidence intervals.

Conclusion. – We studied the dynamics of opinion
formation on duplex scale-free networks. It is found that
the presence of multiplexity in underlying networks either
enhances or weakens the diversity of opinion systems com-
pared to the case on non-interacting monoplex networks.
Theses effects depend on the relative magnitudes of toler-
ance ranges associated with different layers. The global
consensus state where the entire population shares the
same opinion is reached if the sum of two tolerance ranges
is not smaller than 1, a double of the critical range in
opinion systems on single networks.

The investigation of the effect of inter-layer coupling
reveals that when the link overlap is sufficiently larger,
which is 0.5 in our experiments, an increase in tolerance
range on a layer decreases the diversity of opinion clus-
ters on the other layer monotonically. The consideration
of the global consensus state reveals that the one-sum rule

no longer holds when duplex networks are not fully cou-
pled. Following that, an open-minded network layer with
a large tolerance cannot complement global consensus for-
mation on the other layer, i.e., a layer can reach a complete
consensus state only if its associated confidence bound is
sufficiently large, which is at least around 0.5 in duplex
scale-free networks.

The two layers are assumed to be active with an equal
probability. However, in real-life, relative frequencies of
being active may vary from layer to layer. Future inves-
tigations may consider such differences as a parameter in
the quantification of inter-layer interplay that may reveal
new properties in opinion formation.

Though most conclusions reported in this letter hold
in both synthetic ER and SF networks, some other
network topologies may lead to significant differences in
opinion dynamics and cluster formation. For examples,
some conclusions may not hold in networks with strong
community structures. Investigations on dynamics of
opinion formation on other network topologies will be
discussed in a separate report.

∗ ∗ ∗

The research is partially supported by Ministry of Ed-
ucation, Singapore, under contract MOE2016-T2-1-119.

*. – REFERENCES

[1] Pluchino A., Latora V. Rapisarda A., The
European Physical Journal B-Condensed Matter and
Complex Systems, 50 (2006) 169.

[2] Sznajd-Weron K. Sznajd J., International Jour-
nal of Modern Physics C, 11 (2000) 1157.

[3] Castellano C., Fortunato S. Loreto V., Re-
views of Modern Physics, 81 (2009) 591.

[4] Noah E. Friedkin, Anton V. Proskurnikov,
Roberto Tempo Sergey E. Parsegov, Phys.
Rev. Lett., 112 (1994) 41301.

[5] Castellano C., Vilone D. Vespignani A., EPL
(Europhysics Letters), 63 (2003) 153.

[6] Sood V. Redner S., Physical review letters, 94
(2005) 178701.

[7] Galam S., The European Physical Journal B-
Condensed Matter and Complex Systems, 25 (2002)
403.

[8] Deffuant G., Neau D., Amblard F. Weisbuch
G., Advances in Complex Systems, 03 (2000) 87.

[9] Weiner I. B., Millon T. Lerner M. J., Hand-
book of Psychology, Personality and Social Psychol-
ogy Vol. 5 (John Wiley & Sons) 2003.

[10] Weisbuch G., Deffuant G. Amblard F., Phys-
ica A: Statistical Mechanics and its Applications, 353
(2005) 555.

[11] Meng X., Van Gorder R. A. Porter M. A.,
arXiv preprint arXiv:1701.02070, (2017) .

p-6



Opinion Formation on Multiplex Scale-free Networks

[12] Deffuant G., Journal of Artificial Societies and So-
cial Simulation, 9 (2006) 8.

[13] Kozma B. Barrat A., Physical Review E, 77 (2008)
016102.

[14] Mathias J.-D., Huet S. Deffuant G., Journal of
Artificial Societies and Social Simulation, 19 (2016)
6.

[15] Weisbuch G., Deffuant G., Amblard F. Nadal
J.-P., Complexity, 7 (2002) 55.

[16] Fortunato S., International Journal of Modern
Physics C, 15 (2004) 1301.

[17] Jacobmeier D., International Journal of Modern
Physics C, 17 (2006) 1801.

[18] Ben-Naim E., Krapivsky P. L. Redner S., Phys-
ica D: Nonlinear Phenomena, 183 (2003) 190.

[19] Lorenz J., Physica A: Statistical Mechanics and its
Applications, 355 (2005) 217.

[20] Yu Y., Xiao G., Li G., Tay W. P. Teoh H. F.,
Chaos: An Interdisciplinary Journal of Nonlinear
Science, 27 (2017) 103115.

[21] Stauffer D., Sousa A. Schulz C., Journal of Ar-
tificial Societies and Social Simulation, 7 (2004) .

[22] Salehi M., Sharma R., Marzolla M., Magnani
M., Siyari P. Montesi D., IEEE Transactions on
Network Science and Engineering, 2 (2015) 65.

[23] D’agostino G. Scala A., Networks of networks:
the last frontier of complexity Vol. 340 (Springer)
2014.

[24] Lee K.-M., Kim J. Y., Lee S. Goh K.-I., Multiplex
networks in Networks of networks: The last frontier

of complexity (Springer) 2014 pp. 53–72.
[25] Mucha P. J., Richardson T., Macon K.,

Porter M. A. Onnela J.-P., Science, 328 (2010)
876.

[26] Gomez S., Diaz-Guilera A., Gomez-Gardenes
J., Perez-Vicente C. J., Moreno Y. Arenas A.,
Physical review letters, 110 (2013) 028701.

[27] Granell C., Gómez S. Arenas A., Physical re-
view letters, 111 (2013) 128701.

[28] Shang Y., Journal of Physics A: Mathematical and
Theoretical, 48 (2015) 395101.

[29] Lorenz J., European Journal of Economic and So-
cial Systems, EJESS, (2007) .

[30] Catanzaro M., Boguñá M. Pastor-Satorras
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