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Abstract — Motivated by recent research on complex networks, we study enhancing complex 

communication networks against intentional attack which takes down network nodes in a 

decreasing order of their degrees. Specifically, we evaluate an effect which has been largely 

ignored in existing studies: many real-life systems, especially communication systems, have 

protection mechanisms for their important components. Due to the existence of such protection, 

it is generally quite difficult to totally crash a protected node, though partially paralyzing it may 

still be feasible. Our analytical and simulation results show that such “imperfect” protections 

generally speaking still help significantly enhance network robustness. Such insight may be 

helpful for the future developments of efficient network attack and protection schemes. 
 

Index Terms — Complex network, scale-free network, network robustness, intentional attack. 
 

1. Introduction 

Recent research results showed that many different real-life systems, including the Internet, 

world-wide web (WWW), airline transportation systems, food web, protein-protein reactions, 

co-authorship, and terrorist activities etc., when formulated into network models, share some 

stunning common features. Such interesting observations encourage even more research efforts on 

these network models, which have spawned a new research area named complex networks [1-7]. 

The most important complex network model is probably the scale-free network [1-2]. In such 

networks the fraction of nodes with a degree k, denoted as P(k), is proportional to k α− , where α  is the 

exponent which typically lies between 2 and 3 in real-life systems. With a power-law nodal-degree 



 

 

 

distribution, scale-free networks are very different from the well-known Erdős-Rényi random graph 

[1], with an easily visible feature of having a relatively large number of high-degree hub nodes. 

Studies on complex networks shed new light which helps better understand complex systems 

and networks. One of the most important results is that while a scale-free network is robust against 

random failures, it is very fragile under intentional attack which crashes network nodes in a 

decreasing order of their nodal degrees [8]. 

Extensive research efforts have been made to study the robustness of scale-free networks [8-19]. 

Theoretical models for analyzing the robustness of scale-free networks under random failures and 

intentional attack were developed in [9] and [10], respectively. The applicable ranges of these 

theories were discussed in [11]. It was shown that, under either random failure or intentional attack, 

there exists a phase transition in the fraction of node loss, below which the network remain to 

function reasonably well [12].  A different model considered in [13] is that the probability that a node 

gets crashed is a function of its degree. To enhance network robustness against the intentional attack, 

different methods have been proposed including link insertion [14-15], link rewiring [16] and link 

recovery [17], etc. Though these methods appear to be effective, they may not be easily implemented 

in self-organized, extra-large networks, e.g., the Internet. 

We evaluate an effect which has been largely ignored in existing studies: in real-life complex 

systems especially communication systems, usually there exist protection mechanisms for protecting 

critical components against hostile attack. Due to the existence of such mechanisms, it is generally 

quite difficult to totally crash a protected node though partially paralyzing it may still be feasible. In 

this paper, we term such protection as imperfect node protection. With theoretical analysis and 

extensive simulations, we show that such protection nevertheless helps significantly enhance network 

robustness.  

The rest of the paper is organized as follows. A few different scenarios of imperfect node 

protection are defined in Section II. Theoretical analysis and simulation results on the effects of such 

protections in random scale-free networks (to be defined later) are presented in Section III and 

Section IV, respectively. Numerical evaluations of the proposed scenarios in a few real-life network 

models are presented in Section V. Finally, Section VI concludes the paper. 

2. Imperfect node protection 

We consider a few different scenarios of imperfect node protection where the protected nodes 

are partially paralyzed rather than totally crashed under intentional attack.  



 

 

 

• Scenario I: all the nodes in the network are imperfectly protected. When a node is attacked, each 

of the links connected to it is blocked or removed at a probability of Pf. 

• Scenario II: only high-degree nodes in the network have protection mechanism. Specifically, we 

assume that there exists a threshold value T.  Each node with its degree no less than T is 

imperfectly protected. When such a node is attacked, each of the links connected to it is blocked 

or removed at a probability Pf. For any node with its degree lower than T, it is totally crashed once 

attacked. 

• Scenario III: similar to the Scenario II, only that links between high-degree nodes are perfectly 

protected. Specifically, when nodes with degrees no less than T are attacked, they do not lose any 

links between them, meanwhile however the links between these nodes and those nodes with 

degrees lower than T will be removed at a probability of Pf . For nodes with degrees lower than T, 

they are totally crashed once attacked.  

None of these three scenarios may easily happen in real-life systems since (i) there is hardly any 

system with equal protection over all its nodes; and (ii) strictly perfect protection probably does not 

exist at all. However, these scenarios nevertheless provide some useful benchmarks for estimating the 

effects of more realistic cases. Specifically, the three scenarios loosely resemble the real-life cases 

where (i) most nodes have some protection; (2) only important nodes (usually high-degree hubs) are 

heavily guarded; and (3) important nodes are protected and the links between them are also carefully 

safeguarded, respectively. 

Note that the these three scenarios differentiate themselves from all the existing models such as 

the one where the probability that a node is crashed is a function of its degree [8], or imperfect 

protection over hub nodes for epidemic control [19], etc,  

3. Analysis 

The random network is defined as a network with random connections between different nodes, 

only subject to the given nodal-degree distribution ( )P k [18]. It is well known that a random network 

loses its global connectivity when  
2

2,
k
k

κ ≡ ≤                                                                            (1) 

where k denotes the average nodal degree and 2k  the average of the square of nodal degree [4]. 

The conclusion also holds in correlated random networks where network nodes are randomly 



 

 

 

connected subject to given distributions of {eij}; eij denotes the probability that degree-i nodes are 

connected to degree-j nodes [11]. In this paper, theoretical analysis is conducted on uncorrelated 

random networks with given ( )P k , while analysis on different types of correlated networks is of our 

future research interest.  

For a random scale-free network, denote its lowest nodal degree as m and its cutoff nodal degree 

as K. To facilitate the discussions, we term a node that has ever been attacked when a network is 

crashed as an attacked node; and an un-attacked node otherwise. Below we analyze the three different 

scenarios in random scale-free networks separately. 

Scenario I: 

Assume that the network is crashed after a fraction cp  of all the nodes has been attacked. 

Hereafter we term the value of cp as the crash threshold. Also assume that when a node is attacked, 

each link connected to it has a probability of fP to get removed. In this paper, we name fP  as the 

link-removal probability. Denote the lowest original degree of the attacked nodes as K~ . We have 

[10]  
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The fraction of links connected to all the attacked nodes, denoted as p~ , can be expressed as [10]  
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For a link connecting an attacked node and an un-attacked node in the original network, it has a 

probability of fP to be removed; for a link connecting two attacked nodes in the original network, 

since both of its two ends are attacked, it has a probability of 21 (1 )fP⎡ ⎤− −⎣ ⎦  to be removed.  

Therefore, denoting the link loss probability of an attacked node and an un-attacked node as +p~  and 
−p~  respectively, we have  
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After attack, the network nodal-degree distribution is changed from )(kp to )(~ kp  where 
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For the attacked nodes, their average nodal degree in the original network, denoted as +k , is 
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After attack, their average nodal degree is reduced to  
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As to the average square of nodal degree of the attacked nodes, before attack it is 
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After attack, it becomes  
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For the un-attacked nodes, before attack, their average nodal degree is 
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After attack, it becomes 
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Before attack, the average square of nodal degree of the un-attacked nodes is 
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After attack, it becomes 
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From Eqs. (6)-(13), we have that after attack the value of κ~ is 
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From Eqs. (1)-(4), (7), (9), (11), (13) and (14), the crash threshold cp can be numerically 

obtained. 

Consider the extreme case where all the nodes in the network are attacked. We have 
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It shows that when 11
1fP

κ
< −

−
, or in other words if each node can protect at least a fraction of 

1
1κ −

 of all the links connected to it, in Scenario I a random scale-free network will never be totally 

crashed by the intentional attack. 

Scenario II: 

In such scenario, only nodes with degrees no less than T have protection. Denote the crash 

threshold under such case as cp′ and the lowest original degree of the attacked nodes as K ′~ . When 

KT ′≤ ~ , the analysis remains the same as that for Scenario I. Hereafter we only consider the case 

where KT ′> ~ . Denote the fraction of links connected to the attacked nodes as p′~ . We have 
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Denote the fraction of nodes with degrees no less T as tp , and the fraction of links connected to 

these nodes as tp~ . They can be expressed as  
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Now we calculate link loss probabilities of different nodes with different degrees. For those 

nodes with degrees between K ′  and T, since they have no protection, they will be totally crashed. 

Their link loss probability is therefore 100%. Denote the link loss probability of the nodes with 

degrees no less than T as +′p~ , and the link loss probability of un-attached nodes as −′p~ . It can be 

derived that 
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Note that the first equation of (18) contains three different parts, calculating the link-loss 

probabilities between high-degree (no less than T) and low-degree (lower than K ′ ) nodes, between 

high-degree and high-degree nodes, and connected to the in-between nodes, respectively. 

After attack, the network degree distribution is changed to 
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For the nodes with original degrees no less than T, after attack their average nodal degree, 

denoted as +′′k , becomes 
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And their average square of nodal degree is 
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For the un-attacked nodes, after attack, their average nodal degree, denoted as −′′k , is 
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and their average square of nodal degree is 
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From Eqs. (16)-(18), (20)-(24), the crash threshold cp′  can be numerically solved. 

Scenario III:  

Similar to that in Scenario II, only those nodes with degrees no less than T have protection. The 

difference is that the links between these high-degree nodes will never be removed. Denote the crash 

threshold for such case as cp ′′ , and the lowest degree of the attacked nodes as K ′′~ . Similar to that for 

Scenario II, we only need to consider the case where KT ′′> ~ .  

Denote the fraction of the links connected to the attacked nodes as p ′′~ . The derivations of all the 

equations keep very similar to those for Scenario II. The only difference lies in the calculations of the 

link loss probability of those nodes with degrees no less than T. Denoting such probability as +′′p~ , we 

have  

tf pppPp ~~)~1(~ −′′+′′−=′′ + .                                                                 (25) 

Replace p +′ with +′′p~ in Eqs. (20) and (21), cp ′′  can be numerically solved. 

In addition to the crash threshold, another parameter useful for measuring the robustness of 

complex networks, especially complex communication networks, is their cluster diameter, defined as 

the average hop length of the shortest paths between all the source-destination node pairs in the 

largest connected component [10]. A network with a large cluster diameter, though may be still 

connected, cannot efficiently support communication applications. Accurate analysis on the cluster 

diameter, however, largely remains as an open issue. The best existing result, as far as we know, is 

that approximately the cluster diameter )1log(log −= ∞ κNPd , where ∞P  denotes the probability of 

an arbitrary node belonging to the largest connected component in the network and kk 2=κ [12]. 

In this paper, we evaluate cluster diameter by numerical simulations.   



 

 

 

4. Simulation results on random scale-free networks and discussion 

In our simulations, random scale-free network are generated by adopting the algorithm proposed 

in [14], with exponent ranging from 2 to 3. The network size N is 10,000. The minimum degree is 1 

and the cutoff degree is 100, which equals to N . Unless otherwise specified, the simulation results 

come from 50 independent realizations. 

All the three scenarios have been simulated. We adopt the definition that a network is crashed 

once 22 ≤kk is achieved [9, 16]. 

As discussed in Section III, for Scenario I there exists a threshold value of fP , below which the 

intentional attack can never completely crash a random scale-free network. Fig. 1 shows this 

threshold for networks with different exponents. The simulation results are calculated by the 

trial-and-error method with a step length of 1%.  As we can see, subject to the same minimum and 

cutoff nodal degrees, networks with smaller exponents have higher average nodal degrees and 

consequently higher crash thresholds. A higher average nodal degree also tends to make imperfect 

node protection more effective in enhancing network robustness. That explains our observation in Fig. 

1 that networks with smaller exponents have higher values of κ and consequently higher thresholds 

of link-removal probability.  

The influences of link-removal probability on network robustness are further evaluated for all 

the three different scenarios. The results for the case where 2.5α =  are plotted in Fig. 2. For 

scenarios II and III, we let the top 0.5% highest-degree nodes be protected. An interesting observation 

is that there exists a phase transition in the network crash threshold: once the link-removal probability 

is low enough, the threshold quickly jumps up from a rather low value to 1. This can be explained: for 

both scenarios II and III, similar to that of Scenario I, there exists a threshold of the link-removal 

probability below which the network will never be crashed. The network remains to be fragile under 

intentional attack until the link-removal probability gets close to the threshold. The threshold value 

therefore may set a target for network protection side to achieve.  

Fig. 3 makes the comparisons between analytical and simulation results. The link-removal 

probability is set as 80% for all the three scenarios. For scenarios II and III, we still let the top 0.5% 

hub nodes be protected. It can be observed that the analytical results match well with the simulation 

results. Also we can see that even by protecting only 20% of the links connected to an attacked node, 

the network crash threshold can be significantly increased.  



 

 

 

The comparisons between the effects of the three scenarios are presented in Fig. 4. We adopt the 

same parameters of link-removal probability and node protection percentage as those in Fig. 3. Since 

simulation results match well with theoretical analysis results, to avoid making the figure too 

crowded, only the analytical results are plotted. We see that Scenario I slightly outperforms the other 

two scenarios when the exponent α has a high value. When the exponent value is low, however, 

Scenario III leads to a much larger crash threshold. In fact, as we can easily observe, the networks will 

never be crashed when 2.4α ≤ , which can be explained as follows: in Scenario III, the sub-network 

composed of a small number of hub nodes and the connections between them are strictly protected. 

The survival of this sub-network helps keep 2 2k k > in networks under attack. In networks with 

smaller threshold values, the numbers of moderate-degree nodes are relatively larger. The protected 

sub-network together with these moderate-degree nodes make a network extremely difficult to be 

totally crashed. Note that Scenario III puts only a small number of links between hub nodes under 

perfect protection, which nevertheless significantly enhances network robustness. For example, for 

the case where 2.1α = , a total of 168 links are perfectly protected, which enhances the network to be 

almost never crashed. For another case where  2.9α = , an even smaller number of 46 links between 

hubs are protected, The enhanced network can tolerate additional removals of about 300 links before 

it is crashed. It is efficient to enhance network robustness, if measured by crash threshold, by 

protecting links between hub nodes.  

Fig. 5 shows in Scenarios II and III the improvements to network robustness when more hub 

nodes are protected. The simulation results are for the case where 2.5α =  and the link-removal 

probability is 80%. We see that protecting a larger number of hub nodes only gradually increases 

network crash threshold in Scenario II, whereas in Scenario III since the links between the protected 

hubs are also protected, the threshold value boosts up with the number of protected hubs. In other 

words, protecting more hub nodes may not be effective unless the links between these hubs are also 

protected. 

Figs. 4 and 5 may leave the impression that Scenario III is clearly the winner over the other two 

in enhancing network robustness. While this may be true in measuring the crash threshold, especially 

in random scale-free networks with small exponents, Fig. 6 shows that the situation is actually not 

that simple. In this figure, we plot the largest cluster size, defined as the number of nodes in the 

biggest connected component versus the number of nodes in the original network during the 

procedure of attack [3]. Due to space limitation, we show only the results with 2.1,α =  2.5 and 2.9, 



 

 

 

respectively. The link-removal probability is 80% and the top 0.5% hub nodes are protected in 

Scenarios II and III. It can be observed that though Scenario III pushes the crash threshold to be very 

high when 2.1α = and 2.5, most of time during the procedure of intentional attack, it does not make 

the largest connected component be much larger than that in Scenario I. The small set of protected 

hubs makes the network to stay with 2 2k k > even when the connected component size is 

already quite small. 

Finally we show in Fig. 7 the cluster diameters in all the three different scenarios. All the 

parameters remain the same as those in Fig. 6. The basic observation is that all the three scenarios 

help reduce the cluster diameter under attack. Among them, the most effective one is Scenario III. 

The existence of the links between hubs not only keeps network connected but also effectively lowers 

the cluster diameter in the largest connected component. Scenario III may indeed become the 

favourable option when keeping a small cluster diameter is of high importance. 

5. Simulations on real-life network models 

To evaluate the effects of the proposed node protection schemes in communication networks, 

we carry out simulations on two different models as follows: 

• A real-life Internet model on the AS-level as measured by the Applied Network Research 

(NLANR) Project on January 2, 2000 [22], which contains 6470 inter-connected nodes and 

12,566 links. We have verified that it is indeed a scale-free network. 

• A real-life Internet model on the router level as measured by the Cooperative Association for 

Internet Data Analysis (CAIDA), which contains 192,244 nodes and 609,066 links [23]. 

 
As that in most existing studies (e.g., [8-11]), we evaluate during the procedure of intentional 

attack the largest cluster size and the cluster diameter. 

The earlier definition of crash threshold cp  given by 2 2k k ≤  does not apply to these two 

networks since neither of them is a random network. To differentiate, we evaluate the threshold of 

crash (TOC), defined as the percentage of network nodes that has to be removed to reduce the largest 

cluster size to be no more than 5%.  It is shown in Fig. 8 and Fig. 9 that without any protection, the 

two real-life models have their TOC values at about 3.2% and 14% respectively.  

We still consider all the three different scenarios. For each scenario, we consider different cases 

where the link removal probability is 50%, 70% and 80%, respectively. For Scenarios II and III, we 



 

 

 

still let the top 0.5% of hub nodes be protected.  For all the cases, the presented simulation results for 

the AS-level model come from average values of 100 independent realizations. For the router-level 

model, due to its extra-large size, it is prohibitively time-consuming to carry out extensive 

realizations. Therefore only 5 realizations have been conducted.  

The simulation results on the AS-level model are shown in Fig. 8.  The three subfigures are for 

the three different cases where link removal probabilities are 50%, 70% and 80%, respectively. We 

observe that Scenario I steadily leads to the best performance among the three.  In fact, since the 

threshold value of link removal probability to ensure that the network never be crashed in Scenario I 

is 78%, the network never gets crashed when the link removal probabilities are 50% and 70% 

respectively. Even when the link removal probability is 80%, TOC remains to be quite high at 60.3%. 

Scenarios III performs only slightly better than Scenario II. Their corresponding TOC values are 

75.1% vs. 77.9%, 58.4% vs. 64%, and 46.4% vs. 55.6% in the three different cases with different link 

removal probabilities, respectively.  As we have observed in the last section, the extra protection over 

the links between a small number of hubs does not significantly increase the largest cluster size 

though it does decrease the cluster diameter. The TOC value therefore may not be significantly 

increased by such extra protection unless the number of the protected hubs is large enough to increase 

the largest cluster size to be higher than the threshold value (5% in our simulation) with the existence 

of the links between them.  

Fig. 9 shows the simulation results in the router-level models where all the parameter values 

remain the same as those in Fig. 8. Once again we can easily observe that Scenario I leads to the best 

performance. The threshold value of the link removal probability to crash the network in Scenario I is 

75%. When the link-removal probability is 80%, the TOC value of Scenario I is 48.9%. 

Similar to that in the AS-level model, Scenario III only slightly outperforms Scenario II. The 

TOC values under different link removal probabilities are 28.1% vs. 28.1%, 22.9% vs. 25%, and 

19.8% vs. 22.9%, respectively. The most visible difference between Fig. 8 and Fig. 9 is probably that 

Scenarios II and III become much less effective in enhancing network robustness in the router-level 

model than that in the AS-level model. This difference mainly comes from the degrees of their hub 

nodes: The biggest hub in the AS-level modal has a degree of 1458. The top 0.5% hubs combined 

together have a total degree of 6937. Putting these nodes under protection therefore strongly enhances 

network robustness even when such protection is imperfect. In the router-level model, on the contrary, 

the biggest hub has a degree of only 1071, a small value compared to the network size. The top 0.5% 



 

 

 

hubs have total degrees of only 129,681, still moderate considering the extra-large network size. The 

protection effects therefore become less significant. 

Finally, simulation results on the cluster diameters are presented in Fig. 10. We present only the 

results for the case with a link removal probability of 80% while the conclusion holds for all the other 

cases we have simulated: all the three different scenarios, especially Scenario III, help significantly 

reduce the cluster diameter. Protecting the links between a small number of hubs effectively helps 

shorten the paths between different node pairs. 

Overall, we have the conclusion that protecting a small set of hubs may be an effective strategy 

in networks with high-degree hubs, e.g., the random scale-free network models and the AS-level 

Internet model. For networks with moderate-size hub nodes such as the router-level Internet model, 

putting more nodes under protection may be necessary in addition to carefully protecting hubs. The 

protection covering a large number of node can be highly effective even when it is rather weak. For 

both cases, protecting the links between hubs helps significantly reduces the cluster diameter. 

6. Conclusion 

In this paper, we evaluated the network robustness against intentional attack where some or all 

of the network nodes are with some imperfect protection. It is found that overall speaking even a 

rather weak protection helps significantly enhance the chance that the network survives the most 

hostile attack. While protecting a small number of big hubs or a large number of moderate-size nodes 

perform differently in different networks, protecting the links between hubs may be worth the efforts 

if maintaining a short cluster diameter is of priority. Such insights shall be helpful for the future 

developments of more efficient network attack and protection schemes.   
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Fig. 1. The thresholds of link-removal probability to ensure that the networks never be totally crashed by 

intentional attack in random scale-free networks.  
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(a) Scenario I 
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(b) Scenario II                                                                 (c) Scenario III 

Fig. 2. The effects of link-removal probability on network crash threshold in the random scale-free network. 

We let α=2.5. For Scenarios II and III, the top 0.5% highest-degree nodes are protected. 



 

 

 

2.0 2.2 2.4 2.6 2.8 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
ra

sh
 th

re
sh

ol
d 

P c

exponent α

 intentional attack
 link-removel probability=0.8
 theoretical results

 

(a) Scenario I 
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(b) Scenario II                                                        (c) Scenario III 

Fig. 3. Comparisons between theoretical and simulation results of crash thresholds in random scale-free 

networks. The link-removal probability is 80% for all the three scenarios. For Scenarios II and III, the top 

0.5% hub nodes are protected. 
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Fig. 4. The crash thresholds of random scale-free networks in different scenarios. The link removal 

probability is 80% for all the three scenarios. For Scenarios II and III, the top 0.5% hub nodes are protected.
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(a) Scenario II 
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(b) Scenario III 

Fig. 5. The relationship between the crash threshold and the portion of hub nodes being protected in random 

scale-free network. We used α=2.5 and 8.0=fP . 
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(a) α=2.1 
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(b) α=2.5                                                                (c) α=2.9 

 

Fig. 6. The largest cluster sizes in random scale-free networks during the procedure of attack. The link 

removal probability is 80% for all the three scenarios. For Scenarios II and III, the top 0.5% hub nodes are 

protected. 
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(a) α=2.1 
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(b) α=2.5                                                                (c) α=2.9 

 

Fig. 7. The cluster diameters of random scale-free networks under attack. The link removal probability is 

80% for all the three scenarios. For Scenarios II and III, the top 0.5% hub nodes are protected. 
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(a) Link-removal probability = 50%  
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(b) Link-removal probability = 70%                        (c) Link-removal probability = 80% 

 

Fig. 8. The largest cluster sizes of the AS-level model under attack with different link removal probabilities. 

For Scenarios II and III, the top 0.5% hub nodes are protected. 
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(a) Link-removal probability = 50%   
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(b) Link-removal probability = 70%                        (c) Link-removal probability = 80% 

 

Fig. 9. The largest cluster sizes of the router-level model under attack with different link removal 

probabilities. For Scenarios II and III, the top 0.5% hub nodes are protected. 
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(a) AS-level model 
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(b) Router-level model 

 

Fig. 10. The cluster diameters of the AS-level and router-level Internet models under attack. The link 

removal probability is 80%.  The top 0.5% nodes are protected in Scenarios II and III. 

 


