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Matrix Function Optimization under Weighted
Boundary Constraints and Its Applications in

Network Control
Guoqi Li∗†, Pei Tang∗, Chen Ma, Ran Wang, Gaoxi Xiao and Luping Shi†

Abstract—The matrix function optimization under weighted
boundary constraints on the matrix variables is investigat-
ed in this work. An “index-notation-arrangement based chain
rule” (I-Chain rule) is introduced to obtain the gradient of
a matrix function. By doing this, we propose the weighted
trace-constraint-based projected gradient method (WTPGM)
and weighted orthornormal-constraint-based projected gradient
method (WOPGM) to locate a point of minimum of an ob-
jective/cost function of matrix variables iteratively subject to
weighted trace constraint and weighted orthonormal constraint,
respectively. New techniques are implemented to establish the
convergence property of both algorithms. In addition, compared
with the existing scheme termed “orthornormal-constraint-based
projected gradient method” (OPGM) that requires the gradient
has to be represented by the multiplication of a symmetrical
matrix and the matrix variable itself, such a condition has been
relaxed in WOPGM. Simulation results show the effectiveness
of our methods not only in network control but also in other
learning problems. We believe that the results reveal interesting
physical insights in the field of network control and allow
extensive applications of matrix function optimization problems
in science and engineering.

Keywords: Matrix function optimization, Matrix variable,
Weighted orthornormal constraint, Weighted trace constraint,
Network control

I. INTRODUCTION

It is well known that the derivative is a fundamental tool
in many science and engineering problems [1][2]. For a
scalar function of a real variable, the derivative measures the
sensitivity of function change with respect to such a variable,
which has meaningful physical insights. For example, the
derivative of the position of a moving object with respect to
time is the object’s velocity, and it measures how quickly
the object position changes when time involves. However,
finding the derivative of a function with respect to a real
variable is not enough when one wants to describe a more
complicated problem in which a function is determined by a
set of variables. In such a case, the study of the derivative
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of a function with respect to a vector becomes necessary.
Vector derivatives that take in vector variables are extremely
important, where they arise throughout fluid mechanics [3],
electricity and magnetism [4], elasticity [5], and many other
areas of theoretical and applied physics [6]. Vector derivatives
can be combined in different ways, such as divergence [7]
and curl [8] operators, producing sets of identities that are
also very important in physics.

A vector is a special form of a matrix in which all elements
are organized in a line, and a matrix can always be stacked
to a vector form. However, in various practical statistics and
engineering problems, stacking a matrix into a vector will lose
the physical meaning within each column. For example, in the
problem of control of complex networks [9], we need to design
an input matrix to achieve the control objective. The number of
columns of the input matrix is the number of external control
sources available, and stacking the input matrix into a vector
makes the network become uncontrollable. In these cases,
taking the derivative of a function with respect to a matrix
variable becomes essential. To this end, we need to collect
various partial derivatives of a single function with respect to
many variables, and/or of a multivariate function with respect
to a single variable, and obtain the total differential informa-
tion. Thus, operations in finding a local maximum/minimum
of a multivariate function solving differential equations can
be significantly simplified via various gradient descent meth-
ods [10]. In this paper, optimization problems where vector
variables and matrix variables are involved are termed by
vector function optimization and matrix function optimization
problems, respectively. The notation “vector” and “matrix”
used here is commonly used in statistics and engineering,
while the tensor index notation [11][12] is preferred in physics.

Motivated by an irresistible longing to understand the above
issues, we moved from vector function optimization problems
to matrix function optimization problems whose variables are
matrices in our most recently work [13]. To accomplish this
issue, we hope to know the gradient information of a matrix
function. However, it is generally hard to obtain such infor-
mation when matrices-by-matrices derivatives are involved. It
should be noticed that the derivative of a vector function with
respect to another matrix is a high-order tensor. For example,
for a scalar cost function E(B) where B ∈ Rn×m, it is a
function of another matrix Q ∈ Rp×q . The derivative of cost
function E(B) with respect to B captures how the matrix
variable B affects the cost function. To this end, we explore
how the value of the element Bkl of the matrix B affects the
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value of element Qij of the matrix Q. Particularly, we need
to differentiate ∂Qij

∂Bkl
for all i, j and k, l. Such a differentiation

results in a fourth order tensor [14][15]. In short it is an m×n
matrix, and each of its entries is a p× q matrix.

Although vector derivative has been well established, matrix
derivative is difficult. Currently there is no unified framework
that can completely solve this problem [16]. Existing schemes
mainly use two basic ways to deal with this issue, one is the
Vec operator and Kronecker products arrangement [17][18],
and the other is the index notation arrangement [19]. However,
for implementations, there are a lot of intricacy and tedious
calculation. The main difficulty here is keeping track of where
things are put since a matrix variable may depend on numerous
intermediate matrix variables. This situation becomes worse
when E(.) has a more complicated form. We find that index
notation arrangement relatively simplifies the presentation and
manipulation of differential geometry when doing matrix dif-
ferentiation. Thus, we proposed an index-notation-arrangement
based chain rule (I-Chain rule) in [13]. By obtaining the
gradient of a matrix function using I-Chain rule, two iterative
algorithms, namely, trace-constraint-based projected gradient
method (TPGM) and orthornormal-constraint-based projected
gradient method (OPGM) were presented to solve the matrix
function optimization problems. Projection and normalization
operators were utilized to establish the convergence of TPGM
and OPGM. This work provided a unified framework which
reveals important physical insights and deepens our under-
standing of various matrix function optimization problems, and
inspires wide applications in science and engineering.

However, in the work [13], to guarantee the convergence of
TPGM/OPGM, it is required that the gradient can be represent-
ed by the multiplication of a symmetrical matrix and the matrix
variable itself. That is to say, the gradient of the cost function
should be represented in the form of ∇E(B) = F (B) · B
where F (B) ∈ RN×N is symmetrical and Bk ∈ RN×M .
Although such an assumption holds in various applications,
it indeed does not hold in some cases. For example, consider
the case that E(B) = tr((L−BX)T (L−BX)) where tr(.)
denotes the matrix trace function. In this case, the gradient
∇E(B) cannot be represented by ∇E(Bk) = F (Bk) · Bk.
Therefore we investigate how to develop an algorithm and
ensure its convergence in this work. We also find that the
boundary constraints in [13] can be further relaxed. More
particularly, by introducing an real symmetry positive definite
weight matrix G, the trace constraint and the orthornormal
constraint can be relaxed to the weighted trace constraint and
weighted orthornormal constraint, respectively. The boundary
constraints in [13] become special cases of this work in which
G is an identity matrix.

The main problem we faced is how to deal with the non-
symmetrical of ∇E(B)BT for a formulated matrix objective
function under more relaxed constraints. It brought this ques-
tion up: a non symmetrical matrix diagonalized as its eigenval-
ues may not be all real values and therefore existing techniques
cannot guarantee the convergence of the TPGM/OPGM algo-
rithm in this case. To this end, we propose the weighted trace-
constraint-based projected gradient method (WTPGM) and
the weighted orthornormal-constraint-based projected gradient

method (WOPGM) to locate a point of minimum of an
objective/cost function of matrix variables iteratively subject
to weighted trace boundary constraint condition and weighted
orthornormal constraint condition, respectively. Our main idea
is to replace ∇E(B) by ∇E(B)BTGB, which can be rep-
resented by F (B) · B such that F (B) = ∇E(B)BTG. The
key technique in guaranteeing the convergence of WTPGM
is to obtain the orthonormal basis of GB in the iteration
process. While for WOPGM, the essential issue is to the
establishment of the value condition of λk in the iteration
process. Introducing the parameter λk is similar to the idea of
Levenberg-Marquardt stabilization, also known as the damped
least-squares (DLS) [20][21] method, which is generally used
to solve non-linear least squares problems. In the next section,
we shall prove that E(Bk) is convergent to E(B∗) as k → ∞,
with B∗ having orthonormal columns, provided that the step
length η is sufficiently small. Thus, both the assumption on the
gradient of the cost function and requirement on the boundary
constraint have been relaxed in this paper. This means that we
are able to extend our method regarding the optimization of
matrix functions to more extensive applications in science and
engineering. Simulation results show the effectiveness of our
framework.

To show the effectiveness of our method, various case
studies including two in the area of network control are
illustrated. In the first case study, we focus on how to identify
nodes to which the external control sources are connected
so as to minimize a pre-defined energy cost function of a
control strategy. Different from the work in [13], a positive
definite diagonal weight matrix G reflecting the restriction on
each external control source is considered. The matrix function
optimization model built in this work allows us to investigate
how G can affect the control cost. By applying WTPGM and
WOPGM, we uncover that the control cost is related to the
condition number of G. This interesting observation may lead
to heuristic algorithm design for the minimum cost control
of large scale of real life complex networks, which deserves
great attention for the future research. In the second case study,
we consider controlling directed networks by only evolving
the connection strengths on a fixed network structure. In this
case, the topology matrix A becomes a matrix variable of
the control cost function while the input matrix B is fixed.
By this example, we also show that the proposed WTPGM
and WOPGM are applicable when G becomes an identity
matrix, which suggests that WTPGM and WOPGM are more
general than TPGM and OPGM, respectively. In addition, we
uncover that, when the control sources are evenly allocated,
the system can be considered as a few identical subsystems
and the control cost attains its minimum. This is meaningful
when one want to explore how network topology evolution
affects the cost of controlling these networks.

There are some literatures considering optimization prob-
lems where matrix variables are involved under specific
constraints [13] [22][23][24][25][26][27] [28][29][22][30][31]
[32][33][34] [35] [36] [37] [38]. However, the cost functions
in these works are in relatively simple and specific forms
[24][25]. For example, they are usually simple trace functions
such as tr(XTAX) where X are the matrix variable and
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A is a given symmetrical matrix [37] [38]. Regarding the
constraints, applications of trace and orthornormal constraints
can be found in many practical problems such as in machine
learning problems [26][27], image processing [28][29], signal
processing [22][30][31], modularity detection [32][33] and
complex networks [34][36]. Existing schemes translate each
of the above applications into some particular models that are
manageable, so they fail to deal with the problems in a general
way.

The remaining part of the paper is organized as follows.
In Section 2, we illustrate how a matrix function optimization
problem is formulated. The algorithm of WTPGM and WOPG-
M are presented in Section 3. In Section 4, how to obtain the
gradient of a matrix function is discussed using I-Chain rule.
The convergence of WTPGM and WOPGM are established
in Section 5. In Section 6, three example in different areas
involving the matrix function optimizations are illustrated to
show the performance of WTPGM and WOPGM. Finally, this
paper is concluded in Section 7.

II. PROBLEM FORMULATION

Let E(B) ≥ 0 be a general cost function of a matrix B ∈
RN×M . Without losing of generality, we assume that N ≥ M .
By denoting a real symmetrical and positive definite (or semi-
definite) matrix G as a weight matrix, the matrix function
optimization problem is formulated as:

argminB E(B)
s.t. tr(BTGB) = M

(1)

under weighted trace constraint where tr(·) denotes the matrix
trace function, or

argminB E(B)
s.t. BTGB = IM

(2)

under weighted orthonormal constraint, where IM denotes an
identity matrix with a dimension M . Here tr(BTGB) = M
and BTGB = IM represent different boundary constraints on
the energy profile of the matrix variable B but with different
physical implications.

Based on Cholesky decomposition, G = GTG, where
G is a postive definite upper triangular matrix. Therefore
tr(BTGB) = M is equivalent to ∥GB∥2F = M where ∥·∥F
denotes the Frobenius norm, and this implies that the quadratic
sum of all elements of matrix product GB is a fixed value
M . BTGB = IM means that all column of GB are or-
thonormal to each other. By defining feasible regions such that
S1 = {B| BTGB = IM} and S2 = {B| tr(BTGB) = M},
it is easy to see that S1 is a subset of S2, i.e., S1 ⊂ S2.

Thus, in this paper, trace constraint tr(BTB) = M and
orthornormal constraint BTB = IM are relaxed to more
general conditions by introducing a weight matrix G, which
reflects variable boundary requirements on the energy profiles
of the input matrix B. When G is an identity matrix, the
optimization models in (1) and (2) in this work reduce to the
models in [13].

III. ALGORITHMS

Motivated by [9] [13] [39], we propose two iterative al-
gorithms, namely, weighted trace-constraint-based project-
ed gradient method (WTPGM) and weighted orthonormal-
constraint-based projected gradient method (WOPGM), for
solving the optimization problem formulated in (1) and (2),
respectively. The detailed steps for each algorithm are sum-
marized as follows.

A. WTPGM for solving the optimization model (1)
Let ON×M

1 := {B ∈ RN×M : trace(BTGB) = M},
and B̃ ∈ RN×M be the orthonormal basis of GB ∈ RN×M

where B is an arbitrary matrix. This implies that B̃T B̃ = IM .
The minimization problem of (1) is converted to minimization
of E(B) over ON×M

1 that can be viewed as an embedded
submanifold of the Euclidean space RN×M . By defining a
projection operator TB̃ = (IN − B̃B̃T ), WTPGM for solving
the optimization model (1) is presented as follows.

1) Step 1. Set k = 0 and initialize B as a random matrix
B0 ∈ RN×M .

2) Step 2 (Projected gradient descent step). Calculate the
gradient ∂E(B)

∂B at B = Bk denoted as ∇E(Bk), update
Bk to Bk+1 as follows

B̂k+1 = Bk +△B̂k

= Bk + η△Bk

= Bk − η ·
(
IN − B̃kB̃

T
k

)
∇E(Bk)

= Bk − η · TB̃k
∇E(Bk)

(3)

where η is a chosen step length, △B̂k = η△Bk,
△Bk = −TB̃k

∇E(Bk) and TB̃k
=
(
IN − B̃kB̃

T
k

)
, and

B̃k is the orthonormal basis of matrix product GBk. As
shown in Lemma 6, TB̃k

is a projection operator which
projects a matrix Z ∈ ON×M

1 onto a space perpendicular
to the space spanned by GBk (denoted as Span{B̃k}).
Since B̃k is the orthonormal basis of GBk, GBk can be
represented by B̃k, i.e., GBk ∈ Span{B̃k}. Therefore,
in Fig.1, △B̂k is perpendicular to GBk.

3) Step 3 (Normalization step) Obtain Bk+1 by normalizing
B̂k+1 onto the surface ON×M

1 by

Bk+1 =
√

M

tr(B̂T
k+1GB̂k+1)

· B̂k+1 (4)

Denote that △Bk = Bk+1 − Bk as the quantity of the
variety at each iteration step.

4) Step 4. Calculate the angle θk between −∇E(Bk) and
△Bk, based on the following Definition:

θk = arccos

(
tr
(
[∇E(Bk)]

T TB̃k
∇E(Bk)

)
∥∇E(Bk)∥F ·

∥∥∥TB̃k
∇E(Bk)

∥∥∥
F

)
(5)

5) Step 5. If
∣∣θk − π

2

∣∣ > ξ, then update k = k + 1 and go
to Step 2; otherwise, stop the iteration and let B∗ = Bk.

Note that ξ is a positive small constant which is a termi-
nation condition of the iteration process. The solution for the
matrix B obtained by WTPGM is denoted as B∗. Fig.2 shows
the illustration of WTPGM for solving the matrix optimization
problem (1).
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B. WOPGM for solving the optimization model (2)

Similarly, let ON×M
2 := {B ∈ RN×M : BTGB = IM}.

Viewing ON×M
2 as an embedded submanifold of the Euclidean

space RN×M . Here we define a projection operator such that
TBON×M

2 := {X ∈ RN×M : X = (IN − GBBT )Z, ∀B ∈
ON×M

2 , Z ∈ RN×M}. By Lemma 6, the space TBON×M
2 at

any Z ∈ RN×M is perpendicular to Span{B}.
Assume that the analysis formula of ∇E(Bk), which is the

gradient of the cost function can be written as ∇E(Bk) =
F (Bk) · Bk where F (Bk) ∈ RN×N and Bk ∈ RN×M .
Otherwise, we use F̂ (Bk) = ∇E(Bk) ·BT

k to replace F (Bk),
making ∇̂E(Bk) = F̂ (Bk) ·G · Bk. For simplicity, hereafter
we use ∇̂E(Bk) = F̂ (Bk)·G·Bk no matter whether ∇E(Bk)
can be written as F (Bk)Bk or not.

Similar to WTPGM, we first randomly choose B0 from
RN×M . Then, in the projected gradient descent step, calculate
∇E(Bk), and we denote that

F̂ (Bk) = ∇E(Bk) ·BT
k

∇̂E(Bk) = F̂ (Bk) ·G ·Bk

F̃ (Bk) = F̂ (Bk) + λkI

∇Ẽ(Bk) = F̃ (Bk) ·G ·Bk

(6)

Let a = trace(BT
k TBk

GTBk
F̂ (Bk)GBk) and b =

trace(BT
k TBk

GTBk
GBk). The value of λk is chosen accord-

ing to the following Tab.I. Then, we do the iteration with

TABLE I
THE VALUE CONDITION OF λk

b > 0 b < 0
λk < −a

b λk > −a
b

B̂k+1 = Bk +∆B̂k

= Bk + η ·∆Bk

= Bk − η ·
(
IN −GBkB

T
k

)
· ∇Ẽ(Bk)

= Bk − η · TBk
· ∇Ẽ(Bk)

(7)

where ∆B̂k = η · ∆Bk and ∆Bk = −TBk
∇Ẽ(Bk) with

TBk
= IN −GBkB

T
k . In the Normalization step, update Bk+1

by

Bk+1 =

√
tr(B̂T

k+1GB̂k+1)
tr(B̂T

k+1GB̂k+1B̂T
k+1GB̂k+1)

· B̂k+1 (8)

Fig.3 illustrates the iteration process of WOPGM for solving
the optimization model (2). In implementations, the termina-
tion criteria is revised from (5) via replacing ∇E(Bk) by
∇Ẽ(Bk):

θk = arccos

 tr

([
∇Ẽ(Bk)

]T
TBk

∇Ẽ(Bk)

)
∥∥∥∇Ẽ(Bk)

∥∥∥
F
·
∥∥∥TBk

∇Ẽ(Bk)
∥∥∥
F

 (9)

Remark 2. The idea of updating Bk+1 based on B̂k+1 in
(8) is explained as follows. We first define a norm function as

N(B) = tr
((

BTGB − IM
)T (

BTGB − IM
))

(10)

Fig. 1. The projection and normalization operators in WTPGM. The
initial B0 can be randomly assigned, and at the k+1th iteration, we calculate
B̂k+1 first and then obtain Bk+1. The notations in this figure is shown in
the algorithm and detailed description can be found in Theorem 1.

Fig. 2. Iteration process of WTPGM for solving optimization problem
(1).

Note that ∀B ∈ RN×M , BTGB = IM is equivalent to
N(B) = 0. By setting Bk+1 = ρk · B̂k+1, it is seen that
there is no exact solution ρk satisfying that N(Bk+1) = 0
since it is generally impossible to drag a tensor of B on
the boundary constraints by just automatic scaling. In the
iteration, we minimize N(Bk+1) by solving ∂N(ρk·B̂k+1)

∂ρk
= 0,

which gives

N(ρk) = ρ4ktr(B̂
T
k+1GB̂k+1B̂

T
k+1GB̂k+1)

− 2ρ2ktr(B̂
T
k+1GB̂k+1) +M

(11)

Thus, it is obtained that ρk =

√
tr(B̂T

k+1GB̂k+1)
tr(B̂T

k+1GB̂k+1B̂T
k+1GB̂k+1)

. �

IV. I-Chain Rule FOR MATRIX FUNCTION
DIFFERENTIATION

As mentioned, obtaining ∇E(Bk) is of high importance
for implementing both WTPGM and WOPGM. To achieve
this, we investigate matrix differentiation in this section. Since
generally a complicated matrix function involves combinations
of some basic operators such as matrix product, matrix trace,
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Fig. 3. Iteration process of WOPGM for solving optimization problem
(2). The detailed information of the notations are shown in Theorem 2.

matrix determinant and matrix inverse, we show how to
calculate ∇E(Bk) on these basic operators and some lemmas
will be then introduced. Based on these lemmas, we claim that,
the derivative of a unintuitive matrix function can be calculated
by applying the I-Chain Rule.

A. Matrix product
Lemma 1. [40] For a matrix X with no special structure
(i.e., elements of X are independent), denote [X]ij as the ij-
th element of matrix X and δij = 1 iff i = j (otherwise,
δij = 0), we have:
1) ∂[X]kl

∂[X]ij
= δki · δlj

2) ∂[XT ]kl

∂[X]ij
= δkj · δli

3) [X]kl = [X]Tlk
4) δki · δij = δkj
5) For compatible matrices A,B,X such that X = AB,

then [X]ij =
∑

k[A]ik[B]kj and it can be written as
[X]ij = [A]ik · [B]kj) by introducing [·] operator and
omitting the summation notation. Similarly, for compat-
ible matrices A,B,C,X such that X = ABC, then
[X]ij = (ABC)ij =

∑
k

∑
p AikBkpCpj can be written

as [X]ij = Aik ·Bkp · Cpj .

The method introduced in Lemma 1 is regarded as the “in-
dex notation arrangement” method [19]. Based on this method,
it is convenient to simplify the notations in many applications.
For example, we have

∑
k Aikδkj = Aik · δkj = Aij for a

N ×M matrix A ∈ RN×N .

B. Matrix trace differentiation operator

For a matrix X ∈ RN×N , we have ∂tr(X)
∂X = I This

can be easily derived from Lemma 1. As we have ∂tr(X)
∂Xkl

=
∂
∑

i Xii

∂Xkl
=
∑

i δikδil = δkl, and δkl = 1 if and only if k = l,
otherwise δkl = 0. Thus, we obtain that ∂tr(X)

∂X = I . Also,
high order of matrix trace differentiation can be derived. For
example, as ∂tr(X2)

∂Xkl
=

∂
∑

i

∑
p XipXpi

∂Xkl
=
∑

i δki · δpl ·Xpi +∑
i Xip · δpk · δli = 2Xlk, we obtain that ∂tr(X2)

∂X = 2XT .

C. Matrix inverse differentiation operator

Lemma 2. [19] For an invertible matrix Y ∈ RN×N and a
scalar x, we have

∂Y −1

∂x
= −Y −1 ∂Y

∂x
Y −1 (12)

Lemma 3. [40] For an invertible matrix X ∈ RN×N , we
have

∂[X−1]kl

∂[X]ij
= −[X−1]ki[X

−1]jl (13)

D. Matrix determinant differentiation operator

Lemma 4. [40] For an invertible matrix X ∈ RN×N , we
have

∂det(X)
∂Xij

= det(X)[X−T ]ij (14)

where det(·) denotes the matrix determinant operator.

E. Index-notation-arrangement based chain rule (I-Chain
rule) for matrix function derivatives

As discussed in Introduction section, there is no unified
framework for matrix function differentiation in the existing
literatures. In this subsection, we propose index-notation-
arrangement based chain rule to do the derivative of general
matrix function by exploring Lemmas 1-4. Simulation results
in Section 6 will show the effectiveness of our methods.

I-Chain rule: Suppose that matrix U ∈ RN×M is a function
of matrix B, i.e., U = g(B), the derivative of the function
E(U) = E(g(B)) with respect to B is given by the chain
rule as follows:

∂E(g(B))
∂B = ∂E(g(B))

∂Bij

=
∑

m,n
∂E(U)
∂Umn

∂Umn

∂Bij

= ∂E(U)
∂Umn

· ∂Umn

∂Bij

(15)

where Bij is the ij−th element of matrix B, and the indexes∑
m,n (1 ≤ m ≤ M , 1 ≤ n ≤ N ) is omitted for the

convenience of representation (Index-notation-arrangement).
�

The above I-Chain rule has meaningful implications.
Basically it says that when we do not know how to find the
derivative of an expression using matrix calculus directly, we
can always fall back on index notation and convert back to
matrices in the end. This is the main idea of derivation steps
and it reduces a potentially unintuitive matrix-valued problem
into one involving scalars which we are used to. In addition,
it is less painful to massage an expression into a familiar form
and apply previously-derived identities. Fig.4 illustrates how
to do the derivative of E(U), in which U is function of B
denoted as U = g(B), with respect to B using the chain rule.
The derivation steps are summarized as follows.

1) For a matrix function E(B) : RN×M → R where
B ∈ RN×M , the derivative of E(B) with respect to
B has the same dimension with matrix B. In order to
take the derivative, we only need to take the derivative
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=======

∑

m,n

∂E(U)

∂Umn

∂Umn

∂Bij

=tr

(

[

∂E(U)

∂U

]T [

∂U

∂Bij

]

)

=
∂E(U)

∂Umn

·

∂Umn

∂Bij

I-Chain rule"

Fig. 4. I-chain rule for the matrix function differentiation.

of E(B) with respect to Bij , denoted as ∂E(B)
∂Bij

, which

is the ij−th element of ∂E(B)
∂B .

2) For the case that the matrix function contains basic
operators such as matrix trace, matrix inverse, matrix
determinate and so on, normally new variables will be
introduced and chain rule can be applied to represent
the derivation as a form such that the terms in the
derivation chain can be interpreted as taking a sequence
of derivatives of basic operators.

3) Sum all the derivatives of newly defined variables with
respect to Bij using the chain rule. To this end, switching
the places of entities such that the derivation can be
written as [•]ij is necessary. Based on the obtained
∂E(B)
∂Bij

for all i and j and convert all the terms back

to a matrix, finally we could obtain ∂E(B)
∂B .

Now we take eAt for example to illustrate how to ob-
tain the first order derivative of eAt with respect to A us-
ing I-Chain rule. Assume that matrix A has k eigenvalues
λ1, λ2, ..., λk where λ1 is a m−th order repeated eigenvalue
and λ2, λ3, ..., λk (k = N −m− 1) are the remaining N −m
eigenvalues which are assumed distinct. By Cayley-Hamilton
theorem [41][42], it is obtained that

eAt = α0(t)I + α1(t)A+ α2(t)A
2 + ...+ αN−1(t)A

N−1

where αn0(t) = αn0t
n0 for i = 0, ..., N − 1 are obtained by

solving matrix equations.
Note that the derivative of eAt with respective to A is a

fourth tensor, to obtain the derivative of eAt with respect to
A, we need to obtain the derivative of [eAt]kl with respect to
Aij .

By using the I-Chain rule, we have

∂[An0 ]kl
∂Aij

=

n0−1∑
k0=0

∂
(
[Ak0 ]kpApz[A

n0−1−k0 ]zl
)
]kl

∂Aij

=

n0−1∑
k0=0

(
[Ak0 ]kpδpiδzj [A

n0−1−k0 ]zl
)

=

n0−1∑
k0=0

(
[Ak0 ]ki[A

n0−1−k0 ]jl
)

(16)

By Lemma 2, we obtain

∂[eAt]kl
∂Aij

=
N−1∑
n0=1

αn0(t)

(
n0−1∑
k0=0

(
[Ak0 ]ki[A

n0−1−k0 ]jl
))

(17)

V. CONVERGENCE PROOF

Here we prove the convergence of WTPGM and WOPGM
in solving the optimization problems given in (1) and (2),
respectively. Before that, we first introduce following lemmas.

Lemma 5. For symmetric matrices X, Y ∈ RN×N and
random matrices U ∈ RM×N , Z ∈ RN×M ,

tr(UXY Z) = tr(UY XZ),

as long as ZU is symmetric [40].

Lemma 6. Define a Stiefel manifold S := {B ∈ RN×M :
BTB = IM} and a space spanned by B as Span{B} :=
{X : X = B ∗ Y,B ∈ S, Y ∈ RM×M} Then,

TB = (IN −BBT ) (18)

is a projection operator which projects Z ∈ RN×M onto a
space perpendicular to the space Span{B}.

Proof: Note that T T
B TB = TB . So TB is an projection

operator. By definition, for a matrix X ∈ Span{B}, there
exist a Y ∈ RM×M} such that X = BY . Then,

tr(XTTBZ) = tr(Y T (BT −BTBBT )Z) = 0 (19)

which implies that the angle between X and TBZ is 900.
Thus, TB is a projection operator which projects an arbitrary
Z ∈ RN×M onto the space perpendicular to Span{B}.

Remark 3. In mathematics, Stiefel manifold [43], named
after the Swiss mathematician Eduard Stiefel, is a set of
orthonormal k-frames [44][45] in RN . A k-frames is an
ordered set of k linearly independent vectors in a space with
k ≤ N being the dimension of the vector space. This implies
the orthonormal constraint on the matrix variables, i.e., they
are located on Stiefel manifold which is a submanifold of
RN×k. Such a constraint has its physical meaning in many
practical applications [46] [47].

Theorem 1. The iteration process of WTPGM given in (3)-(4)
in solving the optimization problem in (1) is convergent.

Proof: Fig.1 shows ON×M
1 and TBON×M

1 , represented
with a red surface and a translucent plane, respectively. At
the start of every step, we have Bk obtained from previous
step, which is represented with a black arrow in Fig. 1. Since
E(Bk) ≥ 0, we have to show that

E(Bk+1)− E(Bk) ≤ 0 (20)

to establish the convergence property of WTPGM. To simplify
representation, we use operator TB̃k

and ∇E(Bk) to represent
(IN − B̃kB̃

T
k ) and ∂E(B)

∂B at B = Bk, respectively.
Now we consider tr

(
BT

k GTB̃k
∇E(Bk)

)
. Because B̃k is

the orthonormal basis of GBk, GBk can be written as B̃k ·Y ,
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where Y is a N ×N diagonal matrix. Hence, we have

tr
(
BT

k GTB̃k
∇E(Bk)

)
= tr

(
(GBk)

TTB̃k
∇E(Bk)

)
= tr

(
(B̃k · Y )T · TB̃k

∇E(Bk)
)

= tr
(
Y T (B̃T

k − B̃T
k B̃kB̃

T
k )∇E(Bk)

)
= tr

(
Y T (B̃T

k − B̃T
k )∇E(Bk)

)
= 0.

(21)

based on Lemma 6. Note that the operator TB̃k
projects a

matrix Bk ∈ ON×M onto the tangent space TB̃ON×M , so we
have tr(BT

k GBk) = M and T T
B̃k

TB̃k
= TB̃k

.

Now by substituting B̂k+1 = Bk − ηTBk
∇E(Bk), we have

Bk+1 =
√

M

tr(B̂T
k+1GB̂k+1)

· B̂k+1

=
√

M

tr(BT
k GBk)−2ηtr(BT

k GTBk
∇E(Bk))+o(η)(

Bk − η · TB̃k
· ∇E(Bk)

)
= Bk − ηTB̃k

∇E(Bk) + o(η)

(22)

Through Taylor expansion and using (22), we have

E(Bk+1)− E(Bk)

= E(Bk) + tr
(
[∇E(Bk)]

T · (Bk+1 −Bk)
)

+ o(Bk+1 −Bk)− E(Bk)

= tr
(
[∇E(Bk)]

T · (−ηTB̃k
∇E(Bk))

)
+ o(η)

= −ηtr
(
[∇E(Bk)]

T TB̃k
∇E(Bk)

)
+ o(η)

(23)

Again, as TB̃k
is an projection operator, we have T T

B̃k
TB̃k

=
TB̃k

. Then,

[∇E(Bk)]
T TB̃k

∇E(Bk) =
(
TB̃k

E(Bk)
)T TB̃k

E(Bk).
(24)

Hence, [∇E(Bk)]
T TB̃k

∇E(Bk) is a positive semi
definite matrix, which means every eigenvalue λi of
[∇E(Bk)]

T TB̃k
∇E(Bk) is nonnegative, which gives

tr
(
[∇E(Bk)]

T TB̃k
∇E(Bk)

)
=
∑

i λi ≥ 0. (25)

Thus, we have E(Bk+1) ≤ E(Bk) and we can draw the
conclusion that the iteration is convergent, as long as η is
sufficiently small. The iteration stops when the optimality
condition tr

(
[∇E(Bk)]

T TB̃k
∇E(Bk)

)
= 0 (weighted trace

constraint) is satisfied.

Theorem 2. Suppose λk is selected as illustrated in Table 1.
For a randomly choosing B0 ∈ RN×M and a sufficiently small
η, the proposed WOPGM in (6)-(8) ensures that E(Bk) con-
verges to E(B∗) where B∗ is a matrix such that the weighted
orthornormal boundary constraint condition is satisfied, i.e.,
B∗TGB∗ = IM .

Proof: For the representation of simplicity, we use TBk

and ∇N(Bk) to replace (IN −GBkB
T
k ) and ∂N(Bk)

∂Bk
respec-

tively. Our gradient descent method is to minimize E(B) and
N(B) simultaneously. Since E(Bk) ≥ 0, we next need to to
prove two parts as follows:

E(Bk+1)− E(Bk) ≤ 0, (26)

N(Bk+1)−N(Bk) ≤ 0, and N(Bk) ≥ 0 (27)

It is apparent that N(Bk) ≥ 0.

Now we consider N(B̂k+1)−N(Bk). Firstly, denote that

∇N(Bk) = 4G(BkB
T
k G− IN )Bk. (28)

As BkB
T
k is symmetric, from Lemmas 5-6, and by using

Taylor expansion to expand N(B)[48], we have

N(B̂k+1)−N(Bk)

=N(Bk + η∆Bk)−N(Bk)

=N(Bk) + ηtr([∇N(Bk)]
T ·∆Bk)−N(Bk)

=− ηtr
((

4G(BkB
T
k G− IN )Bk

)T TBk
F̃ (Bk)GBk

)
=4η · tr

(
BT

k TBk
GTBk

· F̃ (Bk)GBk

)
=4η · tr

(
BT

k TBk
GTBk

· (F̂ (Bk) + λk)GBk

)
=4η · tr

(
BT

k TBk
GTBk

· F̂ (Bk)GBk

)
+ 4ηλk · tr

(
BT

k TBk
GTBk

·GBk

)
=4η(a+ bλk).

(29)

From the definition of λk in Tab.I, we have

4η · (a+ bλk) < 0. (30)

which gives that

N(B̂k+1)−N(Bk) = 4η · (a+ bλk) < 0. (31)

Now we consider N(Bk+1)−N(B̂k+1). From 10 and 8, we
have

N(Bk+1) = M −
tr2
(
B̂T

k+1GB̂k+1

)
tr
(
B̂T

k+1GB̂k+1B̂T
k+1GB̂k+1

) . (32)

So we have

N(Bk+1)−N(B̂k+1)

= −

(
tr(B̂T

k+1GB̂k+1B̂
T
k+1GB̂k+1)− tr(B̂T

k+1GB̂k+1)
)2

tr(B̂T
k+1GB̂k+1B̂T

k+1GB̂k+1)

≤ 0. (33)

From (31) and (33), we obtain

N(Bk+1)−N(Bk)

=N(Bk+1)−N(B̂k+1) +N(B̂k+1)−N(Bk) ≤ 0,
(34)

and the iteration ends when ∇N(Bk) = 0, i.e., BT
k GBk =

IM . This implies that ∀ϵ > 0, ∃K ∈ N, ∀k > K, |N(Bk)| <
ϵ, which can also be written as N(Bk) = o(η), or

BT
k GBk = IM + o(η) (35)

To prove E(Bk+1)−E(Bk) ≤ 0 when N(Bk) = o(η), we
aim to use Bk to express Bk+1 directly. Firstly, we have

tr(BT
k+1GBk+1B

T
k+1GBk+1)

=ρ4ktr(B̂
T
k+1GB̂k+1B̂

T
k+1GB̂k+1)
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=ρ2ktr(B̂
T
k+1GB̂k+1)

=tr(BT
k+1GBk+1) (36)

Hence, it is straightforward to prove that ρk = 1 + o(η), and
we have

Bk+1 = Bk + η ·∆Bk + o(η). (37)

Secondly, by applying Taylor expansion to expand
E(B)[48] by substituting ∇̃E(Bk) = F̃ (Bk)GBk, we obtain

E(Bk+1)− E(Bk)

= E(Bk) + ηtr
(
∇ET (Bk)∆Bk

)
− E(Bk) + o(η)

= −ηtr(∇ET (Bk) · TBk
F̃ (Bk)GBk) + o(η)

= −ηtr
(
∇ET (Bk) · TBk

(
∇E(Bk)B

T
k + λkI

)
GBk

)
+ o(η)

= −ηtr
(
∇ET (Bk)TBk

∇E(Bk)
)

− ηλktr(∇ET (Bk)TBk
GBk) + o(η)

(38)

Note that

tr(∇ET (Bk)TBk
GBk)

= tr(∇ET (Bk)(IN −GBkB
T
k )GBk)

= tr(∇ET (Bk)(GBk −GBkB
T
k GBk))

= tr(∇ET (Bk)(GBk −GBk(IM + o(η))))

= o(η). (39)

when k is sufficiently large. Then,

E(Bk+1)− E(Bk)

= −ηtr
(
∇ET (Bk)TBk

∇E(Bk)
)
+ o(η) (40)

Since

tr
(
∇E(Bk)

TTBk
∇E(Bk)

)
+ o(η)

=tr
(
(∇E(Bk)TBk

)
T
(TBk

∇E(Bk))
)
+ o(η)

≥o(η)

(41)

we have ∃K ∈ N, ∀k > K, E(Bk+1) ≤ E(Bk) and the
convergence of E(Bk) is now proven for a sufficiently small
η. By combining the results shown in (35), E(Bk) converges
to E(B∗) with B∗TGB∗ = IM .

VI. CASE STUDIES

In order to show that the proposed WTPGM and WOPGM
are applicable to various practical problems, in this section,
four case studies including one numerical example and two
applications in the field of network control as well as one
example in dimension reduction are illustrated. Simulation
results show that our method can be not only applied in
network control but also in other learning problems.

A. An example of matrix trace function optimization

In this subsection, we consider a general model of minimiz-
ing a matrix trace function given by

argminB E(B) = tr(UBTWBV +BTP +Q)

s.t. tr(BTGB) = M or BTGB = I

Iteration Number
5 10 15 20 25 30 35 40 45 50

N
(B

)

10-7

10-5

10-3

1

E
(B

)

0

10

20

30

E(B)
N(B)

Fig. 5. WTPGM under constraint tr(BTGB) = M .

where B ∈ Rn×m and U, V and Q ∈ Rm×m with W ∈
Rn×n , P ∈ Rn×m, and G is a real symmetry positive definite
matrix. By I-Chain rule, we obtain the gradient of E(B) given
by

∇E(B) = WBV U +WTBUTV T + P

Note that WTPGM is applicable when the weighted trace
constraint is considered. In order to address the weighted
orthonormal constraint, as we observe that ∇E(B) cannot be
represented by ∇E(B) = F (B)B, we reconstruct ∇Ẽ(B)

and F̃ (B) based on (6). Thus, the above matrix trace function
optimization problem can be converted to model (2) and it can
be solved by applying WOPGM.

For illustration, we set U,W, V, P,Q and G randomly as
N = 5,M = 3. The convergence of both N(B) and E(B)
under different constraints are shown in Fig.5 and Fig.6. It
is seen that N(B) rapidly converges to a small value below
10−5 which can be regarded as zero. After N(B) converges
to zero, E(B) decreases monotonically and converges to an
optimum value finally.

Note that the step length η in the WTPGM and WOPG-
M algorithms should be set appropriately to guarantee the
convergence. It can be seen in the proofs of Theorems 1-2
that, when approximating the equations using Taylor series
expansion under the condition that η is sufficiently small, some
terms which are mainly matrices or the trace of matrices are
ignored. Although theoretically η should be sufficiently small
to ensure the convergence, it can be empirically selected when
doing experiments. We find that if we select η smaller than
the reciprocal of the largest element in matrix B for more
than three orders of magnitude, the convergence can be always
guaranteed.

For WOPGM, it is known that the matrix
(TBk

∇E(Bk))
T (TBk

∇E(Bk)) is non-negative in (41),
all its eigenvalues can be denoted as λ1 ≥ 0, ..., λM ≥ 0.
Let λ∗ =

∑
i λ

i. Then we have E(Bk) − E(Bk+1) = ηλ∗.
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Iteration Number
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
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E
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-1000

-500

0

N(B)
E(B)

Fig. 6. WOPGM under constraint BTGB = IM .

E(Bk)− E(B∗) = E(Bk+1)− E(B∗) + ηλ∗ which gives

E(Bk+1)− E(B∗)

E(Bk)− E(B∗)
= 1− ηλ∗

E(Bk)− E(B∗)
= νk (42)

Therefore, we have νk < 1 until the algorithm converges,
and limk→+∞νk = 1. For WTPGM, similar conclusion
holds. Therefore algorithms WTPGM and WOPGM converge
linearly to E(B∗).

B. Applications in minimum cost control of complex networks
with selectable input matrices

The minimum cost control of complex networks [36] sub-
jected to linear dynamics ẋ(t) = Ax(t)+Bu(t) has been a hot
topic recently with wide applications. The N ×N matrix A is
the given network’s adjacency matrix which describes the con-
nection and interaction strength between the network nodes.
The N×M matrix B is the selectable input matrix where Bim

is nonzero if the m−th external control source is connected
to node i and zero otherwise. x(t) = [x1(t), ..., xN (t)]T is the
state vector of N nodes at time t with the initial state being x0,
and u(t) = [u1(t), ..., uM (t)]T is the time-dependent external
control input vector with M (M ≤ N) being the number of
inputs, where the same input ui(t) may drive multiple nodes.
The objective is to design the input matrix B and u(t) such
that the system states can be driven to the origin at t = tf ,
i.e., the final state xf = [0, ..., 0]T , subject to the condition
that the average cost E

[∫ tf
0

∥u(t)∥22dt
]

is minimized. Here
E[.] takes the expectation of the argument over all realizations
of the random initial state.

By assuming that each element of the initial state x0 =
[x01, ...., x0N ]T is an identical independent distributed (i.i.d)
variable with zero mean and variance 1, we have E

[
x0x

T
0

]
=

X0 = IN and Xf = E[xfx
T
f ] = eAtfX0e

AT tf . Different
from the work in [13], we consider a positive definite diagonal
weight matrix

G = diag{g1, ...gi, ..., gM}

subject to
∑

i gi = M , which reflects the restriction on each

1
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5678
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B41
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0 0.5

]
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Fig. 7. An example of the minimum cost control problem. The stem
network has 8 nodes and 2 external drivers. The objective is to determine B
such that the control cost can be minimized while tr(BGBT ) ≤ M .

external control source. Therefore, the optimization problem
in [13] can be converted to find an optimal input matrix B∗

that minimizes the cost function E(B) defined by E(B) ,
tr[W−1

B Xf ] where WB is the Gramian matrix such that WB =∫ tf
0

eAtBBT eA
T tdt [36] under a weighted trace constraint:

argminB E(B) = tr

[(∫ tf

0

eAtBBT eA
T tdt

)−1

Xf

]
s.t. tr(BGBT ) ≤ M

(43)

Suppose that the input matrix B is represented as B =
[b1, ..., bj , ..., bM ] where bi = [B1j , ..., Bij , ..., BNj ]

T ∈
RN×1 describes all the weights between node i and the j−th
external control source. It is seen that, there is an energy
capacity restriction on each external control source j as long
as gj ̸= 0. This implies that the corresponding norm of the

weight vector ∥bj∥2 =
√∑8

i=1 B
2
ij has an upper bound due

to the bound condition tr(BGBT ) ≤ M . A simple example
is illustrated in Fig.7 with M = 2. In this case, the constraint
tr(BGBT ) ≤ M is represented as

g1b
T
1 b1 + g2b

T
2 b2 = 2

When g1 = g2 = 1, the constraint reduces to the trace
constraint in [13], which implies that each external control
source has equal restriction. Suppose that (A,B) is control-
lable at initial time. Then, by applying WTPGM, N(B) =
(tr(BGBT ) −M)2 converges to zero very fast while E(B)
reduces relative slowly and converges to a local minimum
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Iteration Number
5 10 15 20 25 30 35 40 45 50
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Fig. 8. WTPGM for the minimum cost control problem. N(B) converges
to zero very fast and E(B) reduces continuously and converge to a local
minimum value eventually.

value eventually. In Fig. 8, it is seen that N(B) reduces fast
and converges to around 10−8, which is small enough to be
treated as zero, and WTPGM would suppress N(B) being
below 10−8 (this precision is affected by η, as when a smaller
η is chosen, N(B) would converge to smaller value). After
N(B) has converged to zero rapidly, E(B) reduces slowly
and continuously, and it converges to a local minimum value
eventually.

We would like to note that two important works [49] [50]
were most recently published, which show network control
is becoming a hot topic. Both of these two works consider
network control theories and their potential applications in real
physical systems, and they are similar to the case we consider
here. A significant difference of this work is that we set a
weight matrix G to take into account the constraints on the
external control inputs in practical applications.

We further investigate how does the diagonal weight matrix
G affect the obtained control cost E(B∗). By denoting the
condition number of G as cond(G) = ∥G−1∥2F ∥G∥2F , it is
found that there is a negative correlation between cond(G)
and E(B∗). The result is presented in Fig.9. The reason
is explained as follows. With the increase of cond(G), the
constriction on the control source corresponding to the smaller
value of {g1, g2} becomes smaller and smaller. In an ideal
case, we consider g1 = 0 and g2 = 2, which implies
that there is no more energy capacity restriction on the first
external control source, i.e., the norm of the weight vector

∥b1∥2 =
√∑8

i=1 B
2
i1 can be positive infinity. So ∥b1∥2 can

be sufficiently large and u1(t) can be sufficiently small while
bi1u1(t) for all i could be still finite. Thus

∫ tf
0

u2
1(t)dt can be

reduced by increasing ∥b1∥2.
In [13], it is pointed out that the absolute value of link

weight Bij actually evaluates the importance of node i for
the jth controller, and an importance index vector is defined
as r = [r1 ... ri ... rN ]

max(r1,...,ri,...,rN ) where ri =
∑

j |B∗
ij | is the sum of

the absolute values of the i−th row of B∗ for i = 1, ..., N .
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Fig. 9. The control cost with respect to Cond(A).

Therefore the importance index of node i reflects the relative
importance of this node in achieving the minimum cost
objective. The key node set, i.e., the top M nodes with the
highest importance index values can be identified by WTPGM.
Here we also investigate how the weight matrix G affect the
distributions of key nodes on an elementary stem in Fig.10. As
mentioned, when G is an identity matrix, the model is reduced
to the case in our previous work [13], the probability that the
set {node 1, node 5} which divides the stem averagely to be
selected as key node set is almost 1. This is consistent with our
main finding in [13]. This observation is of great importance,
as it may lead to heuristic algorithm design for the minimum-
cost control of large scale of real life complex networks, which
definitely deserve great attention for the future research.

However, as cond(G) becomes larger and larger, the proba-
bility of selecting {node 1, node 5} as the key node set slightly
decreases while the probability of selecting {node 1, node 6}
gradually increases. This indicates that the key node is grad-
ually moving to the tail of the stem as node 1 has to be
selected for ensuring the controllability of the network. For
the case g1 = 1 and g2 = 1, each of the two control source
has equal importance and {node 1, node 5} is selected as
key nodes with a probability of almost one, and with each
control source driving equal number of nodes. While as the
conditional number cond(G) increases, the control source with
larger ∥bi∥2 affects/drives more nodes and the other source
only affects/drives the remaining nodes. This leads to the fact
of the key node set slightly moving to the tail of the stem.
In an ideal case of g1 = 0 and g2 = 2, i.e., there is no more
energy constriction on the first control source, the norm of the

weight ∥b1∥2 =
√∑8

i=1 B
2
i1 could be infinity. And in this

case, if we only connect u1(t) to node 1, the control cost can
be still keep in a low level.

As discussed in [13], we would also like to point out
that for the non-convex optimization problem (1) or (2), the
proposed WTPGM method, like any optimization method with
a reasonably low complexity, can only guarantee converging to
a local minimum. It is well known that through multiple rounds
of experiments, a suboptimal solution can always be easily
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Fig. 10. Illustration how does the Cond(A) affect the distribution of the
key nodes.

obtained, and such a suboptimal solution steadily approaches
the global optimum as the number of experimental implemen-
tations increases. However, an interesting observation based
on our extensive implementations of WTPGM in this example
starting with different initial B0 matrices is that the solutions
of different rounds of implementations typically lead to nearly
the same control cost. Whether it means that the solution found
by a single round implementation of WTPGM is steadily close
to the global optimum requests further careful studies.

C. Applications in controlling directed networks by only e-
volving the connection strengths on a fixed network structure

In last subsection, we consider the minimum cost control
of complex networks subjected to linear dynamics ẋ(t) =
Ax(t)+Bu(t) with selectable input matrix [13]. This implies
that B is a matrix variable while the topology matrix A is
fixed, Here we consider another case, the topology matrix A
becomes a matrix variable while the input matrix B is fixed.
In this case, this above problem can be formulated as the
following matrix function optimization problem:

argminA E(A) = tr

[(∫ tf

0

eAtBBT eA
T tdt

)−1

Xf

]
s.t. tr(ATA) = M

(44)

where Xf is a constant matrix given by

Xf = E[xfx
T
f ] = eAtfX0e

AT tf (45)

The problem can be converted to find an optimal A∗ to mini-
mize the cost function E(A) defined by E(A) , tr[W−1

A Xf ]

where WA =
∫ tf
0

eAtBBT eA
T tdt is the Gramian matrix. In

practice, it is interesting and also useful to investigate how the
connection strengths of a network evolve on a fixed network
structure. For a network with topology matrix A in which
Aij describes the connection strength between node i and
node j, we build a corresponding network structure matrix
A as follow: Aij = 1 if |Aij | ≪ ω for a sufficiently small
positive ω, otherwise, Aij = 0. Similar to the previous case,

suppose that (A, B) is controllable at initial time. However, to
guarantee that the network structure matrix A remains fixed in
the iterative process of WTPGM, the gradient ∂E(A)

∂A needs to
be replaced by ∂E(A)

∂A ◦A, where the ‘◦′ denotes the Hadamard
(element-wise) product of two matrices. Note that Theorem 1
still holds when implementing WTPGM in this way as there
is no requirement on specific form of the gradient.

Our experiment is on controlling a circle topology with
N = 6 nodes and M = 2 external control sources in Fig.11(a).
The initial topology matrix A is built based Fig.11(a) by
setting Aij = 1 if there is an edge from i to j, otherwise
Aij = 0. In this example, the above model is a special case
of model (44) with G being an identity matrix. Obviously,
WTPGM can be applied. Therefore, we implement WTPGM,
with the replacement of the gradient ∂E(A)

∂A by ∂E(A)
∂A ◦ A at

each iteration, in order to find out how the connection strength
evolves when the control cost attains its minimum. Based on
Lemma 1 and by introducing the I-Chain Rule, the derivative
of ∂E(A)

∂A can be expressed as

∂tr(W−1
A eAtfX0e

AT tf )

∂Aij

=− δmn ·
∂[W−1

A ]mu

∂Aij
· [eAtf ]uz · [X0]zc · [eA

T tf ]cn

+ δmn · [W−1
A ]mu · ∂[e

Atf ]uz
∂Aij

· [X0]zc · [eA
T tf ]cn

+ δmn · [W−1
A ]mu · [eAtf ]uz · [X0]zc ·

∂[eA
T tf ]cn

∂Aij

(46)

We have
∂[W−1

A ]mu

∂Aij

=−[W−1
A ]mf · [W−1

A ]ru ·
∂
[∫ tf

0 eAtBBT eA
T tdt

]
fr

∂Aij

=−[W−1
A ]mf · [W−1

A ]ru ·
∫ tf
0

∂[eAt]fs

∂Aij
[BBT ]sd[e

AT t]drdt

−[W−1
A ]mf · [W−1

A ]ru ·
∫ tf
0
[eAt]fs[BBT ]sd

∂[eA
T t]dr

∂Aij
dt

(47)

From the example given in the end of Section 4, we have

∂[eAt]kl
∂Aij

=

N−1∑
n0=1

αn0(t)

(
n0−1∑
k0=0

(
[Ak0 ]ki[A

n0−1−k0 ]jl
))

(48)

and

∂[eA
T t]kl

∂Aij
=

N−1∑
n0=1

αn0
(t)

(
n0−1∑
k0=0

(
[Ak0 ]li[A

n0−1−k0 ]jk
))

(49)

Substituting (48) and (49) into (47), we obtain

∂[W−1
A ]mu

∂Aij

=−
∫ tf

0

N−1∑
n0=1

αn0(t)

(
n0−1∑
k0=0

(
[W−1

A Ak0 ]mi[A
n0−1−k0BBT eA

T tW−1
A ]ju

))
dt

−
∫ tf

0

N−1∑
n0=1

αn0(t)

(
n0−1∑
k0=0

([
W−1

A eAtBBT (An0−1−k0)T
]
mj
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· [(Ak0)TW−1
A ]iu

))
dt

Combining (47)-(49), we rewrite (46) in the form of [•]ij by
rearranging the orders of the terms based on I-Chain Rule, we
finally obtain that

∂tr(W−1
A eAtfX0e

AT tf )

∂A

=− 2

∫ tf

0

N−1∑
n0=1

αn0(t)

n0−1∑
k0=0

(AT )k0W−1
A eAtfX0e

AT tf

·W−1
A eAtBBT (AT )n0−1−k0dt

+ 2
N−1∑
n0=1

αn0(tf )

n0−1∑
k0=0

(AT )k0W−1
A eAtfX0(A

T )n0−1−k0

From our experiment, it is observed that the link weights
evolve depending on the locations of the control sources.
Technically, there are 4 different ways to place these two
control sources. Fig.11 (b) and (c) illustrate two examples.
In Fig.11 (b), nodes 1 and 5 are connected with the control
sources (stars) respectively. The optimal topology indicates
that the strength of edge {4 → 5} and {1 → 6} are very small
(dash lines), which implies two elementary stems are formed
when ignoring the extremely small connection strength. Fig.11
(c) shows similar results. Moreover, by applying WTPGM,
the control cost of in Fig.11 (c) is the smallest among the 4
different control sources placements. It can be concluded that
when the control sources are evenly allocated, the system can
be considered as two identical subsystems and the control cost
attains its minimum. This finding also coincides with the main
finding in [13] for the case of selectable input matrix.
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Fig. 11. The evolution of an elementary cycle topology with N =
6, M = 2 when the control sources are pre-allocated. (a) The cycle
topology. (b)When nodes {1, 5} are connected to external control sources
(represented by stars), it is observed that for the obtained topology A∗, the
link weights pointing to nodes {1} and { 5} are extremely small (represented
by dash lines). (c) When nodes {1, 4} is connected to external control sources,
the control cost attains its minimum.

D. Dimension reduction
Besides the applications in network control, we also show

the effectiveness of our methods in dimension reduction which
is commonly applied in various learning problems. Recent
decades have seen the successful application of dimension
reduction in widespread areas sufferring from dimension curse
including engineering, biology, sensing and economics[51].
To manipulate high-dimensional data like the writing, sounds,
images and videos, several algorithms have been develope-
d which can be divided into linear and nonlinear types.

The linear type can be regarded as a projective operation
transforming high-dimensional data into low-dimensional s-
pace. Principal Component Analysis (PCA) has proven its
remarkable ability to reduce data dimension without losing
most data information[52]. Linear discriminant analysis (LDA)
projects data into a low-dimensional space which has the
minimum-in-cluster-distance and maximum-between-cluster-
distance[53]. The second class do the nonlinear dimension
reduction (NLDR) by providing a mapping from high dimen-
sion to low dimension[54] including ISOMAP[55], Locally
linear embedding (LLE)[56], Laplacian eigenmaps[57] and
other methods.

Generally, many algorithms in dimension reduction are
under the framework called Graph Embedding[58], which aim
to find a transformation matrix W ∈ RN×M that transforms
the high-dimensional data vector x ∈ RN into the low-
dimensional data y ∈ RM (M < N ) as y = WTx.

The graph embedding is a framework to generalize most
algorithms which are proposed to find such W . The graph
embedding defines an undirected weighted graph {X,S} with
vertex set X representing the original data {xi|xi ∈ RN}Ni=1

and similarity matrix S ∈ RN×N. The element sij of S
measures the similarity of the vertex pair, i.e. data pair xi and
xj , which indicates S is a real symmetric matrix. Then the
dimension reduction problem can be transformed into finding
a y∗ such that

y∗ = arg min
yTGy=c

yTLy,

where c is a constant, G is a constraint matrix which is similar
to the weight matrix in this paper, L = D−S is the Laplacian
matrix and D is a diagonal matrix with Dii =

∑
j ̸=i sij . Along

with the linearization of the graph embedding, this objective
function can be further converted to find a vector w∗ such that

w∗ = arg min
wTXGXTw=c

wTXLXTw. (50)

Under this general framework, many algorithms of dimension
reduction can be essentially regarded as solving a trace ratio
optimization problem such as LDA and MFA (Marginal Fisher
Analysis). Take LDA[59] as an example. Rather than finding a
projection matrix W projecting data x onto a subspace which
can describe x best, LDA aims to discriminate x among classes
in a subspace just as its name implies. For this purpose, LDA
defines two matrices to measure the metric among classes. One
is the within-class (also named as intra-class) scatter matrix

SW =
c∑

j=1

Nj∑
i=1

(xj
i − µj)(x

j
i − µj)

T ,

where c is the number of classes, Nj is the number of data
samples in class j, µj is the mean of class j and xj

i is the ith
sample in class j. Another is the between-class (also named
as inter-class) scatter matrix

SB =

c∑
j=1

(µj − µ)(µj − µ)T ,

where µ is the mean of all classes. As the goal of LDA is
to search for a subspace where the distance of data among
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different classes is furthest and the distance of data in the same
class is nearest, SW should be minimized and SB should be
maximized. A straightforward way is to maximize the ratio of
||SB||
||SW || . Thus, equation (50) is converted to

w∗ = argmin
w

wTSWw

wTSBw
, (51)

which can be further formulated in trace ratio form

W = arg max
WTGW=IM

tr(WTSpW )

tr(WTSlW )

where Sp and Sl are defined in [60], and G is a positive semi-
definite matrix. Thus, the dimension reduction problem can be
rewritten as

argminB E(B)
s.t. BTGB = IM

(52)

by setting E(W ) = − tr(WTSpW )
tr(WTSlW )

and replacing W with B.
To solve the above trace-ratio problem, we can use the pro-

posed WOPGM based on constructed randomly semi definite
matrices A and C, and positive definite matrix G. After apply-
ing the algorithm, the result is shown in Fig. 12. The blue line
represents the value of the boundary condition function N(B)
which rapidly decreases to the magnitude of 10−5 as small
as the step lengthη. Limited to the computational accuracy in
MATLAB, N(B) is oscillating around 10−5 and never larger
than 10−4. Compared with the step length η, N(B) becomes
sufficiently small and can be considered as zero. After the
constraint N(B) approaches zero, the cost function E(B)
starts to strictly decrease as the red line showing, which is
consistent with the theoretical proof. We would also like to
point out that the motivation of the proposed method compared
method is fundamentally different from existing methods to
deal with the dimension reduction problems. For example in
[60], the iterative algorithm for the Trace Ratio optimization
problem (abbreviated to ITR) requires eigenvalue decompo-
sition method to compute the eigenvalues and corresponding
eigenvectors of intermediate symmetric matrix iteratively). It
is known that derive the eigenpair of real symmetric matrices
have O(N3) time complexity at each iteration, which indicates
that ITR has O(N3) complexity as the iteration number is in-
dependent of N . For WOPGM, the iteration only contains the
multiplication of the matrices and also has O(N3) complexity.
However, when both the WOPGM and the ITR are applied to
the trace ratio problem generalized from dimension reduction
in (52), it is observed that the iteration number of WOPGM
is smaller than that of ITR. This is easily explicable as the
iteration in WOPGM is more intuitive and simpler. When we
fix the iteration number, WOPGM usually obtain lower values
than ITR.

Last but not lease, we discuss the selection of λk for
WOPGM. In the proof of the theorem 2, N(B̂k+1)−N(Bk) =
4η(a+ bλk) ≤ 0 requires that λk should meet the inequations
in Tab. I at least. As we generalize the optimization problem
from BTB = IM to BTGB = IM , λk plays a key role in the
convergency of N(B) and E(B).

For λk, when N(B) is far from zero, λk has a great effect on
the decrease of N(B). As N(B) converges to zero, the update

Fig. 12. WOPGM for the dimension reduction trace-ratio problem.
When N(B) is far away from zero, E(B) may fluctuate some time while
after N(B) approaches to zero, E(B) reduces strictly and converge to a local
minimum value eventually.

iteration formula itself of this line search method would ensure
that N(B) is always approaching and near zero with deviation
which depends on how small η is. When N(B) has converged
to zero, Theorem 2 guarantees that E(B) converges to a local
optimized value. Thus, the selection of λk mainly influences
the convergency of N(B). For example, if we set

λk =
−1− a

b
− |−1− a

b
|, b > 0

or
λk =

−1− a

b
+ |−1− a

b
|, b < 0

N(B) will converge to zero faster than that if we set

λk =
−1− a

b
− |−1− a

2b
|, b > 0

or
λk =

−1− a

b
+ |−1− a

2b
|, b < 0

However, as N(B) is near zero and smaller than η, λk should
be selected more wisely to restrain the increase of N(B), e.g.

λk = − 1

4η
, b > 0 or λk = − 1

4η
, b < 0.

Generally, the constraints in Tab. I are the necessary require-
ments of λk to ensure the convergency of N(B). And the
proper selection of λk can accelerate the convergency of
N(B), suppress the increase of N(B) and finally result in
the better convergence of E(B).

VII. DISCUSSIONS

It is well known that matrix function optimization problems
are much more general than vector function optimization
problems. Because in many science and engineering problems,
the variables that affect the objective function are described by
matrices instead of vectors, where each column of the matrix
variable has its physical meaning and cannot be flatten into a
vector form. In this work, we investigated matrix optimization
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problems under weighted boundary constraints, which has
meaningful physical insights since many real life applications
are under such constraints. By introducing I-Chain rule to
obtain the gradient of the objective matrix function, two
algorithms (WTPGM and WOPGM) are advanced to solve the
problems. The convergence of both WTPGM and WOPGM
can be guaranteed. Our method has also been illustrated and
validated in different applications not only in network control
but also in other learning problems, with the simulation results
showing its effectiveness. We believe that our work opens the
door of matrix function optimization problem and its wide and
extensive applications in science and engineering.
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covariance tensor for gravity gradient predictions by means of the hankel
transformation,” GEM-International Journal on Geomathematics, vol. 6,
no. 2, pp. 319–342, 2015.

[15] S. Ge, M. Han, and X. Hong, “A fully automatic ocular artifact removal
from eeg based on fourth-order tensor method,” Biomedical Engineering
Letters, vol. 4, no. 1, pp. 55–63, 2014.

[16] K. M. Abadir and J. R. Magnus, Matrix algebra. Cambridge University
Press, 2005, vol. 1.

[17] J. R. Magnus, H. Neudecker et al., “Matrix differential calculus with
applications in statistics and econometrics,” 1995.

[18] A. Hjørungnes, Complex-valued matrix derivatives: with applications in
signal processing and communications. Cambridge University Press,
2011.

[19] R. J. Barnes, “Matrix differentiation,” Springs Journal, 2006.
[20] C. L. Lawson, “Hanson rj solving least squares problems,” 1974.
[21] C. W. Wampler, “Manipulator inverse kinematic solutions based on vec-

tor formulations and damped least-squares methods,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 93–101, 1986.

[22] J. H. Manton, “Optimization algorithms exploiting unitary constraints,”
IEEE Transactions on Signal Processing, vol. 50, no. 3, pp. 635–650,
2002.

[23] H. A. Kiers, “Setting up alternating least squares and iterative ma-
jorization algorithms for solving various matrix optimization problems,”
Computational statistics & data analysis, vol. 41, no. 1, pp. 157–170,
2002.

[24] D. Xu, S. Yan, D. Tao, S. Lin, and H.-J. Zhang, “Marginal fisher analysis
and its variants for human gait recognition and content-based image
retrieval,” Image Processing, IEEE Transactions on, vol. 16, no. 11, pp.
2811–2821, 2007.

[25] J. Yu, X. Gao, D. Tao, X. Li, and K. Zhang, “A unified learning
framework for single image super-resolution,” Neural Networks and
Learning Systems, IEEE Transactions on, vol. 25, no. 4, pp. 780–792,
2014.

[26] Y. Liu, F. Shang, L. Jiao, J. Cheng, and H. Cheng, “Trace norm
regularized candecomp/parafac decomposition with missing data,” IEEE
transactions on cybernetics, vol. 45, no. 11, pp. 2437–2448, 2015.

[27] L. Yang, X. Cao, D. Jin, X. Wang, and D. Meng, “A unified semi-
supervised community detection framework using latent space graph
regularization,” IEEE transactions on cybernetics, vol. 45, no. 11, pp.
2585–2598, 2015.

[28] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and
machine vision. Cengage Learning, 2014.

[29] A. C. Bovik, Handbook of image and video processing. Academic
press, 2010.

[30] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for
gaussian vector multiple-access channels,” Information Theory, IEEE
Transactions on, vol. 50, no. 1, pp. 145–152, 2004.

[31] S. Ye and R. S. Blum, “Optimized signaling for mimo interference sys-
tems with feedback,” IEEE Transactions on Signal Processing, vol. 51,
no. 11, pp. 2839–2848, 2003.

[32] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[33] S. Zhang and H. Zhao, “Normalized modularity optimization method
for community identification with degree adjustment,” Physical Review
E, vol. 88, no. 5, p. 052802, 2013.

[34] C. Cai, Z. Wang, J. Xu, X. Liu, and F. E. Alsaadi, “An integrated
approach to global synchronization and state estimation for nonlinear
singularly perturbed complex networks,” IEEE transactions on cyber-
netics, vol. 45, no. 8, pp. 1597–1609, 2015.

[35] Z. Meng, G. Shi, K. H. Johansson, M. Cao, and Y. Hong, “Behaviors
of networks with antagonistic interactions and switching topologies,”
Automatica, vol. 73, pp. 110–116, 2016.

[36] G. Yan, J. Ren, Y.-C. Lai, C.-H. Lai, and B. Li, “Controlling complex
networks: How much energy is needed?” Physical review letters, vol.
108, no. 21, p. 218703, 2012.

[37] T. Zhang, D. Tao, X. Li, and J. Yang, “Patch alignment for dimension-
ality reduction,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 21, no. 9, pp. 1299–1313, 2009.

[38] E. Y. Chan and D.-Y. Yeung, “A convex formulation of modularity
maximization for community detection,” in Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence (IJCAI),
Barcelona, Spain, 2011.

[39] G. Li, P. Tang, Z. Meng, C. Wen, P. Jing, and L. Shi, “Matrix
function optimization and its applications in learning problems,” IEEE
Transactions on Neural Networks and Leaning Systems.

[40] K. Petersen and M. Pedersen, “The matrix cookbook. technical univer-
sity of denmark,” Technical Manual, 2008.

[41] P. Lancaster and M. Tismenetsky, The theory of matrices: with applica-
tions. Elsevier, 1985.

[42] J. Gilbert and L. Gilbert, Linear Algebra and Matrix Theory. Academic
Press, 2014.

[43] A. M. Bloch, P. E. Crouch, and A. K. Sanyal, “A variational problem
on stiefel manifolds,” Nonlinearity, vol. 19, no. 10, p. 2247, 2006.

[44] M. Harada, “Extremal type i-codes and-frames of odd unimodular
lattices,” Information Theory, IEEE Transactions on, vol. 61, no. 1, pp.
72–81, 2015.
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