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Abstract—Integrating massive electric vehicles (EVs) into
power grid requires the charging of EVs to be coordinated
to reduce the cost and guarantee the system stability. The
coordination becomes more challenging when the EV owners have
different charging preferences. To tackle this problem, a hybrid
centralized-decentralized (HCD) charging control scheme is de-
signed in this paper which mainly includes three parts as follows.
On the centralized charging side, an offline optimal scheduling
approach is first presented aiming at minimizing the energy cost
while satisfying the charging requirements of EVs. To deal with
the system dynamics and uncertainties, a model predictive control
(MPC) based adaptive scheduling strategy is then developed to
determine the near optimal EV charging profiles in real time.
On the decentralized charging side, the interactions between EVs
and the charging system controller is modeled as a leader-follower
non-cooperative Stackelberg game in which the system controller
acts as the leader and the EVs act as followers. The existence of
the equilibrium state and its optimality are proved and analyzed.
It is shown that by adopting the proposed decentralized charging
algorithm, the communication burden between EVs and the
system controller is low and the charging scheme is robust to
poor communication channels. Last, we investigate how the size of
these two charging groups impacts the system utility and propose
an algorithm maximizing the total revenues of the whole system.
Simulation results evaluate the performances of the scheme and
investigate the parameters’ impacts on the system utilities. The
proposed approach and obtained results may provide guidelines
for improving the efficiency of the charging park operation
and provide useful insights helping the system operator develop
rational investment strategies.

Index Terms—electric vehicles (EVs), hybrid centralized-
decentralized charging, model predictive control (MPC), Stack-
elberg game.

I. INTRODUCTION

Today’s transportation sector accounts for a significant

portion of petroleum consumption and greenhouse gas emis-

sions worldwide. Statistics show that 63.7% of the petroleum

consumed in the world in 2012 was due to the transport sector,

which caused emission of 7135 million tons of carbon dioxide

into the environment [1]. The world’s fossil fuel scarcity,
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as well as the growing environmental crisis associated with

fossil fuel’s wide usage, are driving the electrification of

transportation and extensive use of electric vehicle (EVs). EVs

are emerging as an efficient and sustainable alternative for pri-

vate and public road transportation [2], [3]. To encourage the

purchase of EVs, government of different countries including

Australia, Canada, China, Europe Union and U.S.A. subsidize

or finance the customers and implement many actions such as

tax exemption, transit and parking facility constructions, etc

[4].

While the widespread implementation of EVs may provide

a solution to the world fossil fuel shortage and air pollution

concerns, the growing EV load also brings up multiple tech-

nical issues, such as voltage deviations, transformers and line

saturations, increase of electrical losses, etc. These issues may

jeopardize the security and reliability of the power grid. As

a consequence, intelligent charging and scheduling for EVs

becomes an important research problem.

A number of technical and regulatory issues, however, have

to be resolved before the intelligent charging becomes a com-

monplace. The arrival of EVs and their required energy amount

may appear to be random, which increases the demand side

uncertainties. The role of EV owners is also important in the

interactions between the charging system and the EVs. From

the EV owners’ point of view, the degree of satisfaction should

be a prior concern. When departures, the EV owner hopes

that the EV is charged as much as possible. In addition, EV

owners may have various charging habits. Some are prone to

individually determine their own charging profiles while others

may hope the charging system undertake the charging tasks

for them. For instance, a future courier company may assign

all the charging tasks of its driverless car fleet to a system

controller of the charging park; meanwhile, some private car

owners may prefer to control their own charging patterns all

by their own. In many cases, these two kinds of users coexist.

Therefore, a flexible and efficient EV charging mechanism has

to be properly designed to dynamically coordinate the charging

of EVs and satisfy the requirements of EV owners.

In this paper, we consider the charging scheduling of a large

number of EVs at a charging station. Stimulated by the fact

that in practical scenarios, both centralized or decentralized

charging architectures have their limitations and EV owners

may have various charging preferences, a hybrid centralized-

decentralized (HCD) EV charging control method is developed

which offers flexible charging choices for customers. In this

charging scheme, EV owners can either assign the charging

tasks to system controller or individually choose the charging

profiles based on their own preferences. In addition, the
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stochastic characteristics of EVs such as the arrival/departure

times and charging demands are all taken into account for

designing the charging control scheme. Note that the main

objective of our study is to properly adjust certain criteria,

namely electricity price and energy cap, to intelligently drive

the HCD charging system into an economical and stable state.

For the centralized charging scheduling, a local controller

is responsible to schedule a group of EVs. Based on the

demand side management framework proposed by us in [5],

we regard EVs as flexible loads in this paper and formulate

the coordinated EV charging problem into a mixed integer

quadratic programming (MIQP) problem which aims at min-

imizing the charging cost of the whole EV fleet over a time

horizon. To tackle with the system condition dynamics where

EVs’ arrival/departure times and their charging demands are

uncertain, an online charging scheme is developed based on

model predictive control (MPC). The scheme allows more

information of EV arrivals (departures) and charging demands

to be effectively incorporated into the charging mechanism

when such information is available. The calculation burden of

the system controller is low.

For the decentralized charging scheduling, we model the

interactions between the system controller and EVs into a

leader-follower noncooperative Stackelberg game. The game

aims at maximizing the profit of the charging system and

utilities of the EV owners. We prove the existence of the

generalized Stackelberg equilibrium (GSE) where both the

leader and followers reach their equilibrium states. It is shown

that the GSE also represents the socially optimal1 solution.

Moreover, a decentralized EV charging algorithm is developed.

We show that the communication burden between EVs and

the system controller is low and the proposed decentralized

charging control scheme is robust to poor communication

quality.

Moreover, we investigate the interactions between these

two charging groups. It is shown that an optimal energy cap

exists for the decentralized charging group which maximizes

the entire system’s revenue. An optimal energy allocation

algorithm is proposed to find such energy cap. Furthermore,

how the vehicle number in each charging group impacts the

system utility is specifically studied. The proposed approach

and obtained results may provide guidelines to improve the

operation efficiency of the charging park and provide useful

insights helping the system operator develop rational invest-

ment strategies.

The remainder of this paper is organized as follows: In

Section II, we review the recent literature concerning the EV

charging control strategies. Section III introduces the system

model of the HCD EV charging mechanism. In Section IV, we

present the problem formulation of the HCD charging control

of EVs. In Section V, the algorithms to solve the HCD EV

charging problem are introduced. The simulation results and

discussions are presented in Section VI. Finally, we conclude

our paper in Section VII.

1A strategy is called socially optimal iff it minimizes the sum of all the
cost.

II. RELATED WORK

The existing EVs’ charging control schemes can be roughly

classified into two categories: centralized charging strate-

gies and decentralized charging strategies. The main idea of

centralized control is to utilize centralized infrastructure to

collect information from all EVs and centrally optimize EVs’

charging considering the grid technical constraints. In such a

strategy, the master controller makes decisions about the rate

and time of charging EVs to get the optimal solution [6]–

[20]. Esmaili et al. [6]–[9] develop various centralized charg-

ing strategies for different optimization objectives, including

saving system cost, minimizing CO2 emission, reducing power

loss, adjusting power frequency and satisfying EV owners, etc.

Various optimization methods and heuristic algorithms have

been adopted to solve such problems. In [10], a hierarchical

control scheme is proposed for managing EVs’ charging sta-

tion loads in a distribution network while minimizing energy

cost and abiding by substation supply constraints. The schedul-

ing is based on the forecast load information. Reference [11]

proposes a DP (dynamic programming)-based optimization

method of charging an EV fleet modelled as a single, so-

called aggregated battery. However, in all aforementioned

papers, the dynamics of the EVs’ arrival/departure times and

charging patterns are not considered; Qi et al. [12]–[15]

adopt receding horizon control based techniques to tackle the

uncertainties in the dynamic charging systems. References

[16]–[18] develop online algorithms for coordinating EVs’

charging to save the system cost and lessen EVs’ harmful

impacts on the distribution network. Note that these papers

specifically consider the dynamics of EVs’ charging system.

Jin et al. [19] study EV charging scheduling problems from a

customer’s perspective by jointly considering the aggregator’s

revenue and customers’ demands and costs. Paper [20] studies

risk-aware day-ahead scheduling and real-time dispatch for

plug-in EVs, aiming to jointly optimize the EV charging cost

and the risk of load mismatch between the forecast and the

actual EV loads. Different from previous papers, both static

and dynamic charging scenarios are considered in [19] and

[20]. For centralized charging strategy, the size of the opti-

mization problem increases with the number of EVs. Accurate

information collection from a large number of EVs may also

impose a challenge. Designing an effective centralized EV

charging strategy therefore remains as a difficult problem.

In contrast, the vehicle owners directly control their EVs’

charging patterns employing the decentralized charging strate-

gies [21]–[37]. Yang et al. [21] focus on the scheduling

of EV charging process among different charging stations

and each station can be supplied by both renewable energy

generators and a distribution network. Gan et al. [22] propose

a decentralized algorithm to schedule EV charging to fill the

electric load valley. This charging control strategy iteratively

solves an optimal control problem in which the charging rate

of each vehicle can vary continuously within its upper and

lower bounds. In each iteration, each EV updates its own

charging profile according to the control signal broadcast by

the utility, and the utility company alters the control signal

to guide their updates. In [23]–[29], various decentralized
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charging frameworks to coordinate charging demand of EVs

are implemented based on game theory concepts. In [30], a

decentralized online valley filling algorithm for EV charging is

proposed. An optimal power flow (OPF) framework is adopted

to model the network constraint that rises from charging EVs

at different locations. Similar to [30], decentralized EV charg-

ing schemes with valley filling objective can also be found

in [31] and [32]. Considering the selfish nature of people,

authors of [33] define some weighting factors in the objective

function of EV charging management problem aiming at

modeling users’ convenience in the presented optimization

procedure. Xi et al. [34] study a decentralized price-based EV

charging control. A pricing scheme that conveys price and

quantity information to the load aggregator is developed. In

[35], a novel online coordination method for the charging of

plug-in EVs in smart distribution networks is proposed. An

innovative parking lot prediction unit is developed adopting

M/G/∞ queuing model2. In [36], the authors formulate the

EV charging problem as a convex optimization problem and

then propose a decentralized water-filling-based algorithm to

solve it. A receding horizon approach (similar to [12]–[14]) is

utilized to handle the random arrival of EVs and the inaccuracy

of the forecast non-EV load. Although the decentralized charg-

ing strategy offers more ownership authority to EV owners, it

may not ensure the optimality in the charging of EVs and

brings security concerns of the power grid [6], [23], [37].

There are also some literature taking the vehicle-to-grid

(V2G) technology into consideration when scheduling the

charging of EVs. For instance, in [38], a step-by-step method-

ology based on a mixed integer linear programming formula-

tion is presented to solve the optimal charging coordination of

EV considering V2G technology. Tang et al. [39] propose a

new modelling method of EVs and an optimal V2G charging

control strategy under large EV population. Compared with

previous studies, the HCD EV charging scheme proposed

in this paper offers flexible charging choices for customers,

where EV owners can either delegate the charging tasks to

system controller or individually choose the charging profiles

based on their own preferences. The stochastic characteristics

of EVs such as the arrival/departure times and charging

demands are taken into account. By adopting the proposed

algorithm, the communication burden between EVs and the

system controller is low; and the proposed charging control

is robust to poor communication channels. Also note that the

proposed HCD charging scheme is applicable to handle other

system objectives and is not restricted to any specific random

patterns of EVs.

III. SYSTEM MODEL

We consider an intelligent charging system (e.g., a charging

park) which offers two charging options for the customers:

1) centralized charging: utilizing centralized infrastructure

to collect information from EVs and centrally optimize EV

charging considering the grid technical constraints; 2) decen-

tralized charging: the vehicle owners directly control their

2An M/G/∞ queue is a queue model where arrivals are Markovian
(modeled by a Poisson process), service time has a general distribution and
there are infinite number of servers

Local

Controller

Fig. 1: Illustration of the system architecture

EVs’ charging patterns according to their own preferences.

The general structure of the system is shown in Fig. 1. The

system controller, the local controller(s) and EVs are the

main components in this HCD charging control system. The

abbreviations used in the paper and their meanings are listed

in Table I. The particulars of the system operation and the

main roles of these components are explained in the following

subsections.

TABLE I: Abbreviations used in this paper

Abbreviation Meaning

EV electric vehicle
HCD hybrid centralized-decentralized
MPC model predictive control
GSE generalized Stackelberg equilibrium
SOC state of charge
GNE generalized Nash equilibrium

GNEP generalized Nash equilibrium problem
MIQP mixed integer quadratic programming
GSG generalized Stackelberg game
NE Nash equilibrium
VE variational equilibrium
VI variational inequality

A. Centralized Charging Control Model

A local controller is responsible for scheduling the charging

patterns of a group of EVs on behalf of their owners. If the

number of EVs is large, the EV fleet can be classified into sev-

eral groups (e.g., according to their geographical locations) and

one local controller is responsible for the charging tasks of one

EV group. The local controller and EVs (the local controller

and the system controller as well) are connected through two-

way communication infrastructures (e.g., a local area network

(LAN)). The operation time of the charging system is divided

into discrete time intervals with equal length, i.e., time slot.

The length of a time slot is denoted by η, which can vary

from 5 mins to half an hour based on the charging traffic

conditions [40]. EVs can be regarded as flexible loads. Let

A denote the set of EVs which participate in the centralized

charging scheme. Adopting a general scheduling model [5],

we define EV charging scheduling vector xa and state vector

ya as follows:

xa = [x1
a, x

2
a, ..., x

H
a ] and ya = [y1a, y

2
a, ..., y

H
a ], (1)
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Fig. 2: Available charging period of EV a

where H ≥ 1 is the scheduling horizon which indicates the

number of time slots ahead that are taken into account for

decision making in the EVs’ charging scheduling. For each

coming time slot h ∈ H = [1, 2, ..., H ], let a binary variable

yha = 0/1 denote the state of EV a (not charging/charging) and

a variable xh
a denote the scheduled energy to be charged to

EV a at time h. For each EV a with the maximum allowable

charging rate Rmax
a and the minimum charging rate Rmin

a , we

have that

yha · Rmin
a · η ≤ xh

a ≤ yha · Rmax
a · η. (2)

Let tsa and tfa denote the arrival time and departure time of

EV a, respectively. Since we divide time into multiple discrete

time slots, the available charging time of EV a, denoted by

Ta, is defined as the set of continuous time slots fall between

the plug-in time tsa and plug out time tfa , as depicted in Fig.

2. Obviously we have yha = 0 if h 6∈ Ta. Further denote the

battery energy capacity (which is defined as the maximum

amount of energy can be stored in the battery), initial battery

energy and desired departure battery energy of EV a by Ecap
a ,

Es
a and Ed

a , respectively. Obviously, we have Ed
a ≤ Ecap

a . The

desired departure state of charge (SOC) of EV a is defined as

γd
a = Ed

a/E
cap
a , where 0 < γd

a ≤ 1. The local controller can

automatically detect the arrival time tsa, battery capacity Ecap
a

and initial battery energy Es
a of EV a when it connects to the

charging plug. The departure time tfa , desired departure SOC

γd
a are provided to the local controller by the owner of EV

a before the charging begins. Given tsa and tfa , the available

charging period Ta can be easily obtained. From the above

descriptions, we have the following constraints intuitively:

Es
a +

∑

h∈Ta

xh
a ≥ Ed

a , (3)

Ed
a ≤ Ecap

a . (4)

Considering the fact that customers are risk averse [41], [42],

they would be reluctant to join the scheme if they face the

financial risks associated with electricity price uncertainty (i.e.,

their EV may be charged during periods when the electricity

prices are high). Thus, it is assumed that the local controller

offers flat electricity price pc (which is announced in advance)

for the EVs in this centralized charging scheme.

B. Decentralized Charging Control Model

Let B(h) denote the set of EVs engaging in the decentral-

ized charging scheme at time h. EVs are able to communicate

with the system controller via two-way communication chan-

nels, as illustrated in Fig. 1. For a particular time slot h ∈ H,

the system controller has a limited energy Eh
m that it can

provide to the B(h) connected vehicles for charging, where

B(h) = |B(h)|; the system controller charges the EVs a price

of phd for one unit of electricity; for each EV b ∈ B(h), let xh
b

denote the amount of energy it requests from the charging

system so as to meet its energy requirements. The energy

demand xh
b may vary for different EVs based on different

parameters such as battery capacity Ecap
b , current SOC γc

b ,

desired unplug SOC γd
b , the time varying electricity price phd

as well as the travel plans (two EVs may have different travel

plans and may have different energy demands). We assume

that EVs will only request the amount of energy according

to their immediate need for charging and EVs compete with

each other for the limited scarce available energy. Thus, the

following constraints must be satisfied for the total amount of

energy EVs charged at time slot h:

∑

b∈B(h)

xh
b ≤ Eh

m, (5)

where Eh
m is the energy cap for the decentralized charging

group. Obviously, the demand of the connected EVs are

coupled through the above constraint. For the system con-

troller, it tries to properly optimize the electricity price phd
such that the revenue for selling the energy is maximized. A

lower electricity price means sacrificing revenues. However if

the price is set too high, customers (EVs) may reduce their

demand, amounting to losing profits. Thus a suitable phd has to

be decided to maximize the benefits of the charging system.

The interactions between system controller and EVs

can be modeled as a leader-follower noncooperative

Stackelberg game, in which there is a single leader (system

controller) and multiple followers (EVs). The system

controller chooses the total amount of energy it can

provide to EVs in B(h) and the electricity price. Given

these two parameters, EVs respond to the controller by

properly choosing their own charging demands. The game

can be defined in its strategic form as S = {(B(h) ∪
{system controller}), {xh

b }b∈B(h), E
h
m, phd , {U

h
b }b∈B(h), U

h
sc},

where Uh
b and Uh

sc are utility functions of EV b and system

controller, respectively.

Note that, the main task of the system controller is to

properly coordinate the charging profiles of all the connected

EVs (belonging to either the centralized charging group or

the decentralized charging group) to minimize the cost of the

whole system.

IV. PROBLEM FORMULATION

A. Centralized Charging Control

1) Global Optimal Scheduling: To find the global optimal

EV charging profiles during the scheduling horizon, we first

make the following assumptions: (1) the arrival time and

departure time of each EV in the set A are known; (2) the plug-

in SOC and desired plug out SOC for each EV in the set A are

known; (3) the local controller collects all the information and

performs the scheduling optimization. Specifically, the local

controller solves the following optimization problem to obtain
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the global optimal charging scheduling sequences:

min
X,Y

H
∑

h=1

Ch
m(lh) (6)

s.t. lh =
∑

a∈A

xh
a

xh
a ≥ 0, (2) (3) and (4)

yha ∈ {0, 1} and yha = 0, if h 6∈ Ta,

where X = [x1,x2, ...,xa, ...]
T and Y = [y1,y2, ...,ya, ...]

T

are matrices of decision vectors xa and ya for a ∈ A,

respectively; lh represents the system load; Ch
m(·) is the cost

function of the charging system for generating or importing

electricity, which is assumed to be an increasing convex func-

tion. The convex property reflects the fact that each additional

unit of power needed to serve the demands is provided at a

non-decreasing cost. Without loss of generality, we consider

quadratic cost function Ch
m(lh) = nhlh + mhlh

2
throughout

this paper, where mh and nh are two coefficients [15], [16].

The global scheduling optimization problem can be interpreted

as to minimize the total cost of the centralized EV charging

system during the scheduling horizon, by optimizing over the

EV charging scheduling matrix X and state matrix Y. Problem

(6) is an MIQP problem, which can be effectively tackled by

cutting plane method, branch and bounded method, etc [43],

[44]. The solution to this problem provides the global (off-line)

optimal EV charging scheduling sequences during the schedul-

ing horizon. However this scheduling scheme is impractical

since the EVs’ arrival and departure patterns are unknown and

so are their parameters (current SOCs and plug out SOCs). In

the following subsection, we introduce a practical dynamic

scheduling approach, which relaxes the assumptions adopted

in the global optimal scheduling problem (6). The solution of

this dynamic scheduling approach performs close to the global

optimal scheduling scheme.

2) A Dynamic Scheduling Approach: One difficulty of the

centralized charging lies in the fact that the system is dynamic

with EVs coming and departing all the time. Thus it is not

possible to have a stationary long-term scheduling profile.

To tackle with the system condition dynamics, we adopt the

MPC approach (also known as “receding horizon approach”)

[45] [46], of which the basic idea is to calculate the optimal

control sequences yet implement only the first step of them.

In other words, the centralized EV scheduling problem is

solved at time h = τ (τ ∈ H denotes the current time

index) for the remaining horizon [τ, τ + 1, ...,W τ ], yet only

the solution for the current time slot τ is implemented (W τ is

the decision making horizon). In the next time slot, the local

controller shall update the system information (e.g., the set

of connected EVs currently, their current SOC and desired

plug out SOC, etc.) and re-do the calculations. The time

horizon for the decision making can be defined as the latest

de-energize time of the EV in the current connected vehicle

set, i.e., W τ = maxa∈A(τ)bt
f
ac, where A(τ) is the current

connected vehicle set of centralized charging. The illustration

of the current time horizon for the decision making is depicted

in Fig. 3. The optimization problem at current time τ can be

0 1 2 3 4 5 6 7 23 24...

decision making time horizon

time

current time instant

charging period of EV 1

charging period of EV 2

charging period of EV 3

charging period of EV 4

charging period of EV 5

...

Fig. 3: The illustration of the current time horizon for the

decision making of the charging scheduling, i.e., W τ =
maxa∈A(τ)bt

f
ac. The current connected EVs’ set is A(τ) =

{EV 1, EV 2, EV 3, EV 4, EV 5}.

formulated as:

min
xh
a
,yh

a

W τ

∑

h=τ

Ch
m(lh) (7)

s.t. lh =
∑

a∈A

xh
a

xh
a ≥ 0, (2) (3) and (4)

yha ∈ {0, 1} and yha = 0, if h 6∈ Ta

a ∈ A(τ), h ∈ [τ, τ + 1, ...,W τ ].

The dynamic EV charging scheduling problem (7) at the

beginning of time slot τ is still an MIQP problem which

can be solved efficiently by many commercial optimization

softwares including CPLEX, Mosek, FortMP and Gurobi, etc.

By solving (7), we obtain charging scheduling sequences xh
a ,

a ∈ A(τ), h ∈ [τ, τ + 1, ...,W τ ], among which only the

charging scheduling sequences xh
a , a ∈ A(τ), h = τ are

executed, and other scheduling sequences xm
a , a ∈ A(τ), m ∈

[τ +1, ...,W τ ] are discarded, which will be finally updated at

the beginning of time slot m.

B. Game Formulation of Decentralized Charging

In this paper, we formulate the interactions between system

controller and EVs into a leader-follower noncooperative

Stackelberg game, where the system controller acts as

the leader and the EVs as followers. At any time slot h,

two principle components of the game S = {(B(h) ∪
{system controller}), {xh

b }b∈B(h), E
h
m, phd , {U

h
b }b∈B(h), U

h
sc}

are the utility functions of the leader (system controller) Uh
sc

and the followers (EVs) Uh
b , b ∈ B(h), respectively. We have

detailed discussions as follows:

1) Utility Functions of EVs: EV’s utility function captures

the benefit it obtains for consuming the demand energy. The

utility function Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d) of EV b is defined as

a function of the energy it charges. Here, xh
b is the requested

charging energy of EV b from the charging station. xh
−b is the

vector formed of all EVs’ decision variables except the one

of EV b, i.e., xh
−b = (xh

1 , x
h
2 , ..., x

h
b−1, x

h
b+1, ...). α

h
b > 0 and

βh
b > 0 are parameters measuring the charging habit of EV b.

The value of αh
b and βh

b may depend on the current SOC, the
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battery capacity and the travel plan of the EV b. In addition,

the price of electricity phd also influences the charging benefit

of an EV. Mathematically, we have the following assumptions

on the properties of the utility function of EV b:

1) Assumption 1: the utility functions Uh
b is non-decreasing

with respect to the amount of energy the EV charges. In

other words, each EV tends to charge more if possible

until it reaches its maximum battery level, i.e.,

∂Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d)

∂xh
b

≥ 0. (8)

2) Assumption 2: An EV has a non-increasing marginal ben-

efit with respect to the charging amount. This statement

can be interpreted from these two aspects: 1) the marginal

charging time (i.e., drivers’ waiting time) increases since

the charging rate slows down when the battery gets

drenched; 2) the satisfaction level of an EV gradually

gets saturated when more and more energy is charged;

i.e.,

∂2Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d)

∂xh
b

2 ≤ 0. (9)

3) Assumption 3: an EV’s benefit gets lower when the

electricity price increases, i.e.,

∂Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d)

∂phd
< 0. (10)

Without loss of generality, the quadratic utility function is

defined as:

Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d) (11)

= −
1

2
αh
b (x

h
b )

2 + βh
b · xh

b − phd · xh
b .

Note that the game formulation we proposed in this paper is

a general methodology which is not restricted to the current

quadratic utility function. As long as the utility function is dif-

ferentiable and satisfies the above assumptions, the proposed

method can be applied with virtually no change.

2) Utility Function of the System Controller: The objective

of the system controller is to maximize the revenue for selling

the electricity to EVs, thus the utility function of the system

controller is defined mathematically as:

Uh
sc = pc ·

∑

a∈A(h)

xh
a + phd ·

∑

b∈B(h)

xh
b (12)

−Ch
m





∑

a∈A(h)

xh
a +

∑

b∈B(h)

xh
b



 ,

where Ch
m is the cost function of the charging system. Utility

function Uh
sc captures the revenue for selling the energy (fist

two terms) and the cost for generating or buying the energy

(the last term). In the proposed game, the system controller

can control the price for selling the energy phd and total

energy cap Eh
m. The EVs respond to this price and choose the

amount of energy to charge xh
b to maximize their utilities and

simultaneously they have to ensure that their total charging

demand should not exceed the energy cap Eh
m. Note that,

the centralized charging scheduling sequences xh
a , a ∈ A(h)

are determined by the centralized charging scheme (local

controller). In this regard, for a fixed electricity price phd , an

EV b solves the following optimization problem:

max
xh

b

Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d) (13)

s.t.
∑

b∈B(h)

xh
b ≤ Eh

m. (14)

Obviously, the charging strategy of EV b depends on not only

its own utility function, but also other EVs’ charging strategies

through constraint (14); and this constraint is shared by all the

players (i.e., EVs). This game is a jointly convex generalized

Nash equilibrium problem3 4 5 (GNEP) due to the same shared

“coupled constraint” (14) and the max-concave (i.e., min-

convex) objective functions of EVs [47]. Then, after all the

EVs’ charging amount reach the generalized Nash equilibrium

(GNE), the system controller optimizes the energy price phd to

maximize the revenue of the system. Given the GNE charging

amount of EVs (xh
b ,x

h
−b), the system controller solves the

following problem:

max
ph

d

Uh
sc (15)

to maximize the system revenue. The solution of the formu-

lated non-cooperative leader-follower generalized Stackelberg

game (GSG) is the GSE in which the leader finds its optimal

price and the followers reach their equilibrium states. At this

equilibrium, no player (i.e., both the leader and the followers)

can increase his utility by changing unilaterally his strategy to

any other feasible point. Here we term the formulated game as

generalized Stackelberg game (GSG) rather than Stackelberg

game because of the coupled constraint (14) for the followers.

Since the followers’ strategies are coupled, they need to seek

a GNE instead of a traditional Nash equilibrium (NE).

V. SOLUTIONS AND ALGORITHMS

A. Existence of GSE

We first specify the definition of GSE and then discuss in

detail the existence and the properties of it.

Definition 1: For the GSG formulation S = {(B(h) ∪
{system controller}), {xh

b }b∈B(h), E
h
m, phd , {U

h
b }b∈B(h), U

h
sc}

defined in IV-B, where Uh
sc and Uh

b , b ∈ B(h) are utility

functions of the leader and followers given by (12) and (11),

respectively. A strategy set (xh∗, phd
∗
) constitutes the GSE

of the game, if and only if the following inequalities are

3The generalized Nash equilibrium problem (GNEP) is a noncooperative
game in which each player’s admissible strategy set depends on the other
players’ strategies.

4In a non-cooperative game, if the players’ actions are coupled solely
through the constraints, then this game is a special class of game whose
solution is a generalized Nash equilibrium (GNE).

5The objective functions of EVs are all min-convex (max-concave) func-
tions, and the strategy set which is constrained by a single linear function
is closed and convex with respect to all variables, then we have that
this formulated GNEP is jointly convex [47]. Detailed discussions will be
presented in the next section.
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satisfied:

Uh
b (x

h
b

∗
,xh

−b

∗
, αh

b , β
h
b , p

h
d

∗
) ≥ Uh

b (x
h
b ,x

h
−b

∗
, αh

b , β
h
b , p

h
d

∗
)

∀xh
b

∗
∈ xh∗, b ∈ B(h),

∑

b∈B(h)

xh
b ≤ Eh

m

and

Uh
sc(p

h
d

∗
,xh∗

) ≥ Uh
sc(p

h
d ,x

h∗). (16)

In other words, no EV can increase its utility by deviating

from its GSE charging amount xh∗
and no price other than

the GSE price phd
∗

can improve the utility of the charging

system.

Typically in non-cooperative games, the existence of NE

is not guaranteed. For the followers’ game, to investigate the

existence of GNE in response to a price phd , we first propose

the following definitions and theorems:

Definition 2: We say a game satisfies the convexity as-

sumption if the following condition holds: for every player

v ∈ N and every strategy xv ∈ R
nv , where N is the set of

players, the objective function Uv(·, xv,x−v) is min-convex

(max-concave) and the strategy set Xv(x−v) is closed and

convex. Note that we use Xv(x−v) to represent the strategy

set of player v since his strategy set is dependent on other

players’ strategies.

Obviously, in the proposed followers’ game, for each player,

the objective function Uh
b is max-concave and the strategy

set which is merely confined by constraint (14) is closed

and convex. Thus the followers’ game satisfies convexity

assumption.

Definition 3: Let a GNEP be given, which satisfies convex-

ity assumption, this GNEP is jointly convex if for some closed

convex set X ⊆ R
n (n = n1 + n2 + ...+ nN ) and all v ∈ N ,

we have

Xv(x−v) = {xv ∈ R
nv : (xv ,x−v) ∈ X}. (17)

For the proposed followers’ game, it is easy to check that

the strategy set of EV b is:

Xb(x
h
−b) =







xh
b ∈ R

+
0 ,

∑

b∈B(h)

xh
b ≤ Eh

m







. (18)

Obviously, this game satisfies the jointly convex condition.

Based on the previous definitions, the following theorem is

proposed.

Theorem 1: In a jointly convex GNEP, the utility function

of each player Uv is continuously differentiable, then every

solution of the variational inequality (VI) problem VI(X,F)6

is also a solution of GNEP, where X is as defined in the

definition of jointly convex (Definition 3) and F = [∂Uv

∂xv
]Nv=1.

The proof for this theorem can be found in [47]. Note that

Theorem 1 does not indicate that any solution of a jointly

convex GNEP is also a solution of the VI(X,F) and some

solutions may be lost. We further have the definition of the

variational equilibrium (VE) as follows.

6The variational inequality (VI) problem VI(X,F(x)) consists in finding
a vector x̄ ∈ X such that (y − x̄)T · F(x̄) ≥ 0 for all y ∈ X.

Definition 4: In a jointly convex GNEP, the utility function

of each player Uv is continuously differentiable, we call a

solution of the GNEP that is also a solution of VI(X,F) a

VE.

In a GNEP, the existence of VE is of particular interest

since a VE is more socially stable than other GNE (if there

exists any), and thus it is a desirable equilibrium state [48].

Next, we will prove the existence and uniqueness of VE in

our proposed followers’ game.

Theorem 2: If X is a compact convex set and F(x) is

continuous on X, then the VI problem admits at least one

solution x∗.

The proof for this theorem is lengthy and can be found in

[49]. Considering the proposed followers’ game, the strategy

set of EVs

Xh =

{

(xh
1 , x

h
2 , ..., x

h
b , ...) : (19)

∀b ∈ B(h), xh
b ≥ 0,

∑

b∈B(h)

xh
b ≤ Eh

m

}

is a Polyhedron, which is compact and convex. For the

corresponding

Fh = −

[

∂Uh
b

∂xh
b

]B(h)

b=1

=











αh
1x

h
1 + phd − βh

1

αh
2x

h
2 + phd − βh

2
...

αh
B(h)x

h
B(h) + phd − βh

B(h)











(20)

is obviously continuous (linear), therefore we claim there

exists VE in the followers’ game. Note that compared with

that in Theorem 1, we add a minus sign in the definition of

Fh. This is because the objective of an EV is to maximize

its utility, while in Theorem 1, the default objective of the

problem is minimizing the cost. Thus a minus sign is added

here to keep the definition of Fh consistent. To investigate the

uniqueness of VE, we propose the following theorem.

Theorem 3: In a variation inequality problem VI(X,F), if

F(x) is strictly monotone on X. Then the solution is unique,

if one exists.

The proof for this theorem is presented in the Appendix.

Now turn to the definition of Fh, we have that the Jacobian

of Fh is

JFh =













αh
1 0 . . . 0
· αh

2 . . . ·
· · . . . ·
· · . . . ·
0 0 . . . αh

B(h)













, (21)

which is a diagonal matrix with all the diagonal elements being

positive. In other words, JFh is a positive definite matrix so

Fh is strictly monotone on Xh. Therefore, given an electricity

price phd , there exists GNE and more precisely, an unique VE

for the followers’ GNEP.

Theorem 4: For a fixed electricity price phd , the unique

VE is the socially optimal solution of the proposed followers’

GNEP between EVs.

The proof for Theorem 4 is presented in the Appendix. This

theorem states that by solving the VI(Xh,Fh), where Xh
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and Fh are defined by (19) and (20) respectively, the socially

optimal solution of the followers’ GNEP can be obtained. As

a result, when the system controller sets its optimal price in

response to the VE demand of the EVs, the GSG reaches its

GSE, which represents the socially optimal solution.

B. Algorithms to Find GSE

1) VE for the Followers’ GNEP: For the decentralized

charging scheme proposed in this paper, the GNEP among

the EVs is transformed into a strictly monotone VI problem

whose solution leads to the socially optimal VE. Numerous

methods have been proposed to solve the VI problem, in-

cluding projection method, relaxation method, decomposition

method, etc. In this paper, we adopt Solodov and Svaiter (S-S)

method to solve the VI problem [50], [51]. The S-S method is

a kind of extragradient method (a sub-class of the projection

method) which can solve the VI problem efficiently. The S-

S method works briefly as follows: suppose xk ∈ X be the

current approximation of the solution of VI(X,F); first, we

compute the point PX(xk − µkF(xk)), where PX(·) denotes

the orthogonal projection map onto X and µk is a judiciously

chosen positive steplength. Here, PX(xk − µkF(xk)) is the

solution of the following quadratic programming problem

min
x∈X

1

2
xTx− (xk − µkF(xk))Tx; (22)

next, the line segment between xk and PX(xk −µkF(xk)) is

searched for a point zi such that the hyperplane

∂Hk = {x ∈ R
n| < F(zk),x− zk >= 0} (23)

strictly separates xk from the solution of the VI(X,F) x∗,

where < ·, · > is the usual inner product in R
n. To compute

zk, an Armijo-type procedure is adopted, i.e., zk = xk −
ηkr(xk, µk) where ηk = γ īµk with ī being the smallest

nonnegative integer i satisfying

< F(xk − γiµkr(xk, µk)), r(xk , µk) > (24)

≥
σ

µk
‖r(xk, µk)‖2

where r(xk, µk) = xk − PX(xk − µkF(xk)) is the projected

residual function; after the hyperplane ∂Hk is constructed, in

the next iteration xk+1 is computing by projecting xk onto

the intersection between the feasible set X with the halfspace

∂Hk = {x ∈ R
n| < F(zk),x− zk >≤ 0} which contains the

solution set X∗. The details of the S-S method is shown in

Algorithm 1. Upon solving the VI(X,F), the VE demand of

each EV can be obtained. Next, we show how to optimize the

electricity price by the system controller given the VE demand

of the EVs.

2) Electricity Price Optimization: To investigate the elec-

tricity price optimization, we first consider the Karush-Kuhn-

Tucker (KKT) optimal condition system of the VI problem,

which is given by

Fh +∇h
x





∑

b∈B(h)

xh
b − Eh

m



 · λ = 0, (25)

λ





∑

b∈B(h)

xh
b − Eh

m



 = 0, (26)

for some multiplier λ ≥ 0. Note that if
∑

b∈B(h)

xh
b < Eh

m, (27)

then some EVs are able to increase their charging demands to

gain higher utilities. This constraint hence becomes an equality

at the VE,
∑

b∈B(h)

xh
b = Eh

m, (28)

i.e., for a fixed electricity price, the sum of demands of all

the EVs at the VE is equal to the available energy cap Eh
m.

Note that in the game formulation, energy is assumed to be

a scarce resource. The energy cap Eh
m should be lower than

the total energy consumption capacity of the connected EVs.

This avoids the trivial case where all the EVs get the energy

allocation equaling to their maximum capacities. From (25)

we have that:

λ+ αh
bx

h
b

∗
+ phd − βh

b = 0, (29)

for any b ∈ B(h). Thus the electricity price should satisfy

phd = βh
b − λ− αh

b x
h
b

∗
. (30)

Considering the utility function of the system controller Uh
sc

from (12), obviously when phd reaches its maximum the system

can obtain the maximum utility, therefore the optimal price of

the proposed game is:

phd
∗
= βh

b − αh
bx

h
b

∗
, (31)

i.e., λ = 0 when the GSG reaches the GNE. The requested

charging amount of each vehicle should be

xh
b

∗
=

βh
b − phd

∗

αh
b

(32)

with the optimal electricity price phd
∗
. This is the equilibrium

state of the game.

3) Algorithm Description: In order to reach the equilib-

rium, the system controller and EVs have to communicate with

one another to make their choices. Upon any EV b is plugged

in, the system controller receives its utility parameters αh
b and

βh
b via communication channels (e.g., V2G). The algorithm

starts with the setting of energy cap Eh
m. Given the fixed

amount Eh
m, the system controller solves VI(Xh,Fh) to obtain

the optimal charging strategy vector xh∗ using the S-S method.

The system controller then gets the optimal electricity price

ph∗d adopting (31). ph∗d is broadcast to EVs through commu-

nication channels and EVs determine their charging demands

by solving (13), which is actually given by (32). The details

of the S-S scheme to find GNE and the proposed algorithm
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to reach GSE are depicted in Algorithm 1 and Algorithm 2,

respectively. Note that a different algorithm was proposed in

[26], which also adopts the game theory framework to model

the interactions between EVs and the system controller. The

algorithm proposed in this paper shows its advantages over that

in reference [26] from the following aspects: 1) Algorithm 2 is

implemented in a distributed fashion (each EV chooses its own

charging demand) and EVs undertake very low computational

burden since the VI problem is solved by the system controller;

while in [26], EVs have to participate into the problem solving

of the VI problem. 2) By adopting the proposed algorithm,

the communication traffic between the EVs and the system

controller is very low. In each time slot, only one round-

trip communication is implemented (i.e., the EVs submit

their utility functions and the system controller broadcasts the

optimal electricity price); while in [26], dozens of round-trip

messages have to be exchanged before the game reaches its

GSE. Particularly when the communication channel is poor,

our approach can easily overcome the unstable channel by

retransmission. While in [26], the game are difficult to reach

GSE in such scenario. This would become more challenging

when the EV fleet is of a large size.

Algorithm 1 Solodov and Svaiter (S-S) method [50] [51]

Input: The matrix Fh and the strategy set Xh which are given

in (19) and (20), respectively; Initial electricity price ph0d ;

Final tolerance ε.

Output: Optimal charging strategy vector xh∗
b .

1: Begin

2: choose x0 ∈ Xh, η−1 > 0, γ ∈ (0, 1), σ ∈ (0, 1), θ > 1,

k = 0, gap = e, where e is a vector with entries being

equal to 1;

3: if ‖gap‖ < ε
4: then stop;

5: else

6: compute µk = min{θ · ηk−1, 1};

7: if r(xk, µk) = xk − PX(xk − µkF(xk))
8: then xk ∈ Xh∗, stop;

9: else

10: compute ī = argmini∈Z+{< Fh(xk −
γiµkr(xk , µk)), r(xk , µk) >≥ σ

µk ‖r(x
k, µk)‖2},

where ηk = γ īµk;

11: compute zk = xk − ηkr(x
k, µk);

12: compute the halfspace ∂Hk = {x ∈ R
n| < F(zk),x−

zk >≤ 0};

13: compute xk+1 = PXh∩Hk
(xk);

gap = xk+1 − xk;

k = k + 1;

go to 3;

14: end if

15: end if

16: End

C. Algorithm to Determine a Proper Eh
m

In the decentralized charging scheme, EVs compete with

each other for a fair allocation of the scarce energy. Intuitively,

Algorithm 2 Algorithm to reach GSE

Input: Utility function Uh
b for each vehicle b ∈ B(h).

Output: Optimal electricity price ph∗d ; optimal charging strat-

egy xh∗
b selected by each vehicle b ∈ B(h).

1: Begin

2: Each EV b ∈ B(h) submits its utility function parameters

αh
b and βh

b ;

3: The system controller determines the energy cap Eh
m for

the uncontrolled EVs;

4: The system controller solves VI(Xh,Fh) by adopting

Algorithm 1 and obtains the optimal charging strategy

vector xh∗;

5: The system controller computes the optimal electricity

price phd
∗

based on (31);

6: The system controller broadcasts the electricity price phd
∗

to all the EVs in the decentralized charging group.

7: Each vehicle chooses its charging demand by solving

problem (13) and obtains the optimal charging strategy

xh∗
b , b ∈ B(h);

8: End

when the energy cap Eh
m is low, the competition between

EVs becomes fierce and the optimal energy price phd gets

high. In contrast, if the Eh
m is high, then phd is low. Under

both cases, the total revenue of the system Uh
sc is poor.

Hence we may assume that Uh
sc will first increase and then

decline with respect to Eh
m (i.e., quasi-concave) and a proper

Eh
m exists which maximizes Uh

sc (such assumptions will be

validated in the following simulation part). Various algorithms

can be adopted to search the optimal Eh
m, including Genetic

Algorithm (EA), Newton-Raphson method, Gradient Descent

method, etc. In this paper, we assume Uh
sc is derivable with

respect to Eh
m and propose Algorithm 3 based on Gradient

Descent method to search the optimal Eh
m. The effectiveness

of the proposed algorithm will be verified in the following

section.

VI. EXPERIMENTAL EVALUATION

In this section, we present simulation results for assessing

the performance of the proposed HCD EV charging scheme

and evaluate the effects of different parameters.

A. Simulation Setting

The parameters concerning EVs’ charging rates and battery

capacities are obtained from [40]. The units of the electricity

price, the cost functions and the utility functions are US cent

¢/KWh. For the centralized charging, the scheduling horizon

is 8 hours with time evenly divided into 32 time slots, i.e.,

the length of each time slot is 15 mins. The number of

available charging plugs is 100 unless otherwise stated. The

arrival time of EV is uniformly distributed and the arrival

rate is 25 vehicles per hour by default. The plug out time

is uniformly distributed between 1 time slot and 32 time

slots. The amounts of energy needed for EVs are evenly

distributed between 8 KWh and 64 KWh. The maximum

allowable charging rate of an EV is 28 KW and the minimum
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Algorithm 3 Algorithm to search an optimal Eh
m

Input: Starting point Eh0
m , tolerance ε;

Output: Optimal energy cap Eh∗
m .

1: Begin

2: x0 = Eh0
m , k = 0;

3: compute y0 = Uh
sc(x0) based on Algorithm 2;

4: while (true)

5: compute ∇Usc(xk) =
Usc(xk+ε)−Usc(xk)

ε
,

where ε is a small number;

6: xk = xk + α · ∇Usc(xk);
7: y1 = Uh

sc(xk);
8: if ‖y1 − y0‖ ≤ ε
9: break;

10: end if

11: y0 = y1;

12: k = k + 1;

13: end while

14: Eh∗
m = xk;

15: End

charging rate of an EV is 0 KW. For the cost function of the

electricity acquisition Ch
m(·), we set mh = 1× 10−3 ¢/KWh2

and nh = 1.6 ¢/KWh by default. To solve the optimization

problem (7), interior point method is adopted, which can

solve the convex optimization problem efficiently. For the

decentralized charging, 100 vehicles participate in this scheme.

Unless otherwise stated, their utility function parameters αh
b

and βh
b are chosen randomly in the range of [0.75, 1.25] and

[13, 15], respectively. The energy cap Eh
m is set as 700 KWh

by default. Note that all statistical results are averaged over

all possible random values of the EVs’ parameters using 500
independent simulation results.

B. Results and Discussions

We first investigate how the optimal charging price ph∗d
varies with respect to energy cap Eh

m. The energy cap Eh
m is

linearly varied from 675 KWh to 725 KWh for different EV

numbers B(h) = 95, 100 and 105. Adopting the Algorithm

2, we compute the corresponding optimal electricity price

ph∗d . The results are depicted in Fig. 4. It is shown that the

optimal price decreases with the energy cap. This is due to

the fact that when the total available capacity of the charging

system increases, the grid has more energy to sell, thus the

competition between EVs gets weaker and price declines. In

other words, as the available energy increases, the system

controller has to reduce the energy price to encourage the

vehicles to charge more energy. Meanwhile in Fig. 5, the effect

of the number of connected EVs on the optimal electricity

price is presented. It appears that a growing vehicle number

leads to an increasing optimal price. The reason is that a larger

vehicle number leads to a larger electricity demands. Hence,

the system controller can set a higher electricity price to induce

EVs to charge less.

The impacts of EVs’ utility function parameters αh
b and

βh
b on the optimal electricity price is illustrated in Figs.

6 and 7, respectively. To do the test, we vary the value
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Fig. 4: The variation of optimal electricity price for decentral-

ized controlled vehicles ph∗d with respect to their energy cap

Eh
m.
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Fig. 5: The variation of optimal electricity price for decentral-

ized controlled vehicles ph∗d with respect to their number.

of αh
b for different ranges of βh

b ∈ [10, 12], [12, 14] and

[14, 16], respectively. The test for assessing the impact of βh
b

is conducted in a similar way, i.e., βh
b is increased for various

ranges of α ∈ [0.5, 0.8], [0.8, 1.1] and [1.1, 1.4], respectively.

We observe that the optimal price is a decreasing function of

αh
b . In contrast, when βh

b increases, the optimal price grows.

The reason is that a higher αh
b indicates that the EV’s marginal

utility declines. Thus EVs are prone to charge less and the

corresponding electricity price decreases. While on opposite,

an increment on βh
n implies a rise of the marginal utility of the

vehicle, therefore leading to a brisker energy demand and a

higher electricity price. These results also verify the theoretical

analysis results presented in Section V-B.

In Fig. 8, we present the total utilities of the charging

system as a function of the energy cap of the distributed

charging scheme Eh
m. To do the test, 100 vehicles are centrally

controlled and the other 100 vehicles choose their charging

profiles by their own. The energy cap of the latter group

Eh
m increases from 300 KWh to 700 KWh and we compare

the utilities of the whole system. It appears that the utility

first shows an upper trend and then declines. There exists an

optimal Eh
m which maximizes system’s utility. By adopting

Algorithm 3 proposed in the previous section, the system

controller can properly determine an optimal Eh
m to maximize
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parameter αh
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Fig. 7: The variation of optimal electricity price for decentral-

ized controlled vehicles ph∗d with respect to the users’ utility

parameter βh
b .

its revenue given the system condition. The cost function Ch
m

is further altered to investigate its impact. We observe that if

the cost for acquiring energy grows, i.e., parameters mh or

nh increases, both system utility and optimal energy cap Eh∗
m

decline. For the centralized controlled EV group, since the

charging requirements have to be satisfied, the adjustments

conducted by the system controller are relatively limited.

Therefore, as the energy cost increases, the system controller

is prone to cut down the proportion of energy allocated to

decentralized controlled EVs so that it can curtail the energy

expenses.

In Fig. 9, we evaluate how the vehicle numbers in both

charging groups impact the system utility. To conduct this

test, the total connected vehicles are fixed to 200, we vary

the proportion of centralized controlled vehicles (equivalently,

the proportion of decentralized controlled EVs) and compute

the system utilities. Specifically, the number of centralized

controlled vehicle varies from 80 to 120. We compare the cases

where the centralized charging price for one unit of electricity

pc is low, medium and high. It is shown (see Fig. 9(a)) that

when pc is low, the total system utility drops as the centralized

controlled EVs’ proportion increases. This fact indicates that

at this price stage, the incremental revenue due to the number
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Fig. 8: The utility of the system with respect to decentralized

controlled EVs’ energy cap Eh
m under different cost functions.

growth of the centralized controlled EVs is less than the loss

caused by the departure of decentralized controlled vehicles.

Then, we increase the values of pc to a medium level and

recompute the corresponding system revenues. We note in Fig.

9(b) that the system utility first increases and then declines

as the number of centralized controlled EVs varies from 80
to 120. If pc is further increased, the system revenue will

show a growing tendency as depicted in Fig. 9(c). This is

because when the price pc is high, the increasing earning

from centralized controlled EVs has surpassed the loss due

to the decreasing number of decentralized controlled vehicles.
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We may see that given a price pc, there exists an optimal

ratio between the number of centralized controlled EVs and

decentralized controlled EVs which maximizes the system

utility. Therefore, based on the EVs’ information and cost

functions, the system controller can properly choose the energy

cap Eh
m, electricity price pc and other parameters such that

the number ratio of these two EV groups is stimulated to its

best value. Proper parameter selections can be obtained by

various methods, typically involving large scale simulations

and analyzing a large amount of historical data. In addition,

given the best number ratio of these two charging groups, the

charging park can properly determine the scales of centralized

charging facilities and decentralized charging facilities so that

the long-term expected revenue is maximized. Hence our

research may provide some illuminations on the investment

policy makings of the charging parks. Note that as all the EVs

charging requirements and the operational charging constraints

(e.g., the minimum and maximum charging rate) have been

satisfied by our scheme, we do not show such results in the

paper.

VII. CONCLUSION

In this paper, we investigated the coordination of EV charg-

ing at a charging park considering the EV owners’ various

charging preferences. An HCD charging control scheme was

designed to determine the charging rates and demands of

EVs. Specifically, at the centralized charging side, based

on the EVs’ arrival/departure patterns, a cost minimization

problem was formulated and solved to obtain an offline global

optimal scheduling. Considering the fact that the charging

station is dynamic with unpredictable EVs’ patterns, an MPC

based adaptive charging approach was developed to determine

the near-optimal EV charging profiles in real-time. On the

decentralized charging side, to model the interactions between

EVs and the charging system, a leader-follower noncooperative

Stackelberg game based approach was proposed, where the

system controller acts as the leader and EVs act as the follow-

ers. We prove the existence and optimality of the equilibrium

state. It is also shown that the communication burden between

EVs and the system controller is low and our decentralized

charging scheme is robust to poor communication channels.

We further studied how the size of these two charging groups

influences the system utility. Simulation results investigated

the impacts of different parameters. It is indicated that an

optimal charging cap exists for the decentralized charing group

which maximizes the revenues of the whole charging system.

Our research may shed some illuminations on the investment

policy making for charging park.

APPENDIX

A. Proof of Theorem 3

Suppose that x1 and x∗ are both solutions and x1 6= x∗.

Then since both x1 and x∗ are solutions, they must satisfy:

F(x1)T · (x
′

− x1) ≥ 0, ∀x
′

∈ X, (33)

F(x∗)T · (x
′

− x∗) ≥ 0, ∀x
′

∈ X. (34)
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Fig. 9: The utility of the system with respect to the number

of vehicles that are centralized controlled (the total number of

EVs is 200).

After substituting x∗ for x
′

in (33) and x1 for x
′

in (34) and

adding the resulting inequalities, we obtain:

F(x1 − x∗)T · (x∗ − x1) ≥ 0. (35)

But inequality (35) is in contradiction to the definition of strict

monotonicity. Hence, x1 = x∗.

B. Proof of Theorem 4

Given a fixed electricity price phd , to find the socially optimal

solution of the proposed followers’ GNEP, one has to solve
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the following optimization problem:

max
xh

b

∑

b∈B(h)

Uh
b (x

h
b ,x

h
−b, α

h
b , β

h
b , p

h
d) (36)

s.t.
∑

b∈B(h)

xh
b ≤ Eh

m, (37)

which is a quadratic programming problem. The Karush-

Kuhn-Tucker (KKT) optimal conditions for this problem are:

Fh +∇h
x





∑

b∈B(h)

xh
b − Eh

m



 · λ = 0, (38)

λ





∑

b∈B(h)

xh
b − Eh

m



 = 0, (39)

which are exactly the same to the KKT conditions of the

VI(Xh,Fh) problem, i.e., (25) and (26). Since the Slater’s

condition holds, the KKT conditions provide sufficient and

necessary conditions for optimality. Thus, the unique VE is the

socially optimal solution of the proposed followers’ GNEP.
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