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Abstract—Smart grids not only provide “intelligence” to the
next generation power systems, but also potentially introduce
vital security and privacy issues. Particularly, as a core part
of the smart grids, advanced metering infrastructure (AMI) is
suffering widespread disputes in terms of security and privacy
concerns. This paper proposes a novel hidden Markov model
(HMM) based method to detect false data injection attacks in
AMI. In this method, a global-state HMM of the whole-house
appliances is built and trained by sufficient historical meter data
in an offline mode. Then, a new fast Viterbi algorithm is devised
to decode the hidden states of the HMM. The decoded states
are then verified via the partial sub-meter data in an online
mode, by which false data can be detected. The effectiveness and
efficiency of our method are verified by a public dataset AMPds
with one-year real-time meter data.

Keywords—Smart grids, advanced metering infrastructure
(AMI), security and privacy, false data injection, hidden Markov
model (HMM).

I. INTRODUCTION

The smart grid has been visioned to be a revolutionary

alternative of traditional power systems with the expectation

to achieve more efficient, reliable, and accurate power deliv-

ery [1], [2]. Advanced metering infrastructure (AMI) is an

innovative architecture of a smart grid that enables automated

and two-way communications between the smart meters and

the utility [3]. The goal of an AMI is to provide the utility

with near real-time power consumption data for pricing and

billing purposes, and also allow customers to make informed

choices about energy usage to improve energy efficiency and

reduce energy budgets. Smart meters, the core intelligent

electronic devices at the customer side in AMI, are capable of

monitoring and accurately recording the energy usage data of

the household appliances in real time bases.
While, tight integration of the power system with informa-

tion and communications technology not only enables real-

ization of the above-mentioned promising benefits, but also

inevitably introduces significant security and privacy threats to

the infrastructure [4]–[6]. One of the most significant security

threats in AMI is false data injection (FDI) [7], where falsified

energy usage data are reported to the utility. The falsified

data can originate in two ways: the genuine energy usage

data may be forged by compromised smart meters in the

data collection stage; or the data may be tampered by man-

in-the-middle attackers in the data transmission stage. Small-

scale FDIs may reduce the energy efficiency, mess electricity

billings, and impair the customer management; large-scale

FDIs may mislead the demand response and load forecasting,

and compromise distribution automation.
In recent years, many researchers have presented their

work focusing on FDI attacks [5], [7]–[9]. However, most

of the proposed methods, though applicable and effective,

concentrate on FDI attacks occuring in the wide area networks

of smart grids (e.g. wide area measurement and control system

with phasor measurement units) [5], [8]. While, only a small

number of studies focus on the home area networks and local

area networks (e.g. AMI with smart meters) [7], [9]. In addi-

tion, for those focused on the AMIs, they either do not target

on detection of FDIs or cannot effectively and quickly detect

the FDIs. For example, Khanna et al. introduced an optimized

FDI attack in AMI and showed the economic impacts they

may cause but without any detection method proposed. Liu

et al. proposed a collaborative intrusion detection mechanism

against FDI in AMI. Unfortunately, their focus is on detecting

malicious intrusions on smart meter itself, which cannot be

used to effectively detect injected false data at the utility side.
As we see, it is still challenging to fight against the FDIs

in AMI. In this paper, we are motivated to propose a hidden

Markov model (HMM) based method to detect these FDIs.

In this method, a global-state HMM is built to model the

energy usage pattern of a house. Following the HMM, real-

time aggregate meter data is then decoded by a fast Viterbi

algorithm to estimate the true states of household appliances.

The decoded states are finally verified by a small fraction

of detailed meter data to detect the FDIs. We regard the

contributions of this work to be three-fold:

• First, we propose a novel HMM-based method which can

detect the FDIs in AMI with a high detection rate and

efficiency. This can considerably enhance the security of

AMI as well as the smart grid.

• Second, a fast Viterbi algorithm combined with the

compressed sparse column (CSC) storage algorithm is

devised. This algorithm can not only decode the local

states of each household appliance in a quick and accurate

mode, but also remarkably reduce the data storage space.

• Third, to our best knowledge, we are the pioneers to use

HMM to detect the FDI attacks in AMI. This work sets

the groundwork for future studies that employ the HMM

to detect FDI attacks in cyber-physical systems.



II. MODELS AND DESIGN GOALS

In this section, we show the system model, threat model as

well as the design goals. The symbols used in this paper is

summarized in Table I.

TABLE I
NOMENCLATURE

Symbol Description

K number of appliances in a house

Xk local state of appliance k

X global state of all appliances

Mk number of local states of appliance k

M number of global states of all appliances

N number of observations of the global-state HMM

π row vector (1×M ) of initial transition probabilities

A transition matrix (M ×M ) of the global-state HMM

B emission matrix (M ×N ) of the global-state HMM

P matrix (M ×N ) storing the posterior probabilities

Nrow number of rows of a matrix

Ncol number of columns of a matrix

Nz number of non-zero elements of a matrix

R number of correctly decoded states

L length of reported sub-meter data

ηth threshold of decoding accuracy

A. System Model

Figure 1 shows our system model - the AMI architecture.

AMI is an integrated system comprising household smart

meters, data transmission networks, and the utility. A smart

meter periodically collects the power consumption data of

each appliance in a house at, for example, one-minute intervals

or five-minute intervals. Then, the data transmission networks

including broadband over power line (BPL), power line com-

munications (PLC), fixed radio frequency (RF), and public

networks (e.g., landline and cellular), aggregate and transmit

the data to the utility data center. These transmitted data can

either be sum-meter data or sub-meter data, or both. The sum-

meter data is the sum of energy consumption data of all the

appliances, while the sub-meter data is the separate energy

consumption data of each appliance, e.g. HVAC [10]. In the

utility data center, these collected data are further analyzed for

real-time pricing, billing, energy management, and offering the

customers with informed decisions to save energy budgets.

B. Threat Model

In this work, we consider FDIs as the main security threats.

FDI in AMI refers that falsified meter data is received by

the utility data center. The adversaries inject false meter data

with possible purposes of stealing energy, causing economical

losses of other customers or the utility, creating disorders to

energy management and forecasting, and even power outages.
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Fig. 1. The household smart meter and AMI architecture in a smart grid.

The received false data may come from two ways. In the

data collection stage, if the smart meters are compromised by

the adversaries, they can directly report forged meter data to

the utility. In addition, in data transmission, man-in-the-middle

attackers can intercept into the communication networks to

tamper the contents of information packages. In this way, the

original meter data can also be falsified.

C. Design Goals

The main design goal of this work is to address the above-

mentioned threatening issues and guarantee the utility’s data

analysis with genuine meter data. Specifically,

• we aim to propose an HMM-based method that can

effectively detect the potential false meter data to enhance

the security level of smart grids;

• we also plan to design a fast Viterbi algorithm to quickly

decode the HMM and use a CSC storage algorithm to

reduce the storage space, both of which are beneficial to

achieving real-time fast detection;

• our method is also expected to provide additional privacy

preservation by quickly and accurately detecting the

compromised smart meters; thus preventing subsequent

meter data from leaking to the outside world.

III. PROPOSED METHOD

In this section, we present the details of our proposed

method.

Figure 2 shows the flow diagram of the proposed method.

We can see from the diagram that the method is composed

of three steps: offline model training, fast decoding, and false

data detection. Specifically, in the offline model training step,

an HMM is established using sufficient historical meter data

including all sub-meter data and the aggregated sum-meter

data. Then, in the second step, a fast Viterbi algorithm is

designed to decode the real local states of each appliance by

using the obtained HMM and real-time sum-meter data. In the

last step, we conduct online false data detection to identify

falsified meter data. The technical details are elaborated in the

following subsections.

A. Offline HMM Training

In this subsection, we discuss on the offline HMM train-

ing that includes defining the global-state HMM, quantizing
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Fig. 2. The flow diagram of our proposed method.

the local states and global states, and estimating the model

parameters of HMM.

1) Global-State HMM: In a house deployed with a smart

meter and K smart appliances (e.g. television, washer, heat

pump, etc.), the power consumption data of each appliance

is periodically recorded by the smart meter. It is modeled

that each appliance has Mk local states Xk, where k ∈
{1, 2, · · · ,K}. Let us take the washer as an example. A

washer may be at any of the following 4 states: washing,

rinsing, spinning, and off. Thus, the washer has Mk = 4
local states. The whole-house state X , also called the global

state, is composed of all the appliances’ local states, i.e.

X = {X1, X2, · · · , XK}. The total number of the global

states is, therefore, M =
∏K

1 Mk.

We model the state transition process of a house as an HMM

[11]: λ = {π,A,B}, where π = {π1
0 , π

2
0 , · · · , πM

0 } is a row

vector of initial prior probabilities of length M , A is an M ×
M transition matrix, and B is an M×N emission matrix. The

entries of A and B are defined as A[i, j] = p(Xt = j|Xt−1 =
i) and B[j, n] = p(Yt = n|Xt = j), where Xt is the global

state and Yt is the power observation at time instant t.
2) State Quantization: To obtain the exact model, we need

to determine the parameters (i.e., π,A,B) of the HMM.

A widely accepted way is to calculate or estimate these

parameters using the abundant historical meter data.

One significant step to obtain these parameters, which is

also a big challenge, is to determine the number of the local

states of each appliance as well as the number of global

states. Table II lists the number of distinct current readings

of some appliances in AMPds dataset (version one) [12]. If

all the shown numbers of states are utilized to build up the

HMM, there will be a considerably huge state space resulting

in heavy computation and storage burden. Therefore, it is of

great importance to find a way to reduce the number of distinct

readings. As an example shown in Fig. 3, although there are

altogether 87 distinct readings of the clothes dryer, they mostly

fluctuate and concentrate on only three different values. In

this case, we can quantize all the current readings into three

states: {S1,S2,S3}. Inspired by this example, our method of

state quantization is: (1) plot the meter readings as Fig. 3;

(2) eliminate those current values that have significantly low

frequencies of occurrence (less than a threshold, e.g., 5%); (3)

identify the peaks of current values as the quantized states.

By quantizing the current readings, the number of local

TABLE II
NUMBER OF DISTINCT CURRENT READINGS

ID Load Name Distinct Current Readings

B1E North Bedroom 14

B2E South Bedroom 19

BME Basement Plugs and Lights 52

CDE Clothes Dryer 87

CWE Clothes Washer 123

DWE Dishwasher 48

FGE Kitchen Fridge 133

GRE Garage 71

HPE Heat Pump 192

OFE Home Office 72

TVE Entertainment: TV, PVR, AMP 42
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Fig. 3. The current values and corresponding number of readings of a clothes
dryer.

states can be effectively reduced, which as a result, can also

significantly reduce the number of global states.

3) Parameters Estimation: In order to build up an HMM

that best models the user’s electricity usage pattern, we take

advantages of the historical meter data to estimate the model

parameters. According to the above-mentioned state quanti-

zation method, we quantize all the current readings of the

historical meter data and combine them together as global

states. Following this, by processing these historical meter

data, we can easily obtain the probability mass function of

each global state used for initializing π(i), i ∈ {1, 2, · · · ,K},

the transition probabilities between each pair of global states

A[i, j], i, j ∈ {1, 2, · · · ,K}, and the emission probabili-

ties from any global state to possible current observations

B[j, n], j ∈ {1, 2, · · · ,K} and n ∈ {1, 2, · · · , N}. In this

way, all the model parameters are determined. Note that, the

parameter estimation can be finished in only several seconds

for the whole AMPds dataset, so the cost of the offline training



is not a big problem.

B. Sparse Matrix and Fast Viterbi

With the model parameters in hand, we are able to decode

the hidden states by using a Viterbi algorithm [13]. However,

though we have significantly reduced the state space, the sizes

of matrices A and B are still very large. Bulky storage space

and considerable computation costs are required for the Viterbi

algorithm to solve the HMM problem.

Fortunately, it is found that matrices A and B are large but

reasonably sparse as they have numerous zero entries [14].

Thus, it is possible for us to employ a compression algorithm

to avoid storing these numerous zero values in memory, and

reduce zero-value multiplications of the Viterbi algorithm. In

our implementations, we make use of the CSC algorithm [15]

to store A and B, and propose a CSC-based fast Viterbi

algorithm to solve the HMM problem. The existing CSC

algorithm is presented in Algorithm 1 to ensure the integrity of

our method, and our proposed fast Viterbi algorithm is shown

in Algorithm 2.

Algorithm 1 CSC Algorithm [15]

1: procedure SPARSE COMPRESS(M)
2: Compute Nrow, Ncol, and Nz
3: Initialize arrays Val, RowIndex← [0, 0, · · · ] with length Nz,

and array ArrIndex← [1, 0, 0, · · · ] with length Nz + 1
4: Initialize counter count← 1
5: for col = 1 to Ncol do
6: countcol← count
7: for row = 1 to Nrow do
8: if M[row, col] �= 0 then
9: Val(count) ← M[row, col]

10: RowIndex(count) ← row
11: count ← count + 1
12: end if
13: end for
14: countcol ← count - countcol
15: ArrIndex(col + 1) ← ArrIndex(col) + countcol
16: end for
17: end procedure

In the CSC algorithm, a sparse matrix M is compressed and

non-zero entries are stored in three arrays: Val stores the entry

values, ArrIndex stores the indexes of columns, and RowIndex
stores the row indexes of nonzero elements. Zero entries are

ignored in this storage algorithm.

Algorithm 2 describes the proposed fast Viterbi algorithm.

First, A function RETRIEVE(M, i) is defined to retrieve the

non-zero elements of a given column (see lines 2-8). Given an

observation Yt corresponding to global state Xn, value pairs

of non-zero elements in compressed emission matrix B are

retrieved. These value pairs contain the possibilities as well as

possible local states that can emit observation Xn. For each

pair (j, pjn) in B, we can retrieve all the possible value pairs

from the compressed A which contains the possibilities of all

possible state transitions. The final step is to find the maximum

posterior probability Pt[j] and the corresponding state index

j.

Algorithm 2 Fast Viterbi Algorithm

1: procedure FAST VITERBI(π,A,B,P, Yt)
2: function RETRIEVE(M, i)
3: V ← [ ]
4: for k = M.ArrIndex(i) to M.ArrIndex(i+ 1)− 1 do
5: V.append ← (RowIndex(k),Val(k))
6: end for
7: return V
8: end function
9: Initialize P0[i] ← π[i], for i = 1, 2, · · ·K

10: Find the index n of global state Xn corresponding to Yt

11: for (j, pjn) ∈ RETRIEVE(B, n) do
12: S ← RETRIEVE(A, j)
13: Pt[j] ← max

(i,pij)∈S
(Pt−1[i] · pij · pjn)

14: end for
15: return argmax

j
(Pt[j])

16: end procedure

C. Online False Data Detection

As mentioned in our threat model, the compromised smart

meters as well as communication channel interceptions may

cause false meter data be fed to the utility. In this subsection,

we devise an algorithm to detect the false meter data (see

Algorithm 3).

Algorithm 3 False Data Detection

1: procedure DETECT(Yt,Dsub)
2: for each smart meter, the utility data center do
3: Collect Yt and Dsub (with length L)
4: Decodes Xt using FAST VITERBI algorithm with Yt

5: for i = 1 to L do
6: Compare Dsub(i) with decoded state Xk

t ∈ X
7: end for
8: Count the number Rt of correctly decoded states
9: Compute the average decoding accuracy ηt =

Rt
L

10: if ηt < ηth then
11: False meter data detected
12: else
13: No false meter data
14: end if
15: end for
16: end procedure

In this detection algorithm, the utility data center collects

the real-time sum-meter data Yt and a fraction of sub-meter

data Dsub with length L. Then, the global state Xt =
{X1

t , X
2
t , · · · , XK

t } comprising all the local states is decoded

by the proposed fast Viterbi algorithm. After that, the decoded

local states are verified by the “true” states stored in Dsub,

and the average decoding accuracy ηt is then computed. The

final step is the judgement: if ηt is less than an experienced

threshold ηth, false meter data is detected; otherwise no false

meter data is detected. Note that our scheme can identify false

meter data as long as a certain fraction of decoded states

mismatch with the reported states. In other words, either the

sum- or sub-meter data is false, or both are false, our method

is effective in identifying the anomalies. Further, since a smart

meter does not have the memory capacity and computational

capability to train an HMM itself, even though both false sum-



and sub-meter data are simultaneously reported, they cannot

perfectly feed into our HMM to avoid false data detection.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we conduct intensive experiments to show

the advantages of the CSC storage algorithm, proposed fast

Viterbi as well as the detection algorithms. In our experiments,

a public dataset AMPds [12] that is popular for household

load research is fully utilized. AMPds contains one-year

electricity measurements of 11 loads (see Table II) at one

minute intervals. Each type of load contains 524,543 readings

throughout the year. Experiments are conducted on a Windows

machine with a 3.7 GHz Intel Xeon processor.

A. Matrix Sparsity and Storage Space with CSC Algorithm

In this subsection, we show the sparsity of transition ma-

trix A and emission matrix B, as well as the compression

efficiency of the CSC storage algorithm. Table III shows the

sparsity values of matrices A and B under different numbers

of loads. Clear from this table that for both matrices A and B,

the sparsity grows with the number of loads. Interestingly, the

sparsity of both the two matrices are significantly high (above

90%) when the number of loads is greater than 4. Since the

number of loads in a house is usually above 10, so the sparsity

value of matrices A and B would be considerably high at over

98%.
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Fig. 4. The storage space comparison of CSC-compressed and uncompressed
sparse matrices A and matrix B.

To visually show the advantages of employing the CSC

storage algorithm, the storage space of matrices A and B
before and after the compression by the CSC algorithm are

plotted in Fig 4. We can see from the figure that for both

matrices A and B, the storage space is dramatically reduced

by adopting the CSC storage algorithm.

B. Decoding Efficiency and Accuracy of Viterbi Algorithms

The decoding efficiency and accuracy of the proposed

HMM-based method are presented in this subsection. Figure 5

compares the elapsed time of decoding the training dataset
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Fig. 5. The elapsed time comparison of offline decoding of the training dataset
between the traditional Viterbi and fast Viterbi algorithms.

under different numbers of loads for the proposed fast Viterbi

algorithm and traditional Viterbi algorithm [13], respectively.

As is shown, the elapsed time for the traditional Viterbi

algorithm increases exponentially with the number of loads,

while the time for the proposed fast Viterbi algorithm increases

in a rather slow manner. Clearly, the proposed fast Viterbi al-

gorithm outperforms the traditional Viterbi algorithm in terms

of the elapsed time which also represents the performance

of computation cost. Note that, we use offline decoding in

this part to show the superiority of the proposed fast Viterbi

algorithm over the traditional in [13]. While, real-world false

data detection is conducted on an online decoding basis

as shown in Algorithm 3. Only one-step FAST VITERBI

algorithm is needed, which is fairly fast and light-weight.
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Fig. 6. The decoding accuracy by using HMM.

Figure 6 shows the decoding accuracy of the proposed

method under traditional and fast Viterbi algorithms, respec-

tively. It is clear from the figure that both traditional and fast

Viterbi algorithms achieve the same and fairly high accuracy of

above 90%. We also see that as the number of loads increases,

the decoding accuracy decreases and in a slow mode. This is



TABLE III
SPARSITY VALUES OF TRANSITION AND EMISSION MATRICES A AND B IN THE HMM

Number of Loads 1 2 3 4 5 6 7 8 9 10 11

Sparsity of Matrix A 22.22% 59.50% 78.55% 90.03% 96.39% 97.95% 99.06% 99.11% 99.35% 99.66% 99.80%

Sparsity of Matrix B 66.67% 87.17% 90.34% 94.97% 96.33% 97.16% 97.86% 97.89% 98.57% 98.78% 98.86%

because that the more loads being included in the HMM, the

higher complexity of the customer behavior pattern is, which

leads to more decoding errors. Another important finding

is that compared with the traditional Viterbi algorithm, the

proposed fast Viterbi algorithm will not change the decoding

accuracy but only save the decoding time.

C. Detection Rate of the Proposed Method
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Fig. 7. The detection rate by using HMM.

The detection rate of our method is plotted in Fig. 7. We

train the HMM using the first 450,000 meter readings and

insert 1,000 false meter data in random positions of the rest

745,543 meter readings. The detection rate is computed as the

percent of detected false meter data over the total number of

inserted false meter data. L is set as 3 when the number of

loads exceeds 3; and set as 1, otherwise. The threshold of

decoding accuracy ηth is designed as 0.8 here. As the results

shown in Fig. 7, our method can achieve a very high detection

rate to identify the injected false meter data under the above-

mentioned parameter settings.
Future research direction will further extend and consolidate

this work by evaluating the effects on the detection rate under

different values of ηth, L, as well as various strategies of

false data generation. In addition, how to update the HMM

when the household appliance profile changes deserves further

investigation. In this work, we assume that the profile does not

change. It is reasonable for most cases, but not applicable for

all the cases.

V. CONCLUSIONS

In this paper, we proposed a novel HMM-based method

to quickly and accurately detect false data in smart grid. We

have built a global-state HMM and trained it by historical

meter data. In addition, a CSC-based fast Viterbi algorithm

is also devised which can significantly mitigate the storage

space and achieve fast decoding. The experiments on real

dataset AMPds fully demonstrate the compression efficiency,

decoding efficiency, decoding accuracy, and detection rate of

our method.
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