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Abstract: Potential critical risks of cascading failures in power systems can be identified by exposing those critical electrical
components on which certain initial disturbances may cause maximum disruption to the systems. The authors investigated the
cascading failures in power systems described by the direct current power flow equations, where the initiating disturbances
(natural or anthropic factors) give rise to changes in admittances of one or multiple transmission lines. The disruption is
quantified with the remaining transmission power at the end of the cascading process. In particular, identifying the critical
branches and the corresponding initial disturbances causing the worst-case cascading blackout is formulated as a dynamic
optimisation problem (DOP) in the framework of optimal control theory, where the entire propagation process of cascading
failures is considered. An Identifying Critical Risk Algorithm based on the maximum principle is proposed to solve the DOP.
Simulation results on the IEEE 9-Bus and the IEEE 14-Bus test systems are presented to demonstrate the effectiveness of the
algorithm.

1 Introduction
Almost all human systems and activities strongly depend on the
steady availability of critical energy infrastructures, e.g. electric
power systems. Large-scale power blackout events in history, such
as the North America blackout on August 14, 2003 [1], the Europe
interconnected grid blackout on November 12, 2006 [2], and the
Brazil blackout on November 10, 2009 [3], suggest that power
blackouts are not uncommon despite technological advances and
great investments on power systems [4]. Large-scale blackouts,
once occurred, can lead to huge economic losses or even state
panics. Cascading failures in bulk power systems are an important
cause of blackouts [5]. A cascading blackout usually starts with
one or more initial disturbances that trigger a dramatic
redistribution of power flows and consequently some drastic
phenomena throughout the power network [6].

Identifying critical risks of cascading failures in power systems
is of great interest to researchers and power system planners.
Certain disturbances on some components may be responsible for
worst power losses or most severe isolations of power systems,
making these components the critical components of the systems
[7]. To identify the branches and the corresponding initial
disturbances, which are associated with the worst-case cascading
blackout in power systems, a novel approach within the framework
of optimal control theory is proposed in this paper.

A variety of approaches have been proposed to identify critical
electrical components and initial attacks or to assess the criticality
or vulnerability of power systems. Existing methods typically rely
on analysing observed data, and/or conducting numerical
simulations adopting various probabilistic, deterministic,
approximate, and heuristic approaches [8]. Some of the methods
developed for risk assessment of cascading outages are briefly
surveyed as follows.

The first class of the existing methods may be conveniently
termed as ‘detailed modeling and simulation methods’, which tend
to develop relatively detailed models of system risk. In [9],
identifying critical system components (e.g. transmission lines,
generators, and transformers) is formulated into a bi-level
optimisation model; and a heuristic algorithm is developed to solve
the problem and to obtain a local optimal solution. In [10], the

problem is recast into a standard mixed-integer linear programming
problem, which can be solved by using various solvers. The
resulting mixed-integer bi-level programming formulation in [9,
10] is relaxed into an equivalent single-level mixed-integer linear
programming problem by replacing the inner optimisation problem
with the Karush–Kuhn–Tucker (KKT) optimality conditions [11].
As an extension of [9], a new approach based on ‘Global Benders
Decomposition’ is proposed to solve the large-scale power system
interdiction problem when transmission lines are under attacks; and
the algorithm can guarantee the convergence of the bi-level
optimisation solution [12]. In [13], the vulnerability of power
systems under multiple contingencies is formulated as bi-level
programming; the upper-level optimisation determines a set of
simultaneous outages in the transmission network, whereas the
lower-level optimisation models determine the reaction of the
system operator against the outages identified in the upper level. In
[14], finding a strategic defence to minimise the damages of an
attack is formulated as a multi-level mixed-integer programming
problem. A Tabu Search with an embedded greedy algorithm is
implemented to find the optimum defence strategy. In [15], an
improved interdiction model that combines the evaluation of both
short-term (seconds to minutes) and medium-term (minutes to
days) impacts of possible electric grid attacks to identify the worst
one is proposed; an integer programming heuristic is then applied
to solve the problem. Power grid performance indices including
overall voltage deviation and the minimal load shedding are
quantified in [16] based on the alternating current (AC) power flow
model, where finding the most disruptive attack is formulated as
either a non-linear programming or a non-linear bi-level
optimisation problem, both of which can be solved by common
algorithms. In [17], both static and dynamic deterministic indices
are included in the process of ranking critical nodes; where a new
ranking algorithm is proposed and evaluated by extensive Monte
Carlo simulations.

The second class of existing methods may be termed as ‘bulk
analysis methods’. Such methods may be much faster to assess risk
since they generally focus on the topological properties of the
power networks while largely neglecting the underlying laws of
physics and the principles of electrotechnics. Although such
‘simplification approaches’ certainly help to speed up the
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calculations, the simplicity, however, may restrict their accuracy in
modelling vulnerabilities in electricity infrastructure [18, 19].
These methods are, therefore, complementary to detailed
simulations and provide some useful insights from a different point
of view. Therein, the most well-known approach is to identify
trends in historical blackout records, where timing and size of past
transmission lines outages or demand interruptions are compiled
into aggregated measures related to system risk [20]. Another
approach is to adopt a complex network-based cascading failure
modeling approach, combining the node overload failures and
hidden failures of transmission lines in blackouts together [21].

Most of the existing studies have been focusing on identifying
the critical components and the initial disturbances that cause a
worst-case cascading blackout. In such studies, the problem is
usually formulated into a static optimisation problem that neglects
the entire propagation process of the cascading failures. Although
this makes the problem relatively easier to be solved, the results are
sometimes misleading as they may not properly reflect the system
dynamics and evolution in the real life.

The main contributions in this paper are two-fold. First, we
formulate the task of identifying the critical branches and the
corresponding initial disturbances causing the worst-case cascading
blackout as a dynamic optimisation problem (DOP) within the
framework of optimal control theory. By doing so, we can then
examine the entire propagation process of cascading failures.
Second, we propose an Identifying Critical Risk Algorithm
(ICRA), based on the maximum principle of optimal control theory
[22–24], to solve the DOP. This guarantees that the necessary
conditions are fulfilled to achieve optimal solutions.

The remainder of this paper is organised as follows. Section 2
formulates the DOP based on the direct current (DC) power flow
equations and cascading failure model. In Section 3, the algorithm
design based on the maximum principle is introduced in detail.
Section 4 presents simulation results based on the IEEE 9-Bus and
the IEEE 14-Bus test systems to verify the correctness of the
results. Finally, we conclude this work and present some future
work in Section 5.

2 Problem formulation
2.1 Notations

The power system notations used in later sections are summarised
as follows:

• Number of buses: Nb
• Number of transmission branches: N
• Active power at Bus i:Pi

• Active power from Bus i to Bus j:Pi j

• Voltage phase at Bus i:θi

• Voltage phase difference between Bus i and Bus j: θi j

• Admittance at Branch i: ypi

The total admittance of a component includes the transformer (if
any) and the transmission branch. Related information of a power
system can be represented as a component admittance vector
YP = [yp1 yp2 … ypN]T. The initiating disturbances (natural or
anthropic factors) is specified by altering admittance at the
corresponding component of YP. Thereafter, the nodal admittance
matrix Y is determined by Y = ATYPA, where AN × Nb is the
element-node incidence matrix [25, 26]. In the propagation process
of cascading failures, the time-varying component admittance
vector YP and the time-invariant element-node incidence matrix A
are applied to determine the nodal admittance matrix Y for the
convenience of analysis.

2.2 DC power flow model

Power flow equations are used to estimate the flow values for each
branch within a system. Here, we adopt the DC power flow model
as our study is only on high-voltage transmission networks.

Adopting this model helps avoid some difficulties in numerical
calculations without sacrificing the validity of the results [27].

In the AC power flow model, the active power flow Pi j is
calculated as

Pi j = Ui U j
zi j

sin θi j (1)

where Ui  is the voltage amplitude at Bus i and zi j is the component
impedance. If one assumes that (i) resistance of the transmission
line is ignored, hence line impedance is approximately equal to line
reactance; (ii) voltage phase differences are small enough; and (iii)
the voltage profile is flat [28], then the non-linear equation above
can be linearised into the DC power flow equation.

Pi j = θi j
xi j

= yi jθi j (2)

Furthermore, the power flow equation can be modelled into a
matrix format

P = ATYPAθ (3)

where P is the vector of active power injections, vector θ contains
the voltage angles at each bus, and ATYPA is the nodal admittance
matrix Y. Ignoring power loss in the DC power flow equations
means that all of the active power injections are known in advance.
Once given the nodal admittance matrix, the voltage angles at each
bus can be determined by

θ = (ATYPA)−1P (4)

After the voltage angle value is obtained for each bus, the power
flow through each branch can be computed by (2).

2.3 Relay-based overloading branch tripping model

In a power system, transmission branches are protected by circuit
breakers. Branch-tripping is one of the most common factors
responsible for cascading failures. A circuit breaker trips a
transmission branch when the demand load of the branch exceeds a
certain threshold level, in order to prevent the transmission branch
from being permanently damaged due to overloading [29].

For simplicity, we assume a deterministic model of the
mechanism for transmission branch-tripping. In particular, a circuit
breaker for branch li trips at the moment when the demand load on
the branch li exceeds its maximum capacity (threshold value). The
maximum capacity is defined as the greatest power flow that can
be afforded by the branch. This maximum power flow value is
decided by thermal, stability, and/or voltage drop constraints. In
real-life infrastructures, this value may be constrained by cost as
well. The relay-based overloading branch-tripping model is
presented as follows, where the threshold value of a branch is
related to its initial load

Ctr1i = αiLi(0) i = 1, 2, …, N (5)

where Li(0) is the initial demand load and αi is the tolerance
parameter of line li.

The mechanism of the relay protection (above) may be
represented by a step function, i.e. when the real load of a branch is
less than or equal to the threshold value, its circuit breaker is in the
status of on; otherwise, it is in the status off. Derivative
calculations are facilitated by introducing a smooth function g that
resembles the step function, allowing differentiation of the function
at switching points
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gi =

0, pi j ≥ Ctr1i
2 + π

2a

1, pi j ≤ Ctr1i
2 − π

2a
1 − sin a( pi j

2 − Ctr1i
2 )

2 , otherwise

(6)

where Ctr1i(i = 1, 2, …, N) is the threshold value of a branch and a
is a parameter to regulate the slope of the function. The returning
value of gi represents the status of a protection relay, where ‘0’
represents that the relay switches off and ‘1’ represents that the
relay switches on. Using the smooth function gi(pi j, Ctr1i), the
diagonal relay-tripping matrix G(pi j, Ctr1i) can be defined as
follows:

g1(pi j, Ctr11)
g2(pi j, Ctr12)

⋱
gN(pi j, Ctr1N)

2.4 Cascading failure model

A cascading failure is a sequence of events in which an initial
disturbance, or a set of disturbances, triggers a sequence of one or
more dependent component outages. Initial disturbances cover a
range of exogenous factors, such as high winds, lightning, natural
disasters, contact between conductors and vegetation, and human
errors, etc. [30]. We assume that the initiating disturbances (natural
or anthropic factors) give rise to changes in admittances of certain
transmission branches. For example, the outage of a transmission
branch due to lightning leads to the infinite impedance or zero
admittance between two relevant buses.

Using (6) and the diagonal relay tripping matrix G(pi j, Ctr1i), the
cascading failure model in matrix format can be built as follows:

YP
k + 1 = G[Pi j

k (YP
k), Ctr1]YP

k + Diag[ − u(k)]F(uk) (7)

where k is the iterative step of cascading failures and u(k) is the
input vector of disturbances. The second term of this equation is
used to determine the branch ID, on which the disturbances added
can cause more severe damages to a power system through a
cascading failure process. The alteration of admittance, ranging
from 0 to the original value, has been taken into consideration.
Such an alternation includes ‘on’ and ‘off’ states of a transmission
branch as its special cases. When k = 0, the input vector u(0)
denotes the initial disturbances. The vector F(uk) is defined as
follows:

F(uki, Ctr2i) =

f 1(uk1, Ctr21)
f 2(uk2, Ctr22)

⋮
f N(ukN, Ctr2N)

Similar to the purpose of (6), for facilitating derivative
calculations, a smooth function f i(uki, Ctr2i) is applied for every
branch of the vector F(uk). That smooth function is defined as
follows:

f i =

0, uki ≤ Ctr2i
2 − π

2b

1, uki ≥ Ctr2i
2 + π

2b
1 + sin b( uki

2 − Ctr2i
2 )

2 , otherwise

(8)

where Ctr2 is the threshold value vector and b is a parameter that
regulates the slope of the function f. The returning value of the

function f i(uki, Ctr2i) is determined by comparing the threshold
value with the corresponding disturbance, where the critical branch
identified as the point at which f returns to a value of ‘1’.

2.5 Dynamic optimisation problem formulation

Based on the models presented above, the DOP formulation in the
framework of optimal control theory can be defined as follows:

Formulation of DOP: for a given power system, the control
input vector uk ∈ Ω needs to be determined so that the remaining
transmission power at the end of the cascading process is
minimised. The system is described by the DC power flow
equations in (2), and its cascading failure model by (7).
Specifically, we have

min
uk ∈ Ω

J (9)

J = PN
F
2

+ϵ ∑
k = 0

Nc − 1 1
max 0, 1 − k max2 0, Nn − F(uk) 2

(10)

subject to

YP
k + 1 = G[Pi j

k (YP
k), Ctr1]YP

k + Diag[ − u(k)]F(uk)
Pi j = yi jθi j

(11)

where the Frobenius norm of the power transmission matrix
PN

F
2  equals ∑i = 1

N ∑ j = 1
N (Pi j

N)2
, Nc is the total number of iteration

steps in the cascading failures, Nn represents the number of critical
branches, ∥ ⋅ ∥ denotes 2 norm of a vector, and ε is the weight-of-
cost function. In (10), the terminal constraint PN

F
2  dominates the

cost function by setting a sufficiently small weight ϵ.
 

Remark 1: As discussed earlier, the critical electrical
components are those that, when attacked, will trigger a worst-case
cascading blackout with the minimum transmission power
remaining in the system. Those components and their IDs can be
determined by the vector F(u(k)) once the optimal control input
vector u(k) is obtained.
 

Remark 2: From the DOP formulation presented above, it can
be seen that the disturbances are only applied in the first step
(k = 0), i.e. the initial disturbance vector u(0). The second term in
(10) allows us to add further disturbances (control inputs) to the
power grid at the given step of the cascading process. The DOP
formulation can be extended to situations where disturbances
and/or control inputs can be applied in multiple different steps. For
example, during power system cascades, back-up generators may
be activated, and excessive loads may be tripped. These can be
regarded as adjustments of power flow on certain specific buses.
As long as such responses and adjustments are known prior, the
adjustments may be taken into account as a part of the time-varying
vector of power flow. Under such condition, the status of the
branch will be changed due to the flowing power, which will be
ultimately reflected in the values of u(k). Note that this may also
help facilitate future studies on the roles of human errors in
cascading failures and system protections.

3 DOP solution
The DOP can essentially be viewed as a control problem in which
one searches for an optimal control input vector u(k) to pin the
power grid to the specific worst-case cascading blackout defined in
(10). The main principle is to use a tool that indicates the necessary
conditions for the optimality of solutions, which helps find the best
possible control for driving a dynamical system from one state to
another, especially in the presence of constraints of system state or
control inputs. The Lagrange multiplier method is widely adopted
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with the maximum principle as a strategy for finding the local
maxima and minima of a function subject to equality constraints.
Therefore, the ICRA based on the maximum principle and the
Lagrange multiplier method is developed to solve the DOP
presented in (9)–(11). The framework of the algorithm is to solve
three equations including adjoint equation, boundary equation, and
Hamiltonian equation after introducing Lagrange multipliers for
the DOP, to obtain the optimal control input vector u(k). We
present the Lagrange multiplier method with the maximum
principle in detail below.

The Lagrange multipliers are introduced as [λk + 1] ≜ [λ1, …, λN],
λk + 1 ∈ ℝn (usually referred to as adjoint variables) into (9)–(11).
The Lagrangian function is as follows:

L(YP, λ) ≜ ∥ PN(YP
N) ∥F

2

+ϵ ∑
k = 0

Nc − 1 1
max 0, 1 − k × 1

max2 0, Nn − F(uk) 2

+λk + 1
T G[Pi j

k , Ctr1]YP
k + Diag[ − u(k)]F(uk) − YP

k + 1

(12)

where λ ≜ [λ1
T λ1

T… λN
T ]T. To guarantee the existence of the

partial derivative ∂YP
k + 1/∂YP

k , one must assume that, for each
subnetwork that is isolated due to redistributions of power flows in
the cascading process, the partial derivative ∂YP

k + 1/∂YP
k  is non-

singular or reduced-order non-singular on ℝn × Ω [29].
Let

YP
∗ ≜ [(Y0

∗)T . . . (YN
∗ )T (u0

∗)T . . . (uN − 1
∗ )T]T

be the vector corresponding to the sequences [(Y0
∗) … (YN

∗ )] and
[u0

∗ … uN − 1
∗ ]. Observe that the dual feasibility condition in the KKT

conditions is equivalent to the statement that there exists
λ∗ ≜ [(λ1

∗)T (λ2
∗)T… (λN

∗ )T]T such that the partial derivative ∂L/∂YP of
the Lagrangian function vanishes at (YP

∗ , λ∗). Therefore, the
following conditions hold:

∂L(YP
∗ , λ∗)

∂YP
k = 0

∂L(YP
∗ , λ∗)

∂uk
= 0

(13)

where ∂L/∂YP
k  and ∂L/∂uk denote the row vectors of partial

derivatives:

∂L
∂YP

k ≜ ∂L
∂YP1

k … ∂L
∂YPN

k

∂L
∂uk

≜ ∂L
∂uk

1 … ∂L
∂uk

m

To perform the partial differentiation mentioned above, we
introduce the Hamiltonian condition, ℍ: ℝn × ℝm × ℝn → ℝ,
defined as follows:

ℍ(YP
k , uk, λk)

≜ ϵ ∑
k = 0

Nc − 1 1
max 0, 1 − k max2 0, Nn − ∥ F(uk) ∥2

+λk + 1
T G[Pi j

k (YP
k), Ctr1]YP

k + Diag[ − u(k)]F(uk)

(14)

where the first term, ℍ (denoted as L), is the per-stage weight in the
cost function.

We also note that

∂ℍ
∂YP

k = ∂L
∂YP

k + λk
T ∂YP

k + 1

∂YP
k

∂ℍ
∂uk

= ∂L
∂uk

+ λk
T ∂YP

k + 1

∂uk

where

∂L
∂YP

k ≜ ∂L
∂YP1

k … ∂L
∂YPN

k

∂L
∂uk

≜ ∂L
∂uk

1 … ∂L
∂uk

m

Thus, the following conditions hold:

∂L(YP
∗ , λ∗)

∂YP
k = ∂ℍ(YP

k ∗ , (uk
∗), λk + 1

∗ )
∂YP

k − (λk
∗)T = 0 (15)

∂L(YP
∗ , λ∗)

∂YP
N =

∂( PN(YP
N) F

2 )
∂YP

k − (λN
∗ )T = 0 (16)

∂L(YP
∗ , λ∗)

∂uk
= ∂ℍ(YP

k ∗ , (uk
∗), λk

∗)
∂uk

= 0 (17)

The above conditions together with the cascading failure model in
(7) lead to the following equations:

(i) State equations:

YP
(k + 1) ∗ = G[Pi j

k (YP
k ∗ ), Ctr1]YP

k + Diag[ − u(k)]F∗(uk) (18)
(ii) Adjoint equations:

(λk
∗)T = ∂ℍ(YP

k ∗ , F∗(uk), λk + 1
∗ )

∂YP
k (19)

(iii) Boundary equation:

(λN
∗ )T =

∂( PN(YP
N) F

2 )
∂YP

N
(20)

where the Frobenius norm of transmission power matrix PN
F
2

equals ∑i = 1
N ∑ j = 1

N (Pi j
N)2

.
(iv) Hamiltonian condition:

∂ℍ(YP
k ∗ , uk

∗, λk + 1
∗ )

∂uk
= 0 (21)

For solving (18) through (21), one must address the adjoint
equations. From (14) and (19), we obtain the following:

λk
∗ = ∂YP

k + 1

∂YP
k

T
λk + 1

∗ (22)

where the dimension of ∂YP
k + 1/∂YP

k  is N × N. From (11), we know
that each branch of YP

k + 1 can be determined by

yP, i
k + 1 = gi(pi j

k , Ctr1i)yP, i
k + Diag[ − u(k)]ii f i(uk) (23)

Hence, from (22) and (23), the following partial derivative can be
derived:

∂yP, i
k + 1

∂yP, i
k = ∂gi

∂pi j
k ⋅ ∂pi j

k

∂yP, is
k ⋅ yP, i

k + gi(pi j
k , Ctr1i) (24)
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where s = 1, 2, …, i, …, N. The partial derivative of ∂pi j
k /∂yP, is

k  is
zero except for when s = i. The term ∂gi/∂Pi j

k  equals
−a ⋅ pi j

k cosa( pi j
2 − Ctr1i

2 )when pi j satisfies

Ctr1i
2 − π

2a ≤ pi j ≤ Ctr1i
2 + π

2a ;

Otherwise, it becomes equal to zero.
Then we determine the boundary equation. The DC power flow

equations are incorporated into the cascading failure model in (7)
to express the active power function as follows:

Pi j
k = (Aei)TDiag(YP

k)(Aej)(ei − ej)T

⋅ [ATDiag(YP
k)A]−1P

(25)

where the vector of the active power P is known for each iterative
step. Meanwhile, expression of the active power in the final step
can be computed by

Pi j
N = (Aei)TDiag(YP

N)(Aej)(ei − ej)T

⋅ [ATDiag(YP
N)A]−1P

From (20) and (25), the following equations are obtained:

(λN
∗ )T =

∂ ∑i = 1
N ∑ j = 1

N (Pi j
N)

2

∂YP
N = ∑

i = 1

N

∑
j = 1

N
2Pi j

N ∂pi j
N

∂yP
N

(26)

∂pi j
N

∂yP, is
N

= (Aei)T ∂Diag(YP
N)

∂yP, is
N (Aej)(ei − ej)T

⋅ [ATDiag(YP
N)A]−1

P + (Aei)TDiag(YP
N)(Aej)

⋅ (ei − ej)T ∂[ATDiag(YP
N)A]−1

∂yP, is
N P

(27)

For simplicity, the matrix Eii is used to represent the term
∂Diag(YP

N)/∂yP, is
N . Then (27) can be converted into

∂pi j
N

∂yP, is
N

= (Aei)TEii(Aej)(ei − ej)T[ATDiag(YP
N)A]−1

P

+(Aei)TDiag(YP
N)(Aej)(ei − ej)TP

⋅ [ − ATDiag(YP
N)A]−1 ⋅ ATEiiA ⋅ [ATDiag(YP

N)A]−1

(28)

Finally, we determine the Hamiltonian condition.

ϵ
∂ 1/ max 0, 1 − k × 1/ max2 0, Nn − F∗(uk) 2)

∂uk

+ ∂[λk + 1
T Diag[ − u(k)]F∗(uk)]

∂uk
= 0

(29)

where F∗(uk) and uk are vectors with a N × 1 dimension. The
following equations can be acquired according to (29):

4ϵ
max 0, 1 − k × max3 0, Nn − ∥ F∗(uk) ∥2 [F∗(uk)]T

⋅ ∂F∗(uk)
∂uk

− λk + 1
T Diag[ − F(u(k)] + ∂F∗(uk)

∂uk
= 0

(30)

where the term ∂F∗(uk)/∂uk is given by

∂F∗(uk)
∂uk

=

∂ f ∗(uk1)
∂uk1

0 … 0

0 ∂ f ∗(uk2)
∂uk2

… 0

⋮ ⋮ ⋱ ⋮

0 0 … ∂ f ∗(ukn)
∂ukn

and the term ∂ f i
∗(uk)/∂uki equals bukicosb( uki

2 − Ctr2i
2 ) when uki

satisfies

Ctr2i
2 − π

2b ≤ uki ≤ Ctr2i
2 + π

2b ;

Otherwise, it is equal to zero.
Now we can derive the necessary optimality conditions for the

control input, which will be the minimisers of the optimisation
problem. Using (20) and (22), the recursion formula for the
Lagrange multipliers is determined as

λk + 1 = ∏
s = 0

N − k − 2 ∂YP
N − s

∂YP
N − s − 1

T

λN s = 1, 2, …, N − 1 (31)

The solution of DOP thus can be obtained by solving the following
equations:

4ϵ
max 0, 1 − k × max3 0, Nn − F∗(uk) 2 ⋅

[F(uk)]T ∂F(uk)
∂uk

− ∏
s = 0

N − k − 2
( ∂YP

N − s

∂YP
N − s − 1 )λN

T ⋅

Diag[ − F(u(k))] + ∂F(uk)
∂uk

= 0

YP
k + 1 = G[Pi j

k (YP
k), Ctr1]YP

k + Diag[ − u(k)]F(uk)

(32)

where YP
k  and u(k) are two unknown variables. The algorithm for

identifying the critical risks of cascading failures in power systems
is summarised in Fig. 1. 

As aforementioned, in this study the alteration of the admittance
reflecting external disturbances is allowed to vary from 0 all the
way to the original admittance value for each branch, which
includes ‘on’ and ‘off’ states of a transmission branch as its special
cases. When it is needed to properly reflect limited effects of
certain external disturbances (e.g. temperature, humidity, or ageing
problem, etc.), the range of the initiating control action may be
restricted to be within a certain range or a few separate limited
ranges. Such can be reflected by adding one or multiple linear
constraints to the control action, which would not significantly
increase the complexity of the algorithm or compromise the
effectiveness of the proposed approach. Detailed discussions on
such extensions for handling various specific cases, however, are
out of the scope of this paper and will be presented in detail in a
separate report.

Fig. 1  Identifying the Critical Risks Algorithm
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4 Simulation results and verification
We consider two different cases for identifying the critical risks of
cascading failures in power systems.

Case 1: Both the critical branches and corresponding initial
disturbances are unknown variables.
Case 2: The initial disturbances are given as branch outage where
the critical branches remain to be identified. In this case, since the
initial disturbances have to be element outages, we replace the
vector u(k) in (7) with the initial nodal admittance matrix YP

0 .

Note that Case 2 above is a special case of Case 1. We are
particularly interested in this special case for two reasons: (i) in
practice, a branch outage is a common type of failures [31]; and (ii)
for this special case, the optimality of the solutions in small or
medium-sized systems could be verified by brute force, i.e. by
considering all the possible combinations of branch outage cases
with a given number of outage branches. In simulations, we use
Matlab with fsolve as the non-linear solvers for solving YP

k  and uk.
For the test case data and calculation of the electric circuit
parameters, the codes from Matpower are used extensively.

4.1 Simulation results

The test case of the IEEE 9-Bus system contains three generators,
six branches, three loads, and two winding power transformers.
The test case of the IEEE 14-Bus system consists of 14 buses, five
generators and 11 loads. Information about these two test cases and
algorithmic parameters are presented in Table 1. Therein,
Yp1 = [ − 17.36, − 10.87, − 5.88, − 17.06, − 9.92, − 13.89,
− 16.00, − 6.21]

 and

Yp2 = [ − 16.90, − 4.48, − 5.05, − 5.67, − 5.75, − 5.85, − 23.75,
− 4.78, − 1.80,

−3.97, − 5.03, − 3.91, − 7.68, − 5.68, − 9.09, − 11.83, − 3.70,
− 5.21, − 5.00, − 2.87]
are the initial susceptance vectors of branches [per-unit (p.u.)] for
the 9-Bus and the 14-Bus test systems, respectively. The threshold
value vector Ctr1 for the 9-Bus and the 14-Bus test systems are [0.8,
1.8, 1.0, 0.5, 0.5, 1.0, 0.8, 0.7, 0.5] and [1.8, 1.0, 1.0, 0.8, 0.6, 0.5,
0.9, 0.5, 0.4, 0.7, 0.1, 0.1, 0.3, 0.1, 0.6, 0.1, 0.2, 0.2, 0.1],
respectively. 

We first perform simulations for Case 1. For the IEEE 9-Bus
test system, the number of critical branches Nn is set as 1. For the
IEEE 14-Bus test system, the number of critical branches Nn is set
as 1 or 2. The results are presented in Table 2. 

We then conduct simulations for Case 2. For the IEEE 9-Bus
test system, the number of critical branches Nn is set as 1. The
identified critical branch marked with the red oval is shown in
Fig. 2. For the IEEE 14-Bus test system, the number of critical
branches Nn is set as 1, 2, 3, or 4, respectively. The results are
shown in Fig. 3. 

4.1 Verification

The correctness of the numerical results generated by the ICRA, as
reported in Section 4.1, are verified. For Case 1, the computed
initial disturbances are applied to the corresponding branches (see
Table 2) in each of the test systems. For Case 2, the optimality of
the solution can be verified by brute force, i.e. by considering all
the possible combinations of branch outage cases with a given
number of outage branches. For the cascading failure model in (7),
we have combined the DC power flow model and relay-based
overloading branch tripping model, which is a commonly adopted
approach in the state-of-the-art of power systems' cascading
failures analysis [27]. The numerical simulation results on the
critical branches and disruptive disturbances are validated by
disturbing the selected branch with the computed magnitude of
disturbances in the corresponding IEEE Bus test systems.
Disruptions are quantified according to the final remaining
transmission power and/or the final network topology.

For Case 1, the IEEE 9-Bus test system, we apply the
corresponding initial disturbance, i.e. u = 17.36 to Branch 1
connected between Bus 1 and Bus 4. The corresponding initial
disturbance u = 17.36 equals the outage of Branch 1. The
evolution process of transmission network topology is shown in
Fig. 4. For the simulation results of Case 2, the initial disturbances
take the form of branch outage. After testing all the possible branch
outage cases, we find that all branches finally are broken when
Branch 1 is taken down, which is the same result as that for Case 1.

As illustrated in Fig. 4, when the initial disturbance is to break
Branch 1, all of the branches finally are broken and the final
remaining transmission power is zero. These verification results

Table 1 Details for two test cases
Information Test Case 1 (9-Bus) Test Case 2 (14-Bus)
filename case9.m case14.m
nodes 9 14
branches 9 20
iteration No. 10 14
weight ϵ 0.02 0.02
Ctr2 Yp1 Yp2 − 4E14 × 1

initial value −10 ∗ rand(Ne, Nc + 1) −9 ∗ rand(Ne, Nc + 1)
 

Table 2 Identification of critical branches and
corresponding initial disturbances (for Case 1)

IDs of the critical
branches

Initial disturbances, p.u.

9-Bus (Nn = 1) 1 17.36
14-Bus (Nn = 1) 3 4.73
14-Bus (Nn = 2) 2 and 3 4.23 and 4.74

 

Fig. 2  Critical branch (marked with a red oval) identified in test case of
the IEEE-9 Bus system (for Case 2). Number of critical branches is set as 1

 

Fig. 3  Critical branches identified in the test case of the IEEE-14 Bus
system (for Case 2), with the number of critical branches set as 1, 2, 3, or 4
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match with those presented in Table 2 and Fig. 2 and thus verify
the correctness of the proposed ICRA.

For the IEEE 14-Bus test system, the initial power transmission
is 3.07 p.u. when the power system operates in normal status. For
the simulation results of Case 1, when the number of critical
branches Nn is set as 1, we apply the corresponding initial
disturbance, i.e. u = 4.73 to Branch 3 connected between Bus 2
and Bus 3. The remaining transmission power is 0.02 p.u. When Nn
is set as 2, we apply the initial disturbances u2 = 4.23 and u3 = 4.73
to Branch 2 (connected between Bus 1 and Bus 5) and Branch 3,
respectively. The remaining transmission power becomes zero. The
simulation results of Case 2 involves outages of one, two, three, or
four branches that occurs simultaneously with the initial
contingencies. A search of all possible scenarios when the number
of affected branches varies from one to four produce the results
shown in Fig. 5. As displayed in Fig. 5, the outage of Branch 3 is
associated with the minimum remaining transmission power, i.e.
0.02 p.u. When Nn = 2, the combinations (IDs of branches) [2, 3],
[2, 4] and [2, 5] result in zero transmission power. The same
outcome is obtained from the combination [1, 5, 6], when Nn = 3.
When Nn = 4, the combinations [1, 2, 3, 9], [1, 2, 3, 10], [1, 2, 3,
11], [1, 2, 3, 12], [1, 2, 3, 13], [2, 4, 6, 7], [2, 4, 6, 8], [2, 4, 6, 9],
[2, 4, 6, 10], [2, 4, 6, 11], [2, 4, 6, 12], and [2, 4, 6, 13] lead to zero
transmission power. Based on these verification results from Case
1 and Case 2 above for the IEEE 14-Bus test system, we can
confirm that the simulation results presented in Table 2 and Fig. 3
are correct. 
 

Remark 3: It is highly difficult to find an optimal solution for a
non-convex optimisation problem, let alone all the optimal
solutions with the same objective function value. The proposed
method can guarantee to reach a local optimal solution starting
from any feasible initial state. By restarting the proposed method
from different initial values, we may find multiple suboptimal or
even optimal solutions. The offline identification of critical risk,
fortunately, allows a large number of restarting operations when
such is needed. Note that while no method can guarantee to find all
the optimal solutions (except for the brute force method for very
small networks) in foreseeable future, identifying any one of the
optimal or suboptimal solutions is of value in practice as it may
help prevent a certain cascading blackout from happening.

5 Conclusions and future work

In this paper, the problem of identifying the critical risks of
cascading failures in power transmission systems was formulated
as a DOP within the framework of optimal control theory. By
pinning the power system into the worst-case cascading blackout,
the optimal control inputs that reflect the critical branches and the
corresponding disturbances were determined by solving the DOP.
The ICRA based on the maximum principle was applied to solve
the DOP, which provides the necessary conditions for optimality of
solutions. The correctness of the ICRA has been verified by
applying the computed initial disturbances or branches outage to
the corresponding branches in IEEE Bus test systems. The efficient
identification of critical risks may help power system planners to
reveal hidden catastrophic risks, pre-plan system protection and
recovery, and consequently improve system resilience [32]. The
research work will be extended to include identifying critical risks
as disturbances to network nodes and other mechanisms such as
generator tripping, load shedding and voltage collapse, etc. On a
long term, we shall take into account the cost of protection and
recovery while identifying the worst cases.

6 Acknowledgments
This study is an outcome of the Future Resilient System (FRS)
project at the Singapore-ETH Centre (SEC), which is funded by the
National Research Foundation of Singapore (NRF) under its
Campus for Research Excellence and Technological Enterprise
(CREATE) program. Part of this work is also supported by the
Ministry of Education (MOE), Singapore, under Contract No.
MOE 2016-T2-1-119.

7 References
[1] Liscouski, B., Elliot, W.: ‘Final Report on the August 14, 2003 Blackout in

the United States and Canada: Causes and recommendations’. A report to US
Department of Energy, Washington, DC, 2004, 40

[2] Maas, G.A., Bial, M, Fijalkowski, J.: ‘System Disturbance on 4 November
2006’. Final Technical Report, Union for the Coordination of Transmission of
Electricity in Europe, 2007

[3] CNN.: ‘Dam failure triggers huge blackout in Brazil’, 2009
[4] Hines, P., Balasubramaniam, K, Cotilla, S.E.: ‘Cascading failures in power

grids’, IEEE Potentials, 2009, 28, pp. 24–30
[5] Kirschen, D.S., Jayaweera, D.: ‘Comparison of risk-based and deterministic

security assessments’, IET Gener. Transm. Distrib., 2007, 1, (4), pp. 527–533
[6] Liu, S., Chen, B., Zourntos, T., et al.: ‘A coordinated multi-switch attack for

cascading failures in smart grid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp.
1183–1195

[7] Carreras, B.A., Lynch, V.E., Dobson, I., et al.: ‘Critical points and transitions
in an electric power transmission model for cascading failure blackouts’,
Chaos Interdiscip. J. Nonlinear Sci., 2002, 12, (4), pp. 985–994

[8] Vaiman, M., Bell, K., Chen, Y., et al.: ‘Risk assessment of cascading outages:
methodologies and challenges’, IEEE Trans. Power Syst., 2012, 27, (2), p.
631

[9] Salmeron, J., Wood, K., Baldick, R.: ‘Analysis of electric grid security under
terrorist threat’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 905–912

Fig. 4  Diagram of the propagation process for cascading failure and final
power grid topology. Initial disturbance in the IEEE 9-Bus test system is a
break in Branch 1

 

Fig. 5  Transmission power (in p.u.) remaining when the number of outage
branches varies from 1 to 4 in the IEEE 14-Bus test system (for Case 2).
Combinations of critical branches are marked with red ovals

 

IET Gener. Transm. Distrib.
© The Institution of Engineering and Technology 2019

7



[10] Motto, A.L., Arroyo, J.M., Galiana, F.D.: ‘A mixed-integer LP procedure for
the analysis of electric grid security under disruptive threat’, IEEE Trans.
Power Syst., 2005, 20, (3), pp. 1357–1365

[11] Arroyo, J.M., Galiana, F.D.: ‘On the solution of the bilevel programming
formulation of the terrorist threat problem’, IEEE Trans. Power Syst., 2005,
20, (2), pp. 789–797

[12] Salmeron, J., Wood, K., Baldick, R.: ‘Worst-case interdiction analysis of
large-scale electric power grids’, IEEE Trans. Power Syst., 2009, 24, (1), pp.
96–104

[13] Arroyo, J.M.: ‘Bilevel programming applied to power system vulnerability
analysis under multiple contingencies’, IET Gener. Transm. Distrib., 2010, 4,
(2), pp. 178–190

[14] Romero, N., Xu, N., Nozick, L.K., et al.: ‘Investment planning for electric
power systems under terrorist threat’, IEEE Trans. Power Syst., 2012, 27, (1),
pp. 108–116

[15] Wang, Y., Baldick, R.: ‘Interdiction analysis of electric grids combining
cascading outage and medium-term impacts’, IEEE Trans. Power Syst., 2014,
29, (5), pp. 2160–2168

[16] Kim, T., Wright, S.J., Bienstock, D., et al.: ‘Analyzing vulnerability of power
systems with continuous optimization formulations’, IEEE Trans. Netw. Sci.
Eng., 2016, 3, (3), pp. 132–146

[17] da Silva, A.M.L., Jardim, J.L., de Lima, L.R., et al.: ‘A method for ranking
critical nodes in power networks including load uncertainties’, IEEE Trans.
Power Syst., 2016, 31, (2), pp. 1341–1349

[18] Zhai, C., Zhang, H., Xiao, G., et al.: ‘Comparing different models for
investigating cascading failures in power system’. 2017 Int. Workshop
Complex Systems and Networks (IWCSN), Doha, Qatar, 2017, 10.1109/
IWCSN.2017.8276532

[19] Hines, P.D., Rezaei, P., Blumsack, S.: ‘Do topological models provide good
information about electricity infrastructure vulnerability?’, Chaos Interdiscip.
J.Nonlinear Sci., 2010, 20, (3), p. 033122-1-033122-6

[20] Carreras, B.A., Newman, D.E., Dobson, I., et al.: ‘Evidence for self-organized
criticality in a time series of electric power system blackouts’, IEEE Trans.
Circuits Syst. I, 2004, 51, (9), pp. 1733–1740

[21] Wenli, F., Zhigang, L., Ping, H., et al.: ‘Cascading failure model in power
grids using the complex network theory’, IET Gener. Transm. Distrib., 2016,
10, (15), pp. 3940–3949

[22] Sage, A.P., White, C.C.: ‘Optimum systems control’ (Prentice Hall, Upper
Saddle River, NJ, USA, 1977)

[23] Wang, G., Wu, Z.: ‘The maximum principles for stochastic recursive optimal
control problems under partial information’, IEEE Trans. Autom. Control,
2009, 54, (6), pp. 1230–1242

[24] Yuan, Y., Yuan, H., Wang, Z., et al.: ‘Optimal control for networked control
systems with disturbances: a delta operator approach’, IET Control Theory
Appl., 2017, 11, (9), pp. 1325–1332

[25] Perez, L.G., Flechsig, A.J., Venkatasubramanian, V.: ‘Modeling the protective
system for power system dynamic analysis’, IEEE Trans. Power Syst., 1994,
9, (4), pp. 1963–1973

[26] Knight, U.G.: ‘Power systems engineering and mathematics: international
series of monographs in electrical engineering’ (Elsevier, Duivendrecht,
Netherlands, 2017)

[27] Hines, P.D., Rezaei, P.: ‘Cascading failures in power systems’, Smart Grid
Handbook, (Wiley Online Library, Hoboken, NJ, USA, 2016), pp. 1–20

[28] Purchala, K., Meeus, L., Van Dommelen, D., et al.: ‘Usefulness of DC power
flow for active power flow analysis’. Proc. IEEE Power Engineering Society
General Meeting, San Francisco, CA, USA, 2005, pp. 454–459

[29] Song, J., Cotilla-Sanchez, E., Ghanavati, G., et al.: ‘Dynamic modeling of
cascading failure in power systems’, IEEE Trans. Power Syst., 2016, 31, (3),
pp. 2085–2095

[30] Eppstein, M.J., Hines, P.D.: ‘A ‘random chemistry’ algorithm for identifying
collections of multiple contingencies that initiate cascading failure’, IEEE
Trans. Power Syst., 2012, 27, (3), pp. 1698–1705

[31] Stott, B., Jardim, J., Alsac, O.: ‘DC power flow revisited’, IEEE Trans. Power
Syst., 2009, 24, (3), pp. 1290–1300

[32] Amraee, T., Ranjbar, A.M., Feuillet, R., et al.: ‘System protection scheme for
mitigation of cascaded voltage collapses’, IET Gener. Transm. Distrib., 2016,
3, (3), pp. 242–256

8 IET Gener. Transm. Distrib.
© The Institution of Engineering and Technology 2019


