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Abstract—Opinion formation has been the topic of increased 
research interest recently, and various models have been 
proposed. These models, however, have their limitations, 
including (i) it is generally assumed that adjacent nodes 
holding similar opinions will further reduce the difference 
between them, while adjacent nodes holding significantly 
different opinions would either do nothing, or cut the link in 
between them; (ii) opinion mutation, described as “opinion 
change not due to neighborhood influences” in real life, is 
typically random. While such models are simple but still help 
reveal useful insights, they lack the capability of describing 
many complex behaviors which we may easily observe in real 
life. In this paper, we propose a new bit-string modeling 
approach. Preliminary study on the new model demonstrates 
its great potential in revealing complex behaviors of social 
opinion evolution and formation. 

Keywords—complex network; opinion formation; bit-string 
modeling; opinion mutation. 

I.  INTRODUCTION 
Opinion propagation, evolution and formation play a 

critical role in shaping our society and influences almost 
every aspect of our life, from as “small” as interpersonal 
relationship [1] to as big as elections [2][3], etc. There are 
several works on the propagation of different opinions in 
social networks [4]-[6] and the impacts of opinion 
propagation on social structures [7][8], etc. Another 
important topic is how people’s opinions are influenced by 
each other in their social interactions and how such opinion 
changes help shape the opinion groups. This is known as 
opinion formation problem.  

Extensive studies have been conducted on opinion 
formation in social population and a few different models 
have been proposed [9]-[22]. The simplest one among them 
is probably the voter model [10]-[12]. It assumes that there 
are only two opinions in the population, representing positive 
and negative attitudes towards a certain incident, respectively. 
In every time step, a randomly selected node (or an 
individual in the network; hereafter “individual” and “node” 
shall be used interchangeably) may adopt the opinion of its 
randomly selected neighbor. The voter model has been 
extended to the case with multiple different opinions 
[13][14]. Other works typically quantify the opinion as 
continuous variable [15]-[20]. Two most well-studied 
models include bounded confidence model [15]-[17] and the 

Deffuant model [18]-[22]. Both models assume that a node’s 
opinion can be influenced by those neighbors who hold 
similar, or at least not-so-different, opinions, termed as 
similar opinion neighbors (SONs) hereafter. The only 
difference is that while Deffuant assumes that a node’s 
opinion may be affected by a randomly selected SON, the 
bounded confidence model assumes that all the SONs have 
combined influences on the node. In both models, there is 
consensus making, while the node’s opinion and its 
randomly selected SON (or all SONs) come closer to each 
other. Note that, in both models two opinions are regarded as 
similar opinions if the difference between them is smaller 
than a given tolerance value d . For the Defffuant model, 
existing results show that the network would enter into a 
final state where several opinion groups are formed and 
coexist. The number of groups has a linear relationship with 
1 d .  

Noise was first introduced in Deffuant model in [20]-[22] 
to simulate the change of views for any reasons other than a 
SON’s influence. In these studies, it was assumed that all 
opinions have an equal chance to change to any other 
opinion (In the rest of this paper, we term such change as 
mutation.). The results showed that the final-state opinion 
distribution shall resemble a well-defined bell curve [20] and 
the initial conditions have hardly any effects on the final 
state, with the only exception of some very special cases 
(e.g., the initial opinion is of a single value in the whole 
system) [21].  

The imitations of adopting such a simple mutation model 
in the Deffuant model were revealed in [23]. It was shown 
that when different opinions have different chances of having 
mutations, the system dynamics may become rather complex. 
In fact, for different distributions of the “mutation 
probability” within the range of opinion, different final 
steady state may be achieved. In that study, however, it was 
still assumed that once a mutation happens, the “target” of 
the mutation is randomly distributed; in other words, the 
opinion may change to any other opinion with an equal 
chance.  

We may argue that opinion mutation in real life may not 
have a randomly distributed target in most cases. Everyone is 
“defined” and “bounded” by his/her current and/or historical 
states to a certain extent. Some mutations may be relatively 
easier to happen than the others. In other words, for each 
opinion the mutation target may also have a non-uniform 
distribution; and more importantly, different opinions may 



have different non-uniform target opinion distributions. In 
other words, the distribution of mutation target may rely on 
its current (or even historical) state. A new modeling 
approach capable of revealing such kind of state dependent 
mutation is in demand. The random target opinion 
distribution commonly adopted in current literature shall be 
viewed as a special case of the requested new modeling 
approach, where the distribution of the mutation target is 
independent of a node’s current or historical state.   

With the understanding of the limitation that the 
conventional opinion mutation models may have, it would be 
interesting to also have a look at the conventional consensus 
making models from this new angle as well. We may realize 
that the conventional consensus making model is state 
dependent: whether two neighbors could make consensus 
depends on the opinions they are holding. While such is 
applausible, the way that similar opinions come closer to 
each other may be more complex than what this model can 
describe. For example, people making consensus may stick 
to some of their differences, if such differences matter to 
them: close friends may tend to agree on almost everything, 
except for one or two “small but important” issues. What 
may be even more important is that, people with significantly 
different ideas may have very different chances of cutting the 
link in between them, depending on what that or those 
significant differences are.  

To make an effort towards tackling the shortcomings of 
the conventional models as discussed above, in this paper, 
inspired by the genetic mutation in nature [24], we propose a 
new bit-string modeling approach. Specifically, we use a 
string of binary numbers to represent an opinion or a set of 
opinions. By doing so, we may (i) reflect the 
importance/relevance of different opinions or different part 
of an opinion where a higher bit represents a more 
important/relevant opinion among a set of opinions held by 
the individual, or a more important part of an opinion held by 
the individual; and (ii) conveniently reflect the different 
mutation target distributions of different opinions or different 
part of an opinion, e.g., by assigning different bits with 
different probabilities of mutation. It would not be difficult 
to take one step further by assigning “0” and “1” at different 
bit positions with different probabilities of mutation, 
reflecting the case where the probabilities of opinion change 
in two opposite directions are not symmetric. Our 
preliminary studies show that such an approach may have 
great potentials to reveal the complex dynamics of opinion 
formation in social networks which cannot be conveniently 
revealed by any of the existing models to the best of our 
knowledge.  

The rest of this paper is organized as follows. Section 2 
briefly describes the Deffuant model and then introduces the 
bit-string opinion model. As a case study, Section 3 
discusses on a simple case where the mutation probabilities 
from 0 to 1 and from 1 to 0 are different on each bit position. 
We will see that the simple case nevertheless leads to some 
interesting and complex behaviors. Section 4 concludes the 
paper. 

II. MODEL DESCRIPTION 

A. Review of Deffuant Model with Mutation 
Deffuant model assumes that opinions are continuously 

distributed within the interval [0, 1]. At each time step t , a 
node A is randomly selected together with its random 
neighbor B . Denote their opinions as ( , )o t A and ( , )o t B , 
respectively. If the difference between these two opinions is 
less than a given tolerance d , they make consensus 
according to the following rules: 

( 1, ) ( , ) [ ( , ) ( , )];
( 1, ) ( , ) [ ( , ) ( , )].

o t A o t A o t A o t B
o t B o t B o t A o t B

μ
μ

+ = − −⎧
⎨ + = + −⎩

         (1)   

A smaller value of μ  may slow down the evolution process 
while different values of μ , as long as it is within the range 
of (0, 1/2], is believed to lead to the same final steady state 
[18]. Hereafter, we use 1/ 2μ = as that in most of the existing 
works.  
Noise/mutation was firstly introduced into Deffuant model in 
[20]. Specifically, in each time step t , a randomly selected 
node has a probability p to mutate and adopt another 
randomly chosen opinion.  

B. Bit-string modelling approach 
The bit-string model is based on a simple idea of 

describing an opinion or a set of opinions into a string of 
binary number. For example, an opinion, or a set of opinions, 
adopted by an individual in a certain circumstance may be 
written as 01101001. Higher bits may denote something that 
is more “fundamental” and important to an individual, e.g., 
whether s/he has any religion belief in a study on “opinion 
formation of people’s interpretation of eternity in a social 
community”, while a lower bit may be generally speaking 
less significant, e.g., the individual’s preference of sport 
activities in the above study. Certainly a string can also be 
used to represent a single idea (e.g., the religion belief in the 
above example), while different bits are of different 
importance in defining the idea: 01101001 may be regarded 
as a similar idea to 01101010, but significantly different 
from 11101001.  In the above example, the former case 
means that two individuals have nearly the same religion 
belief in almost every detail; while in the latter one, the two 
individuals are very different in their religion beliefs.  

At the first sight, adopting a bit-string model may be of 
limited benefits: it would be the same thing to write 
01101001 as 105 in decimal number, or 105/255 as a real 
number within the range of [0,1]. The benefits, however, lie 
in the convenience of defining different “behaviors” on 
different bits. For example, by defining different bits with 
different mutation probabilities, we may resemble the fact 
that changing an individual’s religion belief may be easier or 
more difficult than changing his/her favorite sports activities, 
both of which may affect, in rather different ways, how 
likely or unlikely his/her social connections can change 
his/her interpretation of eternity. Further, for the bit 
corresponding to religion belief of the individual, assigning 



      Figure 1. Final opinion distribution at 25d = for different
10 01

( , )p p i) when each bit of the string has the same probability of mutation: (a) (0.01, 0.005), (b) 
(0.005, 0.01), (c) (0.01, 0.003), (d) (0.003, 0.01); ii) when 1 28α =  hence higher bits have higher probabilities of mutation.: (e) (0.01, 0.005), (f) (0.005, 0.01), 
(g) (0.01, 0.003), (h) (0.003, 0.01); and iii) when 1 28α = − hence lower bits have higher probabilities of mutation: (i) (0.01, 0.005), (j) (0.005, 0.01), (k) (0.01, 
0.003), (l) (0.003, 0.01). 

 

different probabilities for it to change from 0 to 1 and change 
from 1 to 0 respectively would resemble the real-life case 
that it is easier or more difficult to make free thinker become 
a religion believer, or go through the opposite direction. The 
potentials of such a new modeling approach are attractive.  

There are many different ways to define how different 
opinions may interact with each other and mutate themselves 
by using this bit-string model. For example, it would not be 
difficult to imagine crossover between two bit strings, like 
that in the genetic algorithm [25]. In this preliminary study, 
we consider the simple case which essentially is still the 
well-known Deffuant model with mutation, with the only 
difference the i-th bit has a mutation probability ( )p i  which 
may be different for different bit positions (i.e., different 
values of i). While ( )p i  may be affected by various 
combinations of many different current/historical factors as 

we discussed earlier, we consider the simple case where ( )p i  
is only affected by the current state of the i-th bit. 
Specifically, we consider the case where ( )p i is composed 
of two conditional probabilities: the probability for the i-th 
bit to mutate from 1 to 0 given that its current state is 1, and 
the probability of mutating from 0 to 1 given that its current 
state is 0, denoted as 10 ( )p i  and 01 ( )p i respectively. 
Apparently, we have  

 
01 0 10 1

( ) ( ) ( ) ( ) ( )p i p i q i p i q i= + ,                          (2) 

where 0 ( )q i  and 1 ( )q i  denote the probabilities that the 
current state of the i-th bit is 0 and 1, respectively.   Note that, 
in the above model, since 0 ( )q i  and 1 ( )q i evolve with the 



network system, ( )p i is time varying until the system reaches 
steady state. This is very different from that in the existing 
studies where the mutation rate is typically a constant 
throughout the evolution process. We argue, however, that in 
the real life, mutation rate may be indeed time varying in 
most cases: a system in transition is expected to witness a 
relatively higher mutation rate, which may become lower 
when the system enters into a relatively more stable state. 

Also note that (1) does not necessarily lead to an integer 
value that can be written into a binary bit string, in which 
case we assign the closest integer opinion to the node, and a 
tie is broken arbitrarily. 

III. SIMULATION RESULTS AND DISCUSSIONS 
We simulate the simple case where each opinion is 

represented by an 8-bit string (or equivalent 0-255 in decimal 
number). In each time step, in addition to the standard 
consensus making operation as that in the conventional 
Deffuant model, a node will be randomly selected as the 
candidate of opinion mutation. For the selected node, a 
single bit will be selected as the bit with a non-zero 
probability of having a mutation, where the i-th bit of the 
opinion is selected at a probability ( )iρ , 8

1
( ) 1

i
iρ

=
=∑ . We 

consider the case where the same set of values of 10 ( )p i  and  

01 ( )p i  apply to all the network nodes and all the 8 bits. 

Specifically, we examine 4 pairs of different 10 ( )p i  

and 01 ( )p i : (0.01, 0.005), (0.005, 0.01), (0.01, 0.003) and 
(0.003, 0.01), respectively. Note that by adopting such small 
values, a bit mutation does not happen more frequently than 
an average of 1 in every 100 time steps. We present the 
results in the ER random network [26] with a size of 

410N = and an average nodal degree of 10z = . 
We start by considering the case where 

( ) 1 8,  1, 2, ...8.i iρ = = Setting the tolerance 25d = , we 
perform the simulation for 75 10t = × time steps for each case 
and average the opinion distribution of the last 1000 steps as 
the final-state opinion distribution. Figures 1(a) to 1(d) 
illustrate the final state for the four different cases 
respectively. From Figures 1(a) and 1(c), the observation is 
that when 10 01p p> , the peaks positioned at smaller values 
would be higher; meanwhile the positions of the four peaks 
also slightly shift to the left-hand side. When 10 01p p< , the 
observations we can make from Figures 1(b) and 1(d) go to 
the opposite: the peaks positioned at larger values are higher 
and the peak positions shift to the right. The differences 
between the heights of different peaks become larger when 
the ratio between 10p  and 01p  is larger in the former case 
(comparing Figures 1(a) and 1(c)) and smaller in the latter 
case (comparing Figures 1(b) and 1(d)). Such observations 
match our daily experiences. For example, when the whole 
society tends to be optimistic (pessimistic), though people 
may still hold different ideas, different ideas may all tend to 
be shifted towards the optimistic (pessimistic) side. The 

more optimistic (pessimistic) the society is, the more people 
would be found at the optimistic (pessimistic) end, and the 
peaks of opinions typically also shift to that end. Though 
such observations are well known in real life, to the best of 
our knowledge, it is the first time that it is observed in 
numerical simulation based on a simple mathematical model.  

We then consider the slightly different case when 

      ( ) (4.5 ) 0.125,   1,2, 8i i iρ α= − + = K                (3) 

where [ 1 28,1 28]α ∈ − . For this function, a positive 
α means that higher order digits have higher probabilities to 
be selected for mutation while a negative α indicts the 
opposite. We still set 25d = . 

Figures 1(e) to (h) and Figures 1(i) to (l) present the 
results when 1 28α =  and 1 28− , respectively. Note that 
when 1 28α = , higher order bits have higher probabilities to 
be selected for mutation, at a ratio of 

( ) : ( ) ( 1) : ( 1),  , 1, 2, , 8;i j j i i jρ ρ = − − = K  while for 
1 28α = − , lower order bits have higher probabilities to be 

selected, and the ratio becomes ( ) : ( ) ( 1) : ( 1),i j i jρ ρ = − −  
, 1, 2, ,8i j = K .  

For 1 28α = , Figures 1(e) to 1(h) respectively present 
the final opinion distributions corresponding to 4 pairs of 
different 10 ( )p i  and 01 ( )p i : (0.01, 0.005), (0.005, 0.01), (0.01, 
0.003) and (0.003, 0.01). The observations are almost the 
same as those in Figures 1(a) to 1(d). The only nontrivial 
difference is that in Fig. 1(g) (1(h)), the peak at the leftmost 
(rightmost) side is much higher than the corresponding peak 
in Fig. 1(c) (1(d)). A rough understanding of the reasons 
behind is not so difficult to achieve: when 10 ( )p i is much 

higher 01 ( )p i  and higher bits have higher chances of 
mutation, the chance of having “0” on higher bits becomes 
higher, making the peaks closer to the left side end higher. 
This explains the observation in Figures 1(g). Similar 
reasoning can be adopted to explain the difference between 
Figures 1(d) and 1(h). Considering that Figures 1(a) and 1(e) 
however appear to be nearly the same, it remains as a 
challenge to figure out how big a difference between 

10 ( )p i and 01 ( )p i is big enough to lead to nontrivial 
differences in the final state.  

Figures 1(i) to 1(l), however, present very different 
observations when lower bits have higher probabilities to 
mutate: while peaks still shift to the left when 10 01p p>  
(Figures 1(i) and (k)) and to the right when 10 01p p<  
(Figures 1(j) and (l)), the heights of the four peaks do not 
increase or decrease monotonically from left to right. Rough 
understanding may still be easily achieved: when higher bits 
have lower opportunities of mutation and the highest bit has 
a zero mutation probability (and therefore does not mutate at 
all), at steady state we shall expect to find half of the nodes 
holding opinions starting with a bit “0” and the other half a 
bit “1”. Opinion distribution is thus roughly 50-50 on the left 
and right half of the opinion axis. Mutation of the other bits 



(2nd to the 8th bits) can still generate “uneven” distribution 
in each half of the opinion axis, depending on whether 

10 01p p> or 10 01p p< .  
While rough understandings as discussed above are not 

difficult to achieve, obviously extensive further studies are 
needed to fully understand the system dynamics. 

IV. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a new bit-string modeling 

approach for more efficiently describing the complex 
dynamics of opinion formation in complex networks. The 
new approach allows convenient modeling of various non-
uniform, state-dependent behaviors of different opinions or 
different parts of an opinion. Preliminary study on a very 
simple case reveals the great potentials the new approach 
may have. 

A lot of other interesting observations have been made in 
our preliminary studies, which have been largely omitted in 
this paper. These observations shall be carefully sorted into 
some systematic descriptions and discussions in our future 
studies. A theoretical framework for analyzing the evolution 
of the system adopting the new modeling approach will also 
be developed.   
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