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1 Introduction

1.1 Abbreviations

LM: Local-game Matching

MM: Maximum Matching

LTI: Linear Time Invariant

KCRC: Kalman Controllability Rank Condition

LQR: Linear Quadratic Regulator

ILQR: Implicit Linear Quadratic Regulator

LQG: Linear Quadratic Gaussian

PGM: Projected Gradient Method

OPGM: Orthonormal-constraint-based Projected Gradient Method

MLCP: Minimizing Longest Control Path

DCP: Directed Control Path

CCP: Circled Control Path

RAM: Random Allocation Method

1.2 Concept Definitions

Structured LTI system: An LTI system ẋ(t) = Ax(t)+Bu(t) where A and B are structured matrices,

i.e., their elements are either fixed zeros or independent free parameters.

Structural Controllability: A concept introduced by Lin in 1970s [1], which refers to the ability to

drive a structured LTI system to any state in its entire configuration space using only certain admissible

complex system manipulations. The goal of a structural controllabiity problem is typically to allocate

connections between a minimum number of external control inputs and network nodes to ensure the

network controllability. A system is termed as structurally controllable if it is possible to fix the inde-

pendent free parameters in A,B to certain nonzero values such that system (A,B) is controllable in the

usual sense, i.e., the Kalman’s Controllability Rank Condition (KCRC) is satisfied. Thus, a structurally

controllable system is controllable for almost all values of free parameters except for those in some proper

algebraic variety in the parameter space [2] .

Neighbors : A node xj is a neighbour of xi if there exists at least one edge (either xi → xj or xj → xi)

between them.

Local Topology Information: A node x0’s local information is defined as the input and output degrees

of all its neighbors.
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Elementary stem: A directed network component consisting of N nodes x1, ...., xN connected by a

sequence of N − 1 directed edges x1 → x2, x2 → x3, ..., xN−1 → xN .

Elementary circle: An elementary stem becomes an elementary circle when an additional edge xN → x1

is added.

Elementary dilation: A directed network component in which two or more elementary stems share the

same starting node x1.

For the implementation of LM, we define:

Unmatched/Matched node: A node that is inaccessible/accessible.

Directed control path: A matching sequence of parent-child nodes which starts at an unmatched node.

Circled control path: A matching sequence of parent-child nodes which forms into an elementary circle.

Driver node: An unmatched/inaccessible node. As will be discussed, a driver node set contains the

minimal set of nodes connected to external inputs for ensuring structural controllability of the network.

Control node: A node that is directly connected to an external control input, either for controllability

or minimum cost control purpose.

For the implementation of MLCP, two concepts need to be defined to avoid confusion.

Independent control node: A node that is connected to a newly added external control input.

Dependent control node: A node that is connected to an existing external control input.

1.3 Related works

As illustrated in Figure 2(a) in the main paper, the main contribution of this article is the establishment of

a “link” (red line) from “structural controllability” to “optimal cost control” utilizing local-game matching

(LM) algorithm and minimizing longest control path (MLCP) algorithm. We uncover that local network

topology information is sufficiently rich for enabling efficient control of extremely large real-life networks.

It is also observed that, for large scale relatively dense networks, a simple scheme of randomly selecting

control nodes works efficiently as a suboptimal solution. In this contribution, “local-game matching

(LM)”, “implicit linear quadratic regulator (ILQR)” and “minimizing longest control path (MLCP)” are

three essential components establishing the red link from “structural controllability” to “optimal cost

control”.

The Local-gameMatching is a distributed, local-information based parallel algorithm for achieving the

Maximum Matching in a directed network. In the past decades, a few distributed algorithms have been

developed for tackling the maximum matching problem. The headstream can be traced to Hopcroft and

Karp [3], who adopted a depth-first searching method to find a maximal set of augmenting paths, based

7



on which a maximum matching can be found. Thereafter, a few more distributed/parallel algorithms

have been proposed by Israeli and Itai [4], Schieber and Moran [5], and Wu and Loui [6] et al., which

however request certain global topology information such as the distance between every pair of nodes or

the degree distribution of the network etc [6].

Recently, further improvements have been made and a few local information based maximummatching

methods have been proposed. Specifically, Hoepman [7] developed a distributed O(n)-time algorithm to

find weighted matching in general graphs; Lotker [8] proposed a more general distributed algorithm for

finding the maximum matching on weighted or unweighted, static or dynamic graphs; and Mansour

and Vardi [9] designed a local approximation algorithm which has a high chance to solve the maximum

matching problem with a low complexity of O(log4(n)).

The most significant difference between LM and the existing local information based algorithms is

that LM requests the least amount of local information. For example, in the state-of-art algorithms

proposed in [8,9], the information obtained by every node is developed from its immediate neighborhood

to its radius-r(k) neighborhood after k steps of algorithms, where r(k) is a scale function of k. The greedy

algorithm proposed in [7] further allows every node to discover the topology of the whole network. The

LM algorithm, on the contrary, requests only limited local information throughout the whole process,

hence eliminating the need of any sophisticated multi-hop information propagations.

We now briefly review some existing results related to Implicit Linear Quadratic Regulator (ILQR).

Compared with linear quadratic regulator (LQR) [10] [11], a well-known result for optimal control, we

take one step further to consider the case where the input matrix of the LTI system is selectable. On the

other hand, ILQR can be viewed as related to the Linear Quadratic Gaussian (LQG) problem [12,13], one

of the fundamental optimal control problems. The similarity lies in that both ILQR and LQG consider

the control of uncertain linear systems. In an LQG problem, the uncertainty is due to additive white

Gaussian noises [14], resulting in incomplete state information. In ILQR, on the other hand, uncertainty

arises since we do not know which nodes are connected to output controllers, thus having incomplete

input matrix information as well as incomplete state information. It should also be pointed out that the

optimization problem of ILQR formulated in this article is non-convex, which requests careful heuristic

algorithm design.

There are some other related works, including those on “pinning controllability” [15], “network syn-

chronizability” [16] [17], and consensus or agreement in multi-agent systems [18], etc. Such studies have

their main focuses on whether the system can exhibit specific spatio-temporal symmetries (for instance,

whether all network nodes can follow a common time-varying trajectory or converge to a common value

or achieve a common goal) and the robustness of such symmetries. For example, there are algorithms

8



for selecting “leader agents” in stochastically forced consensus networks to minimize the mean-square

deviation from the consensus. The problem we address in this paper is fundamentally different from

those in existing works. We study on whether the system can fully explore its state space for system

control and the cost needed when applicable.

In conclusion, the fundamental difference between existing works and our study is that we exploit the

networks’ local topology information to achieve the optimal control objective. Essential attributes of our

proposed algorithms allow the proposed methods to be truly distributed and local-information based,

and hence suitable for optimal control of large scale complex networks.

1.4 Organization of this Supplementary Information

This Supplementary Information is organized as follows. From Section 2 to Section 4, the Supplementary

materials for Local-game Matching (LM), Implicit Linear Quadratic Regulator (ILQR) and Minimizing

the longest Control Path (MLCP) methods are presented, respectively. Specifically,

• In Section 2, we first present a formal description of the Local-game Matching (LM) algorithm

(Section 2.1), followed by two examples of LM in small networks (Section 2.2). In Section 2.3,

it is proven that LM is equivalent to a static game with incomplete information, named as static

Bayesian game in game theory, and that LM achieves Nash equalibrium of the game. Also, LM

steadily approximates the global optimal solution found by MM, with a linear time complexity

O(N). Definitions of the networks with a few different nodal-degree distributions are presented

in Section 2.4 and performance of LM in various synthetic and real-life networks is demonstrated

in Section 2.5. Finally, experimental results on the number of iterations needed and the effects of

waiting probability w are illustrated and discussed in Sections 2.6 and 2.7, respectively.

• In Section 3, the formulation of the optimization problem of ILQR is discussed in Section 3.1. The

convergence of “Orthonormal-constraint-based Projected Gradient Method” (OPGM) on Stiefel

manifolds is proven in Section 3.2, followed by some discussions on the control node selection in

Section 3.3. Finally, comparisons between PGM and OPGM are discussed in Section 3.4.

• In Section 4, a formal description of MLCP is presented in Section 4.1, followed by a simple example

of algorithm implementation illustrated in Section 4.2. The performance of MLCP on synthetic

and real-life networks are summarized and discussed in Section 4.3. Finally, further discussions are

provided in Section 4.4 on some details of the simulations generating the results presented in Figure

4(c) in the main paper, as well as the insights we could achieve in this figure.
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1.5 The List of Notations in this Supplementary Information

Table S1: Notations in this Supplementary Information. In

the column ’Used in’ of this list, ’T’ is short for Theorem and ’L’ is

short for Lemma. ’All’ means the symbol is used in almost every

theorem and every lemma.

Symbol Meaning Used in Symbol Meaning Used in

A The adjacent matrix All B The input matrix All

EA

Edge set of

the network

L 1

E(nwait)
The expectation of

the waiting steps
T 6

T 1

T 2

T 3

E(B)
The energy cost function

with the input matrix B

L 4
η

The step Length

in OPGM

L 4

T 7 T 7

G The static Bayesian game T 3 G(A,B)

A linear control

system or its

corresponding digraph

L 1

H(A)
The corresponding

bipartite graph of G(A,B)

L 2

T 3
kouti The out-degree of v+i

T 3

T 5

kinj The in-degree of v−j
T 3

T 5
kout,ni

The out-degree of vi

in the n-th iteration
T 5

kin,nj

The in-degree of vj

in the n-th iteration
T 5 kout

vj,+
m

The out-degree of

Node vj,+m

T 3

kin
vi,−
m

The in-degree of

Node vi,−m

T 3 k̄ The mean degree T 5

ˆ̄ki,in,

ˆ̄ki,out

The ceiling function of

the average input and

output degrees of these

adjacent nodes for

node v+i respectively

T 3 kmax
out,t

The maximum out-

degree of the network

in the t-th iteration

T 5

Continued on next page
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Table S1 – continued from previous page

Symbol Meaning Used in Symbol Meaning Used in

kmax
in,t

The maximum in-

degree of the network

in the t-th iteration

T 5 kmax
t kmax

t = max{kmax
out,t, k

max
in,t } T 5

L

The number of edges,

in other words, L

is the cardinality

of the set EA

T 5 N

The number of nodes,

in other words, N

is the cardinality

of the set VA

T 3

T 5

Node

The set of nodes

in the digraph in

game G, which

consists of N nodes

T 3 N(B)

A function of the

input matrix B;

represent the

boundary condition

L 3

M
The number of

external control inputs
All Ω

The set of states of

nature, Ω = {ω1, ω2, ω3}
T 3

pi

Probability distribution

over Ω for

Node i in game G

T 3 pma

The probability that

a node is matched
T 3

pun

The expected probability

that a node is not

matched till the end

T 3 pnij

The probability that node i

and node j are matched

in the n-th iteration

T 5

pi,ap(v
+
i

q−order−−−−−→ v−j )

The probability that

a q-order augmenting

path about v+i is

formed when v+i sends

a child request to

v−j and (v+i → v−j )

becomes matched

T 3

T 4
p̂t

The expected probability

that the matchings

are foremd in

the t-th iteration

T 5

pin
The in-degree

distribution

T 4

T 5
pout

The out-degree

distribution

T 4

T 5

Qt Qt = kmax
out,t · kmax

in,t T 5 S
Subset of VA,

S ⊆ VA

L 1

T 1

Continued on next page

11



Table S1 – continued from previous page

Symbol Meaning Used in Symbol Meaning Used in

Si

The set of strategies

of Node i in game G
T 3 S(w)

A function of w,

S(w) =
∑+ inf

i=0 (i + 1)wi
T 6

Γ

Edges set of the

bipartite graph,

Γ = {(v+i → v−j )|aji 6= 0}

L 2 ti
The type of Node i

in game G
T 3

tend
The number of iterations

of the LM algorithm
T 5 T (S)

Neighborhood set,

T (S) = {xj |(xj → xi)

∈ EA, xi ∈ S}

L 1

T 1

ui(t)
The i-th time-dependent

external control input
All ui

The payoff function

of Node i in game G
T 3

vi,

vj

Elements of VA,

vi, vj ∈ VA

All v+i
Elements of V +

A ,

v+i ∈ V +
A

All

v−j
Elements of V −

A ,

v−j ∈ V −
A

All vi,−x Elements of Vv+
i

T 3

vj,+y Elements of Vv−

j
T 3 Vv+

i

The set of adjacent

nodes of v+i

T 3

Vv−

j

The set of adjacent

nodes of v−j

T 3 VA Node set of the network All

V +
A

The set of vertices

corresponding to the

N columns of

the matrix A

All V −
A

The set of vertices

corresponding to the

N rows of

the matrix A

All

w The waiting probability All
xi,

xj

Node in digraph G(A,B) L 1

xi(t)
The state of Node i

at time t
All ξnode

The number of nodes

left in the network in

the final iteration

T 5

Continued on next page
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Table S1 – continued from previous page

Symbol Meaning Used in Symbol Meaning Used in

αn,

βn,

γn,

δn

The expected number

of nodes counted during

calculating pap;

detailed definition in

the proof of Theorem 3

T 3 δi
The proportion of nodes

with out-degree kouti

T 5

δj|i

The conditional probability

that nodes with out-degree

kouti have adjacent nodes

with in-degree kinj

T 5 ρk

The normalization

ration at k-th

iteration in OPGM

T 7

2 Local-game Matching (LM)

The codes of the local-game matching algorithm have been already published on GitHub (available at

https://github.com/PinkTwoP/Local-Game-Matching). As presented in the main paper, in the local-

game matching, every node requests one of its neighbor nodes to become its parent node, and another

one to become its child node, if applicable. When a node is seeking for a match, we define the number

of its unmatched child (parent) nodes, i.e., the nodes that have not yet achieved a match with a parent

(child), as its u-output (u-input) degree. Denote the u-input and u-output degrees of xi as Nu−in(xi)

and Nu−out(xi), respectively. Also denote the minimum u-input degree of xi’s unmatched child nodes as

min{Nu−in(xi)}, and the minimum u-output degree of xi’s unmatched parent nodes as min{Nu−out(xi)}.

The basic strategy is that, each node without a matched child (parent) node sends a child (parent) request

to its neighboring child/parent node (including itself if there exists a self-loop link to the node) with the

minimum u-input (u-output) degree. Figure S1 illustrates the flowchart of the LM algorithm containing

the following three components:

1) Child locating: Each node without a matched child node sends a child request to its neighboring

child node (including itself if there exists a self-loop link to the node) with the minimum u-input

degree min{Nu−in(xi)}. When there is a tie, i.e., a node has multiple unmatched child nodes with

the same minimum u-input degree, the node either holds on at a probability w or randomly breaks

the tie.
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w

1 w- 1 w-

w

Figure S1: Flowchart of implementing the LM algorithm.

2) Parent locating: Each node without a matched parent node sends a parent request to the neighboring

parent node (including itself if there exists a self-loop link to the node) with the minimum u-output

degree min{Nu−out(xi)}. When there is a tie, i.e., a node has multiple unmatched parent nodes

with the same minimum u-output degree, the node either holds on at a probability w or randomly

breaks the tie.

3) Matching: When there is a match of requests, i.e., two nodes receive each other’s parent/child

request, a parent-child match is achieved and fixed. The child node in this match removes all its

links to other parent nodes, and the u-output degrees of those parent nodes are reduced by 1. The

parent node in this match removes all of its links to other child nodes, and the u-input degrees of

those child nodes are reduced by 1.

The iterative request-matching operations in the LM algorithm continue until no more child/parent match

can be achieved.

2.1 Examples of LM in small networks

We use two simple examples to illustrate the matching process of the LM algorithm. In the first example

in Figure S2, it is interesting to observe that LM manages to reach the same final answer with the

minimum number of driver nodes through a few different paths. Specifically, for node x2, as x5 and x7

have the same number of input links, they have the equal chance to be selected as x2’s child node; and for

node x6, as x5 and x9 have the same number of output links, they have the equal chance to be selected as

x6’s parent node. In LM, each node has a waiting probability w to hold on when there is a tie. As some

edges may be removed in the iteration process, the tie may be broken. As illustrated in Figure S2, there

14
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Figure S2: An example of the LM method in a small network. The nodes connected by dot lines
are matched nodes and x0 is the driver node determined by LM.
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Figure S3: A node xi matches with another node which does not necessarily has
min{Nu−in(xi)} or min{Nu−out(xi)} in its neighborhood in the original network.

may be 4 different cases with different tie-breaking process, which however lead to the same number of

driver nodes in this example. As will be discussed later in Section 2.7, different waiting processes may

lead to different results, though the differences typically are not significant.

In the second example in Figure S3, we show that while a node xi always sends a child/parent request

to another node with min{Nu−in(xi)} or min{Nu−out(xi)}, that does not necessarily mean that it will

be finally matched with the node with min{Nu−in(xi)} or min{Nu−out(xi)} in the original network. As

shown in Figure S3, each red arrow means a matched edge (i.e., an edge with its end nodes making a

match) based on a bidirectional-choice rule. For example, in (a1), node 1 and node 2 form a parent-child

match because node 1 requests node 2 as its child, and node 2 also requests node 1 as its parent. The

whole matching process is simple and easy to understand. Figure S3(b) illustrates a different case. In this

case, some nodes have self-loop links thus these nodes may send their parent/child requests to themselves.

In Local-game matching, node 3 may request node 1 as its parent with a probability of 1/3, while node

1 will request node 2 to be its child. Meanwhile nodes 2, 4 and 5 each matches with itself in the first

iteration. Finally node 1 matches with node 3, a node which does not have minimum u-input degree in

node 1’s neighborhood in the original network (b1). Note that the number of driver nodes obtains its

minimum value, i.e., ND = 1, in this example.
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2.2 Theoretical Analysis of Local-game Matching

To facilitate discussions, hereafter we denote A as the adjacent matrix, VA as the vertex set, and EA as

the edge set.

Lemma 1. (Lin’s Structural Controllability Theorem [1]). The following two statements are equivalent:

1) A linear control system G(A,B) is structurally controllable.

2) The digraph G(A,B) contains no inaccessible nodes or dilation. �

Remarks:

1. A node xi in the digraph G(A,B) is called inaccessible iff there are no directed paths reaching xi.

Note that a node with a self-loop edge is an accessible node.

2. The digraph G(A,B) contains a dilation iff there is a subset S ⊆ VA such that |T (S)| < |S|. Here,

the neighborhood set T (S) of a set S is defined as the set of all nodes xj where there exists a

directed edge from xj to a node in S, i.e., T (S) = {xj |(xj → xi) ∈ EA, xi ∈ S}. |S| and |T (S)| are

the cardinality of set S and T (S), respectively.

�

Theorem 1. Structural controllability of a complex network can be ensured by applying the LM algorithm.

Proof. We prove by contradiction. Assume that the complex network is not structurally controlled

after using the LM algorithm. Then there must exist inaccessible nodes and dilations. When there exist

inaccessible dilations, from the definition of dilation, we have ∃ S ⊆ VA, |T (S)| < |S|. In other words,

∃ vj ∈ T (S) and vi ∈ S, (vj → vi) ∈ EA. Since ∃ (vj → vi) ⊆ EA, we have that vj lacks child and vi

lacks parent. Otherwise, if vj already has a child or vi already has a parent, (vj → vi) should have been

removed according to the LM algorithm. With the link (vj → vi) still being there, the LM algorithm can

continue, as vj can send a child request to vi and vi can send a parent request to vj . Figure S4 shows

a simple example. This leads to a contradiction. Hence we prove that the LM algorithm can continue

untile there is no dilation left.

For inaccessible nodes, they can be controlled by assigning new external control inputs to them which

makes them become driver nodes.

From above we have the conclusion that there is no inaccessible node or dilation after implementing

the LM algorithm. From Lemma 1, we have that the network is structurally controlled. There are two
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Figure S4: Proof illustration of Theorem 1. (a) There are some dilations left in the network, which
are labeled as Node 1, Node 2 and Node 3. Node 1 lacks child while Node 2 and Node 3 lack parent. (b)
Node 2 and Node 3 send parent requests to Node 1. Node 1 randomly chooses one of Node 2 and Node
3 to send a child request. In this example, Node 1 chooses Node 2. (c) Node 1 and Node 2 are matched,
consequently the directed edge between Node 1 and Node 3 is removed. (d) After one step of the LM
algorithm, one match and one inaccessible node are formed.

types of control paths in a complex network after implementing the LM algorithm: directed control paths

(DCPs), the origin of each of which is an unmatched node which is taken as a driver node; and circled

control paths (CCPs), in which every node has a child and a parent.

Figure S5 illustrates an example, from which we can see that there are only DCPs and CCPs left in

the network after implementing the LM algorithm. By connecting external control inputs to the origins

of DCPs, the network can be structurally controlled. Note that for the CCP, a randomly selected node

needs to be connected to an existing external controller.

Definition [19]. For any directed complex network, its digraph can be represented in a corresponding

bipartite graph denoted as H(A). The bipartite graph is defined as H(A) = (V +
A ∪ V −

A ,Γ), where

V +
A = {v+1 , v+2 , ..., v+N} and V −

A = {v−1 .v−2 , ..., v−N} are the set of vertexes corresponding to the N columns

and rows of A respectively, and edges set Γ = {(v+i → v−j )|aji 6= 0}.

Figure S6 shows an example of the above definition.

We have that an augmenting path in H(A) has the properties as follows [6]:
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Figure S5: An example of network after implementing the LM algorithm. (a) The network
has 15 nodes with two elementary stems, an elementary dilation and an elementary circle. (b) After
implementing the LM algorithm, Node 1, Node 3, Node 5 and Node 7 are the origins of four directed
control paths respectively. By connecting external control inputs to these four nodes (which are colored
in orange), the network can be structurally controlled. For the elementary circle, a randomly selected
node needs to be connected to an existing external control input.

(1) It has an odd number of edges;

(2) Its origin and end are not matched;

(3) Its origin and end are on the different sides of H(A);

(4) Its edges are alternatively unmatched (at least one endpoint of the edge is not matched) and matched

(both two endpoints of the edge are matched);

(5) By reversing the matching of the edges in the augmenting path (set the unmatched edges to be

matched and set the matched edges to be unmatched), the number of matchings will be increased by

one.

In Figure S6, (v+3 → v−2 ), (v+1 → v−2 ) and (v+1 → v−1 ) form an augmenting path, if only (v+1 → v−2 ) is

matched.

Theorem 2. Implementing the LM algorithm on digraph of a complex network is equivalent to applying

it on the corresponding bipartite graph.
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Figure S6: An example of bipartite graph construction. (a) The digraph of a network with three
nodes and four edges. (b) the corresponding bipartite graph H(A) with six nodes and four edges.

Proof. In digraph, the LM algorithm lets each node send a parent (child) request to its neighbor node

with the minimum out-degree (in-degree); such remains unchanged in the corresponding bipartite graph.

Furthermore, in digraph where a match is identified between vi and vj , the LM algorithm removes other

edges of vi and vj . Such would ensure that, in the corresponding bipartite graph, a matched node will

not be matched with any other nodes, which makes the matching in the LM algorithm to be equivalent

to the matching in the corresponding bipartite graph.

To make it easier to understand, we describe the LM algorithm in the bipartite graph as follows:

Step (1) Each node in V +
A sends a child request to its adjacent node in V −

A with the minimum in-degree,

while each node in V −
A sends a parent request to its adjacent node in V +

A with the minimum

out-degree;

Step (2) Iff v+i sends a request to v−j while v−j sends a request to v+i in step (1), would v+i and v−j form

up a match;

Step (3) If v+i and v−j form up a match in step (2), remove all the other edges connected to v+i and v−j ;

this ensures that these two nodes will not send requests to any other nodes;

Step (4) Repeat step (1) to step (3), until no further matches can be formed.

We define an augmenting path with q matched edges, (q+1) unmatched edges and v+i being the second

node along the path as a q-order augmenting path about v+i . We also define pi,ap(v
+
i

q−order−−−−−→ vi,−x ) as
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the probability that a q-order augmenting path about v+i is formed when node v+i sends a child request

to node vi,−x and (v+i → vi,−x ) becomes matched. We have the following Theorem.

Theorem 3. Assume that 0 ≤ pun ≤ 1 (pma = 1 − pun) is the expected probability that a node is

unmatched till the end of the LM algorithm. We have that pi,ap(v
+
i

q−order−−−−−→ v−j ) can be approximated as

p̂i,ap(v
+
i

q−order−−−−−→ v−j ) =

(

1− p
(kin

j −1)·
∑q−1

m=0

∏m
n=1 αn+1

ma

)

·
(

1− p
(kout

i −1)·
∑q−1

m=0

∏m
n=1 βn+1

ma

)

, (1)

where v−j is one of v+i ’s child nodes with an input degree of kinj . The detailed definition of αn and βn

is in the proof. By letting each node send a child/parent request to its adjacent nodes with the minimum

input/output degrees, the LM algorithm minimizes p̂i,ap(v
+
i

q−order−−−−−→ v−j ) and p̂j,ap(v
+
i

q−order−−−−−→ v−j ),

regardless of whether there exist ties (defined in Section 1.2) or not.

Proof. According to Theorem 2, hereafter we prove Theorem 3 in the corresponding bipartite graph.

Randomly observe (v+i → v−j ) ∈ H(A), which corresponds to (vi → vj) ∈ EA. We assume that v+i

has kouti outgoing edges and v−j has kinj incoming edges. The adjacent nodes of v+i form the set Vv+
i
; and

the adjacent nodes of v−j form the set Vv−

j
. In other words,

Vv+
i
= {vi,−x |x = 1, 2, ..., kouti }, Vv−

j
= {vj,+y |y = 1, 2, ..., kinj }.

Figure S7 shows the connection between v+i and v−j .

Now we assume that there is at least one node in ∁V
v
+
i

{v−j } (∁V
v
+
i

{v−j } is a complement operation,

which is a node set comprising of nodes in Vv+
i

except v−j ) that is not matched until the end of the

algorithm. When there is at least one node in ∁V
v
−

j

{v+i } (similarly, ∁V
v
−

j

{v+i } is a set comprising of nodes

in Vv−

j
except v+i ) unmatched till the end, the two unmatched nodes, two unmatched edges and matched

(v+i → v−j ) form an augmenting path. This happens at a probability of (1 − p
kin
j −1

ma ). Otherwise, if all

nodes in ∁V
v
−

j

{v+i } are matched to some nodes while at least one of these nodes has at least one unmatched

adjacent node till the end, the two unmatched nodes, three unmatched edges and two matched edges also

form an augmenting path. This happens at an expected probability of p
kin
j −1

ma ·
(

1− p
(kin

j −1)·α2

ma

)

, where

α2 is the expected number of nodes in ∁V
v
j,+
y

{v−j } (∀ vj,+y ∈ ∁V
v
−

j

{v+i }) which have no connections with

the anterior part (1-order path) of the augmenting path (viz. node v+i ). Note that some nodes may have

the same unmatched adjacent nodes. Each of the overlapped nodes should be counted once only. This

is illustrated in Figure S8(b). In Figure S8(b), the blue dashed line means v−k has one connection with

v+i which is already on the augmenting path. And the green dashed line means v−k and vz,−p have the

same unmatched node v+s which is the overlapped part. When calculating the probability that all nodes
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Figure S7: (v+i → v−j ). On the left are the adjacent nodes of v+i and their respective incoming links,

plotted in solid lines; and on the right are adjacent nodes of v−j and their respective outgoing links,

plotted in dotted lines. In this case in the picture, v−j is vi,−1 and v+i is vj,+1 .

in ∁V
v
−

j

{v+i } are matched to some nodes while at least one of these nodes has at least one unmatched

adjacent node till the end, those nodes in V +
A with blue and green dashed lines should be ignored.

Further moving forward, we may similarly denote set C2 as ∁V
v
j,+
y

{v−j } (∀ vj,+y ∈ ∁V
v
−

j

{v+i }). If all

nodes in ∁C2{vj,+y } are matched to some nodes of which all adjacent nodes are matched to some nodes

which have at least one unmatched adjacent node till the end, the two unmatched nodes, four unmatched

edges and three matched edges form an augmenting path. The expected probability that this happens

equals p
kin
j −1

ma · p(k
in
j −1)·α2

ma ·
(

1− p
(kin

j −1)·α2·α3

ma

)

, where α3 is the expected number of nodes in ∁v+
s
{C2}

which have no connections with the anterior part (from 1-order path to 2-order path) of the augmenting

path (viz. node v+i and node vj,+y ) and with the overlapped part being ignored.

To generalize, the augmenting path in Figure S8(a) is 1-order augmenting path about v+i and the

augmenting path in Figure S8(b) is a 2-order augmenting path about v+i . Thus, if we consider the

q-order augmenting path about v+i , the probability that this augmenting path exists is

q−2
∏

m=0

p
(kin

j −1)·
∏m

n=1 αn+1

ma ·
(

1− p
(kin

j −1)·
∏q

n=2 αn

ma

)

.
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Figure S8 illustrates the process.

v
j,+
yv

+

i

v
−

jv
i,−
x

unmatched

v
j,+
yv

+

i

v
−

jv
i,−
x

unmatched

unmatched

s

unmatched

v
j,+
yv

+

i

v
−

jv
i,−
x

unmatched

unmatched

…

t

a b

c

Figure S8: Estimating the probability that an augmenting path is formed. Red lines represent
matched edges. (a) If vi,−x and vj,+y are not matched till the end, an augmenting path is formed. (b)

If vj,+y is matched but node s is unmatched till the end, the augmenting path is also formed. (c) To
generalize, if node t is unmatched till the end, an augmenting path is formed.

Therefore, based on the assumption that there is at least one node in ∁V
v
+
i

{v−j } not matched till the

end, we have the probability that an augmenting path is formed if (v+i → v−j ) becomes a match, which is

1− p
kin
j −1

ma + p
kin
j −1

ma · (1− p
(kin

j −1)α2

ma + p
(kin

j −1)α2

ma · (1 − p
(kin

j −1)α2α3

ma )

+ . . .+ p
(kin

j −1)α2α3

ma · ... · (1− p
(kin

j −1)
∏q

n=2 αn

ma )...))

=1−
q−1
∏

m=0

p
(kin

j −1)·
∏m

n=1 αn+1

ma

=1− p
(kin

j −1)·
∑q−1

m=0

∏m
n=1 αn+1

ma .

(2)
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Back to the assumption that there is at least one node in ∁V
v
+
i

{v−j } not matched till the end, similarly

the probability that an augmenting path about v−j exists can be calculated as
(

1− p
(kout

i −1)·
∑q−1

m=0

∏m
n=1 βn+1

ma

)

,

where βn has analogous meaning with αn. Thus the expected probability that an augmenting path is

formed if v+i sends a child request to v−j and (v+i → v−j ) becomes matched is

p̂i,ap(v
+
i

q−order−−−−−→ v−j ) =

(

1− p
(kin

j −1)·
∑q−1

m=0

∏m
n=1 αn+1

ma

)

·
(

1− p
(kout

i −1)·
∑q−1

m=0

∏m
n=1 βn+1

ma

)

. (3)

Now we can also calculate the expected probability p̂j,ap(v
+
i

q−order−−−−−→ v−j ) that an augmenting path

would be formed if v−j sends a parent request to v+i and (v+i → v−j ) becomes matched. The result is

similar to that for p̂i,ap(v
+
i

q−order−−−−−→ v−j ). Specifically, we have

p̂j,ap(v
+
i

q−order−−−−−→ v−j ) =

(

1− p
(kin

j −1)·
∑q−1

m=0

∏m
n=1 δn+1

ma

)

·
(

1− p
(kout

i −1)·
∑q−1

m=0

∏m
n=1 γn+1

ma

)

, (4)

where γn+1 and δn+1 have the analogous meanings with αn+1 and βn+ 1 respectively.

Denote vi,−x as the node with the minimum in-degree in Vv+
i
, and its in-degree as kinmin. As the

LM algorithm makes v+i send a child request to vi,−x , we have that the expected probability that an

augmenting path is formed if v+i sends a child request to vi,−x and (v+i → vi,−x ) become matched equals

p̂i,ap(v
+
i

q−order−−−−−→ vi,−x ) =
(

1− p
(kin

min−1)·
∑q−1

m=0

∏m
n=1 αn+1

ma

)

·
(

1− p
(kout

i −1)·
∑q−1

m=0

∏m
n=1 βn+1

ma

)

. (5)

Since p̂i,ap(v
+
i

q−order−−−−−→ vi,−x ) is monotonically increasing with kinj , it reaches the minimum value when

kinj = kinmin.

For v−j , similarly we have that p̂j,ap is minimized as LM algorithm makes v−j send a parent request

to its adjacent node with the minimal output degree.

Further consider the case where v+i has h adjacent nodes with the same minimal input degree kinmin

(viz. there exists a tie), p̂i,ap(v
+
i

q−order−−−−−→ vi,−x ) does not change its form. Thus the strategy that

v+i sends a child request to one of its adjacent nodes with the minimal input degree still minimizes

p̂i,ap(v
+
i

q−order−−−−−→ vi,−x ).

Based on Theorem 3, we can further prove that the LM algorithm allows the system to reach the

equilibrium of a static Bayesian game.

Theorem 4. Given only local information (defined in Section 1.2), the LM algorithm is equivalent to

a static Bayesian game. And a Nash equilibrium of the game exists, which is the solution of the LM

algorithm.
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Proof. Based on Theorem 2, hereafter we prove Theorem 4 in the corresponding bipartite graph, i.e.

LM algorithm guides all the nodes to make its best choice with only local information.

Since the LM algorithm uses only the local information to allow all network nodes to send requests

to their selected neighbor nodes simultaneously in every iteration, the structural control problem of

complex network with only local information can be viewed as a static game with incomplete information,

also known as the static Bayesian game [20]. Specifically, the structural control problem to which LM

algorithm is applied can be translated into the game defined as G = 〈Node, Ω, 〈Si, ui, ti, pi〉〉, where

(1) Node is the set of nodes in the digraph consisting of N nodes;

(2) Ω is the set of states of nature (Here “nature” can be interpreted as the consensus of all nodes.

Further discussions will be provided later in this section.). Specifically, Ω = {ω1, ω2, ω3}, where

ω1 is that not to be on an augmenting path is most important, ω2 is that to be matched is very

important, and ω3 is that every node knows that only local information is available to every node in

the network;

(3) ti is the type of Node i. Specifically, ti defines that Node i is in V +
A or V −

A ;

(4) Si is the set of strategies of Node i, which is to request for child or parent to nodes in the neighborhood

of Node i based on the type ti of Node i.

For v+i , its type ti is that Node i is in V +
A . Thus we have

Si(ti = {v+i }) = {six : six means v+i sends a child request to its adjacent node vi,−x ,

x = 1, 2, ..., kouti }.
(6)

For v−j , its type tj is that Node j is in V −
A . Thus we have

Sj(tj = {v−j }) = {sjy : sjy means v−j sends a parent request to its adjacent node vj,+y ,

y = 1, 2, ..., kinj };
(7)

(5) ui : Ω × S → R is the payoff function of Node i, i.e., the payoff of Node i to choose strategies from

Si based on the nature of Ω. The payoff of Node i is only related to the Bayesian game result, and

every node is only able to estimate the expected payoff.

For v+i , its type ti is that Node i is in V +
A .

ui(ti = {v+i }) =











1, v+i is matched and not on an augmenting path

0, v+i is not mathced or on an augmenting path
. (8)
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For v−j , its type tj is that Node j is in V −
A .

uj(tj = {v−j }) =











1, v−j is matched and not on an augmenting path

0, v−j is not matched or on an augmenting path
. (9)

(6) pi is probability distribution over Ω for Node i (viz. pi is the probability that Node i chooses strategy

Si); different nodes have different pi according to their local information based on the nature of Ω.

The strategy chosen by Node i is based on its payoff function ui, which is influenced by the strategy

chosen by its neighbors. An equilibrium of the game G is defined to be a Nash equilibrium of the game

Ĝ = 〈Node, Ŝ = S1 × S2 × · · · × SN , û = u〉. For the structual control problem of complex network with

finite nodes, the equivalent game equilibrium always exists [20].

Before solving the equilibrium problem, we provide some further explanations on the “nature” to

make it easier to understand. We assume that in the game G, every node is in all the states of Ω. ω1

means that every node is egoless to reduce the number of independent external control inputs required,

as having an augmenting path means that there is one more matching available which could reduce one

external control input. ω2 means that every node is selfish and anxious to be matched as far as such is

possible. ω3 means that while making a decision, every node knows that limited local information is all

what the other nodes can obtain.

To prove that the LM algorithm is the equilibrium, we need to show that in the game, considering

the strategies of other nodes, every node can maximize its expected payoff by sending child (parent)

request to its adjacent node with minimal input (output) degree. We firstly consider the probability

p̂i,ap(v
+
i → vi,−x ) that v+i is on a q-order augmenting path if v+i chooses v−j to request for child. From

Equations (3) and (4), we have that p̂i,ap(v
+
i

q−order−−−−−→ v−j ) (p̂j,ap(v
+
i

q−order−−−−−→ v−j )) is monotone increasing

with kinj (kouti ), which means v+i (v−j ) should choose vi,−x (vj,+y ) with the minimal in-degree (out-degree)

to request for child (parent) in order to minimize the probability of forming up an augmenting path.

Therefore, no matter which type Node i is, nature ω1 encourages Node i to choose its neighbor node

with the minimal in-degree (out-degree) to request for child (parent). This preferred strategic decision

of vi,−x can be inferred by v+i because of nature ω3: to maximize the probability that v+i is matched,

v+i shall firstly estimate the probability each node in Vv+
i
will request for parent to it by estimating the

probability it has the minimal out-degree among all the adjacent nodes of vi,−x .

Subject to the limitation of having only local information, v+i cannot find out what exactly the

out-degree distribution in adjacent neighbor of vi,−x or in the global network is. Thus v+i may as-

sume that the other nodes in adjacent neighbor of vi,−x have an out-degree distribution denoted as

p̂out. Therefore the probability that v+i has the minimal out-degree in adjacent neighbor of vi,−x is
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(

1−∑kout
i

s=0 p̂out(K = s)
)kin

v
i,−
x

−1

, where kin
vi,−
x

is in-degree of vi,−x . If we take into consideration the sit-

uation that there are h adjacent nodes with the same minimal out-degree (viz. the tie exists) and vi,−x

would randomly choose one from these h nodes to request for parent, the probability can be revised as



1−
kout
i
∑

s=0

p̂out(K = s)





kin

v
i,−
x

−h

/h,

denoted as p̂(vi,−x
request−−−−−→
parent

v+i ).

As p̂(vi,−x
request−−−−−→
parent

v+i ) is monotone increasing with kin
vi,−
x

, which means nodes with larger in-degrees

are less likely to request for parent to v+i , v
+
i shall choose the adjacent node with the minimal in-degree

to request for child to maximize the probability of making a match. Similarly, when there are h nodes

with the same minimal in-degree, v−j can estimate the probability that vj,+y requests for child to it as



1−
kin
j
∑

s=0

p̂in(K = s)





kout

v
j,+
y

−h

/h.

Thus, v−j shall choose the node with the minimal out-degree to request for parent in order to maximize

the probability of making a match.

To summarize, by sending child (parent) request to the adjacent node with the minimal input (output)

degree, every node can maximize the probability that it is matched and not on an augmenting path. In

the game, every node wants to maximize its expected payoff, which mathematically equals the probability

that it is matched and not on an augmenting path. In other words, when Node i selects an adjacent

node to send a request, it firstly minimizes the probability that it is on an augmenting path, and then

maximizes the probability that it is matched. The two goals can be achieved simultaneously when Node

i sends a request to the adjacent node with the minimal degree. This is the equilibrium of the static

Bayesian game.

Because game G is static where all nodes make strategic decisions simultaneously in each iteration,

we have the probability distribution over Ω for Node i as

pi(Si(ti = {v+i }) = {six}) =











1/h, vi,−x and other (h− 1) nodes have the minimal in− degree

0, otherwise
,

(10)

and
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pi(Si(ti = {v−i }) = {siy}) =











1/h, vi,+y and other (h− 1) nodes have the minimal out− degree

0, otherwise
.

(11)

Therefore, the equilibrium of game G is that every node randomly chooses one from those nodes with

the minimal degree among its immediate neighbors. LM algorithm guides each node to make its best

choice with the limited local information.

For a network with its in-degree and out-degree distributions being independent of network size N ,

denote pin(s) as the fraction of nodes with in-degree s, s = iinmin, i
in
min + 1, . . . , iinmax, where iinmin and iinmax

denote the minimum and maximum in-degree of the network nodes, respectively. Similarly define pout(s)

as the fraction of nodes with out-degree s, s = ioutmin, i
out
min + 1, . . . , ioutmax. We have the following theorem.

Theorem 5. For a network with its in-degree and out-degree distributions being independent of the size

of the network, the average time complexity of the LM algorithm is O(N).

Proof. Consider a network with N nodes and in-degree/out-degree distributions pin and pout, re-

spectively. To simplify the proof, we start with the case where each node has only a single adjacent node

with the minimum in-degree or out-degree.

In the first iteration of the LM algorithm, as each node sends a request to its adjacent node with the

minimal in-degree (or out-degree), the probability pij that node i and node j are matched is decided by

the probability that node i has the minimal out-degree among neighbors of node j and the probability

that node j has the minimal in-degree among neighbors of node i. Thus we have that the matching

probability equals

pij =



1−
kout
i
∑

s=0

pout(s)





kin
j −1

1−
kin
j
∑

s=0

pin(s)





kout
i −1

,

where kouti and kinj are the out-degree of node i and in-degree of node j respectively.

Let the matched nodes be ignored while calculating degree distribution in the following iterations, or

in other words, they may be regarded as getting removed. Denote pin,t and pout,t as the in-degree and

out-degree distributions of the network in the t-th iteration, respectively. We have

ptxy =



1−
kout,t
x
∑

s=0

pout,t(s)





kin,t
y −1

1−
kin,t
y
∑

s=0

pin,t(s)





kout,t
x −1

.

Figure S9 illustrates an example.
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Figure S9: An example of the probable changes in the local region of vx and vy. (a) In the local
region of vx and vy, edges may be removed in the previous iterations because nodes at the other end of
the edges have made matches. (b) After edge removals, koutx and kiny decrease.

Now we extend to the case where node vx has zx adjacent nodes with the same minimal in-degree and

node vy has zy adjacent nodes with the same minimal out-degree. Node vx shall thus have a probability

w to hold on, and a probability (1 − w) to randomly choose one from the zx adjacent nodes with the

minimal in-degree to send a request. The probability that vx sends a child request to vy thus can be

calculated as

kout
i
∑

zx=1

(1 − w)
1

zx

(

kouti − 1

zx − 1

)



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

· pin(kinj )zx−1.
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Applying the binomial theorem, we have

kout
i
∑

zx=1

(1− w)
1

zx

(

kouti − 1

zx − 1

)



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

· pin(kinj )zx−1

=(1 − w)

kout
i
∑

zx=1

1

zx

(kouti − 1)!

(zx − 1)!(kouti − zx)!



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

·
pin(kinj )zx

pin(kinj )

=
1− w

pin(kinj )

kout
i
∑

zx=1

1

kouti

kouti !

zx!(kouti − zx)!



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

· pin(kinj )zx

=
1− w

kouti · pin(kinj )

kout
i
∑

zx=1

(

kouti

zx

)



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

· pin(kinj )zx

=
1− w

kouti · pin(kinj )
·









1−
kin
j
∑

s=0

pin(s) + pin(kinj )





kout
i

−



1−
kin
j
∑

s=0

pin(s)





kout
i






=
1− w

kouti · pin(kinj )
·









1−
kin
j −1
∑

s=0

pin(s))





kout
i

−



1−
kin
j
∑

s=0

pin(s)





kout
i





.

Similarly, for vy we that have the probability that vy chooses vx to request for parent is

1− w

kinj · pout(kouti )
·









1−
kout
i −1
∑

s=0

pout(s))





kin
j

−



1−
kout
i
∑

s=0

pout(s)





kin
j






.

Therefore, for pair (vx → vy), the probability that (vx → vy) is matched is

pij =
(1− w)2

kouti kinj · pin(kinj ) · pout(kouti )
·









1−
kin
j −1
∑

s=0

pin(s))





kout
i

−



1−
kin
j
∑

s=0

pin(s)





kout
i






·









1−
kout
i −1
∑

s=0

pout(s))





kin
j

−



1−
kout
i
∑

s=0

pout(s)





kin
j






.
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For the t-th iteration,

ptij =
(1− w)2

kout,ti kin,tj · pin,t(kinj ) · pout,t(kouti )

·














1−

kin,t
j −1
∑

s=0

pin,t(s))







kout,t
i

−






1−

kin,t
j
∑

s=0

pin,t(s)







kout,t
i









·









1−
kout,t
i −1
∑

s=0

pout,t(s))





kin,t
j

−



1−
kout,t
i
∑

s=0

pout,t(s)





kin,t
j






.

Since

kout
i
∑

zx=1

(1 − w)
1

zx

(

kouti − 1

zx − 1

)



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

· pin(kinj )zx−1

≥
kout
i
∑

zx=kout
i

(1− w)
1

zx

(

kouti − 1

zx − 1

)



1−
kin
j
∑

s=0

pin(s)





kout
i −zx

· pin(kinj )zx−1

≥(1− w)
1

kouti

· pin(kinj )k
out
i −1,

we have

ptij =
(1 − w)2

kout,ti kin,tj · pin,t(kinj ) · pout,t(kouti )

·














1−

kin,t
j −1
∑

s=0

pin,t(s))







kout,t
i

−






1−

kin,t
j
∑

s=0

pin,t(s)







kout,t
i









·









1−
kout,t
i −1
∑

s=0

pout,t(s))





kin,t
j

−



1−
kout,t
i
∑

s=0

pout,t(s)





kin,t
j







≥ (1− w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
i −1pout,t(kout,ti )k

in,t
j −1

For the whole network, the anticipant probability p̂t of match making is
∑

i

∑

j δiδj|i · ptij , where δi is

the proportion of nodes with out-degree kouti in the network, i.e., pout(kouti ), and δj|i is the conditional
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probability that nodes with out-degree kouti have adjacent nodes with in-degree kinj . Hence we have

p̂t =
∑

i

∑

j

(

δiδj|i · ptij
)

=
∑

i

∑

j

pout,t(kout,ti ) ·
(

1−
(

1− pin,t(kin,tj )
)kout,t

i

)

· (1− w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
i −1pout,t(kout,ti )k

in,t
j −1

=
∑

i

∑

j

·
(

1−
(

1− pin,t(kin,tj )
)kout,t

i

)

· (1− w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
i −1pout,t(kout,ti )k

in,t
j

≥
∑

i

∑

j

·
(

1−
(

1− pin,t(kin,tj )
)kout,t

i

)

· (1− w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
i −1pout,t(kout,ti )k

in,t
max

≥
∑

i

∑

j

·
(

1−
(

1− pin,t(kin,tj )
)1
)

· (1− w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
i −1pout,t(kout,ti )k

in,t
max

=
∑

i

∑

j

· (1 − w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
i pout,t(kout,ti )k

in,t
max

≥
∑

i

∑

j

· (1 − w)2

kout,ti kin,tj

pin,t(kin,tj )k
out,t
max pout,t(kout,ti )k

in,t
max

≥
∑

i

∑

j

· (1− w)2

kout,tmax kin,tmax

pin,t(kin,tj )k
out,t
max pout,t(kout,ti )k

in,t
max

=
(1− w)2

kout,tmax kin,tmax

∑

i

∑

j

pin,t(kin,tj )k
out,t
max pout,t(kout,ti )k

in,t
max

≥ (1− w)2

kout,tmax kin,tmax

∑

i

∑

j

(

pin,t(kin,tj )pout,t(kout,ti )
)kmax

t

where kout,tmax and kin,tmax are the maximum out-degree and maximum in-degree of the network in the t-th

iteration respectively, and ktmax = max{kout,tmax , kin,tmax}.

As
∑kout,t

max

i=0

∑kin,t
max

j=0 pin,t(kin,tj )pout,t(kout,ti ) = 1, denoting Pij as p
in,t(kin,tj )pout,t(kout,ti ) and Qt as k

out,t
max ·

kin,tmax, we have
∑Qt

i,j Pij = 1. From Hölder inequality, we have





Qt
∑

i,j

P
kt
max

ij





1
kt
max

·





Qt
∑

i,j

1





1− 1
kt
max

≥
Qt
∑

i,j

Pij · 1 = 1.

⇒
Qt
∑

i,j

P
kt
max

ij ≥





Qt
∑

i,j

1





1−kt
max

= Q
1−kt

max
t

Therefore

p̂t ≥ (1 − w)2

kout,tmax kin,tmax

∑

i

∑

j

(

pin,t(kin,tj )pout,t(kout,ti )
)kt

max

≥ (1 − w)2

kout,tmax kin,tmax

Q
1−kt

max
t =

(1− w)2

Qkt
max

= p̂∗,t ≥ p∗,1.

(12)
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From Equation (12), p̂∗,t monotonically increases when kout,tmax and kin,tmax decrease. As the LM algorithm

removes edges in every iteration , kout,tmax and kin,tmax monotonically decrease with an increasing value of t.

Thus p̂∗,t has its minimum value when t = 1. Denote p̂∗,1 as p̂∗. We have that p̂∗ is independent of the

network size according to the theorem assumption, and p̂∗ is strictly positive.

Denote the number of iterations until the algorithm stops as tend and assume that, at the end of the

(tend − 1)-th iteration, there are ξnode nodes left in the network (ξnode ∈ (0, N ]), which cannot make any

further matches in the tend-th iteration. We have

(

tend−1
∏

m=1

(1 − p̂m)

)

·N = ξnode.

As p̂m ≥ p̂∗ for m = 1, 2, . . . , tend − 1, we have that

(1 − p̂∗)tend−1 ≥ ξnode/N

and hence the expected number of iterations is capped at

tend ≤ log(1−p̂∗)(ξnode/N) + 1.

For convenience of discussion, hereafter we term this upper bound for the number of iterations as tend.

Note that for every node seeking a match in each iteration, at most two operations are needed, namely

to send out a parent and a child requests respectively. In the first iteration, p̂1 · N nodes get matched

at a cost of 2 · N operations. In the second iteration, averagely p̂2(1 − p̂1) ·N nodes get matched, after

(1− p̂1) · 2 ·N operations. In the t-th iteration (t > 1), there are
∏t−1

m=1(1− p̂m) · 2 ·N operations. In the

last iteration, there are ξnode nodes left after (2 · ξnode) operations. Therefore, there will be a total of

2 ·N +

tend−1
∑

t=2

(

t−1
∏

m=1

(1− p̂m)) · 2 ·N + 2 · ξnode

operations.

For simplicity, it can be derived that the number of operations has an upper bound as follows:
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2 ·N +

tend−1
∑

t=2

(

t−1
∏

m=1

(1− p̂m)) · 2 ·N + 2 · ξnode

≤2 ·N +

tend−1
∑

t=2

(1− p̂∗)t−1 · 2 ·N + 2 · ξnode

=2 ·N ·
tend−1
∑

t=1

(1− p̂∗)t−1 + 2 · ξnode

=2 ·N · 1− (1− p̂∗)tend−1

1− (1 − p̂∗)
+ 2 · ξnode

=2 ·N · 1− (1− p̂∗)log(1−p̂∗)(ξnode/N)

1− (1− p̂∗)
+ 2 · ξnode

=2 ·N · 1− ξnode/N

p̂∗
+ 2 · ξnode

=2 ·N ·
(

1

p̂∗
− ξnode/N

p̂∗
+ ξnode/N

)

=2 ·N ·
(

1

p̂∗
−
(

1

p̂∗
− 1

)

· ξnode/N
)

<2 ·N · 1

p̂∗

Thus we have that the total number of operations is bounded by 2·N
p̂∗

. As p̂∗ is independent of the size

of the network, the average time complexity of LM algorithm is O(N).

From Theorem 5, we see that the LM algorithm has a linear average time complexity. For a given

w, the expected number of iterations needed is independent of the network size, but related to network

nodal degree distribution.

2.3 Definitions of the networks with other distributions

Let f(x) be the probability density function of the nodal degree distribution in the network. In this

contribution we add to the popular ER and B-A random networks a few more cases in which network

nodal degrees follow the Chi-squared distribution, the Weibull distribution, and the Gamma distribution,

respectively. These distribution functions are widely used in inferential statistics.

The probability density function f(x) of the Chi-squared distribution is defined as [21]

f(x, µ) =















x(µ/2)−1e−x/2

2µ/2Γ(µ
2 )

, if x ≥ 0;

0, otherwise,

(13)

where µ is the freedom degree parameter and Γ(µ2 ) is the Gamma function that has closed-form values

for integer µ. The Chi-squared distribution is also known as the Chi-square or χ2 distribution.
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The probability density function f(x) of the Weibull distribution [22] is

f(x;µ, k) =















k
µ (

x
µ )

k−1e−(x/µ)k , if x ≥ 0;

0, otherwise,

(14)

where k > 0 is the shape parameter and µ > 0 is the scale parameter of the distribution. The Weibull

distribution is related to a number of other probability distributions. In particular, it interpolates between

the exponential distribution (k = 1) and the Rayleigh distribution (k = 2). For convenience, we let k = 1

in this contribution.

The Gamma distribution [23] belongs to a family of two-parameter continuous probability distribu-

tions. Specifically, the probability density function f(x) using the shape-scale parametrization is given

by

f(x, k, θ) = xk−1e−
x
θ

θkΓ(k)
for x > 0 and k, θ > 0. (15)

Here k and θ are the shape and scale parameters respectively, and Γ(k) is the Gamma function evaluated

at k.

2.4 Performance of Local-game Matching

We test the LM method on synthetic and real-life networks. The synthetic networks include the ER

model [24], the BA network [25] [26], and networks generated using Chi-squared [21], Weibull [22] and

Gamma [23] distributions, respectively. Topology information about all the real-life networks we tested

are available from open sources (see the reference citations in Table S3). Note that both the LM and

MM methods have been tested using Monte Carlo simulations. Specifically, on each of 10 independently

generated synthetic networks we carry out 10 simulation rounds. Because the error bars of the results

are very small, they are not included in the figures. Since random tie-breaking in real-life networks has

little effect on the final results measured by the number of driver nodes, we present the results from only

a single round of simulation.

We denote nLM
D =

NLM
D

N and nD = ND

N as the respective percentages that the driver nodes found by LM

and MM account for in the whole network, and denote µ the mean in-/out degree of the network (termed

as mean degree in this report). We use the absolute error between LM and MM, Error = nLM
D − nD, to

measure the performance.

Figure S10(a) shows the percentage of driver nodes identified by the LM and MM methods in the

synthetic networks with different average nodal degrees. Note that the MM method achieves the optimal
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Table S2: The absolute errors between LM and MM in synthetic networks (N = 10000. The
values in brackets show nLM

D with w = 2
3).

Mean E-R B-A Chi-squared Weibull Gamma

µ = 2 0.46% (0.3246) 0.29% (0.3762) 0.16% (0.3803) 0.16% (0.3760) 0.18% (0.4673)

µ = 3 1.23% (0.1740) 0.76% (0.2500) 0.79% (0.2246) 0.39% (0.2780) 0.15% (0.3183)

µ = 4 0.73% (0.0963) 1.16% (0.1568) 0.66% (0.1323) 0.25% (0.2203) 0.20% (0.2246)

µ = 5 0.22% (0.0556) 0.53% (0.0747) 0.52% (0.0830) 0.30% (0.1810) 0.27% (0.1540)

µ = 6 0.06% (0.0256) 0.36% (0.0144) 0.18% (0.0326) 0.16%(0.1640) 0.13% (0.1026)

µ = 7 0.00% (0.0143) 0.35% (0.0073) 0.03% (0.0240) 0.21% (0.1406) 0.02% (0.0663)

µ = 8 0.00% (0.0066) 0.23% (0.0039) 0.00% (0.0113) 0.00% (0.1173) 0.01% (0.0516 )

µ = 9 0.00% (0.0056) 0.07% (0.0015) 0.00% (0.0093) 0.1140 (0.1146) 0.00% (0.0300 )

µ = 10 0.06% (0.0030) 0.01% (0.0004) 0.00% (0.0033) 0.03% (0.0883) 0.03% (0.0180)

solution. Also note that, utilizing only the local information, the LM method steadily achieves suboptimal

solutions in terms of the number of driver nodes. Table S2 summarizes the calculation results produced

by the two methods, and shows that the error of the LM method is typically ≪ 1%.

Figures S10(b) and S10(c) show that the two methods produce approximately the same number of

driver nodes and that they also identify the nodes with approximately the same input and output degree

distributions. Thus the two methods either find approximately the same set of nodes, or find two sets of

nodes with approximately the same statistical properties. The sub-optimality of the LM method in these

synthetic networks is thus verified.

We test the performance of the LM method in a number of real-life networks and the results are

summarized in Table S3. Data of the topologies of these networks is freely available in the cited references.

Note that the number of driver nodes identified by the LM method are consistently to be close to or equal

to the optimal solutions identified by the MM method.

2.5 Empirical estimation of the number of iteration steps

Simulation results verify that the number of iterations is independent of network size. Figure S11 shows

the LM method in three ER networks with the same mean nodal degree µ = 10 but with sizes N =

1000, N = 2000, and N = 3000. The number of matched nodes at each iteration is plotted. Note that

the number of iterations required is independent of N and that the calculations converge after k = 12

iterations in all the three cases. This occurs because LM is a local information-based decentralized method

36



Figure S10: LM and MM in synthetic networks: (a) Number of driver nodes with respect to the
mean degree µ for ER, B-A and other networks for LM and MM (N = 10000). (b) Input nodal degree
distributions of the driver nodes found by LM and MM, respectively (N = 10000 and µ = 6). (c) Output
degree nodal degree distributions of the driver nodes found by LM and MM, respectively.
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Table S3: The absolute errors between LM and MM in real-life networks (∗ : w = 2
3 ;

∗∗ : w =
0.85; and w = 0 for the others.)

.

Data Set Network Nodes Edges ND NLM
D Error

Airports [27, 28] us* 1574 28236 581 588 0.44%
intl* 2939 30501 872 890 0.61%

airports500* 500 5960 125 128 0.60%
Web [29–31] problogs* 1224 19025 436 443 0.47%

web-BerkStan* 685230 7600595 260229 265157 0.72%
web-Google* 875713 5105039 422608 425153 0.27%

web-Stanford* 281903 2312497 89346 91702 0.83%
Electronic Circuit [32] circuit-s208 122 189 29 29 0.00%

circuit-s420 252 399 59 59 0.00%
circuit-s838 512 819 119 119 0.00%

Food Web [33–37] CrystalC 24 125 10 10 0.00%
Florida 128 2106 30 30 0.00%

Maspalomas 30 87 9 9 0.00%
Rhode 25 58 8 8 0.00%

Michigan 39 221 13 13 0.00%
baydry 128 2137 29 29 0.00%

Gnutella P2P [38, 39] p2p-Gnutella04* 10876 39994 4640 4700 0.55%
p2p-Gnutella05 8846 31839 5111 5112 0.01%
p2p-Gnutella08 6301 20777 4105 4106 0.02%
p2p-Gnutella24 26518 65369 18965 18965 0.00%
p2p-Gnutella25 22687 54705 16478 16478 0.00%
p2p-Gnutella30 36682 88328 26965 26966 0.00%
p2p-Gnutella31 62586 147892 46227 46227 0.00%

Social Influence [40–42] soc-sign-epinions 131828 841372 78952 79155 0.15%
Wiki-Talk 2394385 5021410 2317964 2318078 0.004%
Wiki-Vote 7115 103689 4736 4736 0.00%

physician-discuss-rev 231 498 85 85 0.00%
Neural [43–46] celegans 297 2345 49 49 0.00%

cocomac 5336 36758 3577 3577 0.00%
mac95 94 2390 9 9 0.00%

Social [30, 47] email-EuAll 265214 420045 245791 245791 0.00%
cons-frequency-rev 46 879 2 2 0.00%
manuf-famiarity-rev 77 2326 0 0 0.00%
manuf-frequency-rev 77 2228 1 1 0.00%
physician-friend-rev* 228 506 52 52 0.00%

Slashdot0811 77360 905468 49 49 0.00%
Slashdot0902 82168 948464 3737 3737 0.00%

soc-pokec-relationships 1023163 8239685 838575 838576 0.00%
Amazon [48] amazon0302** 262111 1234877 8458 13326 1.86%

amazon0505** 410236 3356824 14839 22592 1.88%
UC Irvine Messaging [49] one-mode-char 1899 20296 614 625 0.58%
Corporate Ownership [50] corp-own 7253 6713 5777 5777 0.00%
Transcription Yeast [51] yeast 688 1079 565 565 0.00%
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Figure S11: Number of iterations vs. number of matched nodes in ER networks with different
network sizes but the same average nodal degree. Note that the number of driver nodes (unmatched
nodes) equals N minus the final number of matched nodes.

Figure S12: Number of iterations in synthetic networks at w = 0. The fitted line is y = x+ 1.
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Figure S13: Number of iterations in synthetic networks at w = 2
3 . The fitted line is y = 6.11x+

1.12.

in which the convergence speed of the algorithm is determined by how quickly a match of requests can

be achieved. This can be affected by the number of parent/child nodes possessed by each node, and is

therefore related to the average nodal degree but is essentially unaffected by network size. This conclusion

holds in all the synthetic networks we have tested.

The LM method requests simple local operations (i.e., child/parent locating and matching operations)

in each iteration. We find that the number of iterations needed is consistently low. In all the networks

that we have tested, the number of iterations k turns out to be approximately linearly proportional

to the average node degree µ. Figures S12 and Figure S13 show that this conclusion holds in synthetic

networks. Specifically, setting the waiting probability w = 0, we repeat the simulation in 10 independently

generated synthetic networks with N = 10000 and plot the average results. The “fitted line” in each

figure is generated by mean square error curve fitting. As shown in Figure S12, in all the synthetic

networks, the numbers of iterations needed approximate a simple linear function of the average nodal

degree k̂ = aµ + b, where both the slope a and the intercept b are approximately 1. When the waiting

probability w 6= 0, e.g., when w = 2
3 , as shown in Figure S13, the linear relationship between the number

of iterations needed and the mean nodal degree remains valid, although the values of a and b differ.

We also test the number of iterations k in 30 real-life networks listed in Table S3, where the mean

nodal degree varies approximately from µ = 2 to µ = 30 with different values of the waiting probability

(w = 0, w = 0.1, w = 0.3, w = 0.5, w = 2
3 , and w = 0.8). Figures S14 and S15 show that the linear

relationship between k and µ basically remains valid in real-life networks. When w increases, the slope

of the fitted line also increases. This is to be expected because a large value of w indicates a longer

average waiting time before the decision to randomly break the tie is made. Note that the slope of the
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fitted line for synthetic networks with a particular w is steadily close to the slope for real-life networks

with the same w; the main difference is that the linear relationship becomes more significant in synthetic

networks. This is because synthetic networks are random networks while real-life networks have distinct

local structures which may significantly affect the number of iterations.

2.6 Effects of the waiting probability w.

Introducing a non-zero waiting probability w often improves the performance of the LM algorithm.

Figures S16(a) and S16(b) show that this is the case because it decreases the probability that the better

of two solutions is overlooked when a tie is randomly broken. The effects of the waiting probability w

needs further study, however. Although a higher w value lowers the probability of overlooking the better

of two solutions in random tie breaking, the cost is that a larger number of iterations is needed. As an

example, we compare the algorithm performance under different values of E(nwait) where, for a given

value of w, E(nwait) =
w

1−w , as stated in Theorem 6, denotes the expected number of iterations a node

needs to wait until making its decision.

Figures S16(c) and S16(d) show the matching performance, defined as Mp(x) = 1− (nLM
D (x)−nMM

D ),

under different values of window size E(nwait). Note that although a non-zero waiting probability w

helps improve the network matching performance in the ER random networks and a number of real-life

networks, moderate E(nwait) values improve performance but very large E(nwait) values (or w values

approaching 1) do not significantly further improve performance. Setting E(nwait) = 4 produces approx-

imately the same results as setting E(nwait) → ∞. Even when E(nwait) = 2 or w = 2
3 the performance

of LM approaches that of MM.

Since LM performs well in most real-life networks even when w = 0, this leaves little space for

significant further improvement. Hence only five different synthetic and real-life networks are presented

in Figures S16(c) and S16(d). When the performance of LM with w = 0 becomes less satisfactorily (e.g.,

in the five networks selected to be presented in the figure), the use of w 6= 0 improves performance. To

keep a good balance between algorithm performance and the number of iterations, we set E(nwait) in the

range of [2, 4].

Theorem 6. In the waiting operation, if a node has a waiting probability w, the expected waiting time

steps is E(nwait) =
w

1−w .

Proof. Let i = nwait. We know that i is a random variable which takes its value from 0 to +∞.
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Figure S14: LM in real-life networks: number of iterations vs. mean nodal degree.
The fitted lines are y = 1.085x+ 0.7, y = 1.2x+ 0.62 and y = 1.59x+ 0.81 for w = 0, w = 0.1 and

w = 0.3, respectively.
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Figure S15: LM in real-life networks: number of iterations vs. mean nodal degree.
The fitted lines are y = 2.66x+ 1.79, y = 7.18x− 6.33 and y = 14.71x− 10 for w = 0.5, w = 2

3 , and
w = 0.8, respectively.
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Figure S16: Having a non-zero waiting probability w helps improve LM’s performance. (a) A
simple example illustrating that having a non-zero waiting probability w may help improve the matching
performance. As shown in (a), in the first iteration, x3’s child nodes (x4 and x5 ) have the same input
degree, and x4’s parent nodes (x1 and x3 ) have the same output degree. If there is no waiting, x3 and
x5 may achieve a match. If x3 waits for one iteration, however, since x1 and x2 will achieve a match
in the first iteration and the link between x1 and x4 will be removed as shown in (b) , x3 shall match
with x4 in the second iteration. Finally, the optimal solution x0 → x1 → x2 → ... → x6 can be obtained.
(c) Waiting helps improve LM’s performance in an ER network (N = 5000, µ = 7). (d) Waiting helps
improve LM’s performance in real-life networks.
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Thus

E(nwait) =
∑+∞

i=1 iwi(1− w) = (1− w) · (∑+∞
i=0 (i + 1)wi −∑+∞

i=0 wi)

= (1 − w) · (S(w) − 1
1−w )

(16)

where

S(w) =
∑+∞

i=0 (i+ 1)wi (17)

Note that

∫

S(w)dw =
∫
∑+∞

i=0 (i+ 1)widw =
∑+∞

i=0 wi+1 = w
1−w

(18)

then

S(w) =
d w

1−w

dw
= 1

(1−w)2
(19)

So finally we obtain that

E(nwait) = (1 − w) · 1
(1−w)2

− 1 = w
1−w

(20)

�

3 Implicit Linear Quadratic Regulator

3.1 Problem formulation of ILQR

As mentioned in the main paper, ILQR can be formulated as a matrix optimization problem under

orthonormal boundary condition, where the objective is to drive the states from any initial state x0 ∈

RN×1 to converge to the origin (x(tf ) = 0) during the time interval [0, tf ] at the minimum cost, where

the cost function is defined as E{
∫ tf
0 uT (t)u(t)dt} [52]; the operator E[·] takes the expectation of the

argument over all realizations of the random initial state. The problem of an ILQR is to determine

an input matrix B ∈ RN×M and also design control inputs u ∈ RM×1 such that the quadratic cost of

controlling a directed network ẋ(t) = Ax(t) + Bu(t), x(0) = x0 is minimum. Since the pairs B(t),u(t)

and kB(t), 1
ku(t) represent the same inputs and outputs for a nonzero k, it is natural to fix the norm

of matrix B. There are different ways of doing this and each way corresponds to a distinctive boundary
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condition. In this paper, we consider the orthonormal boundary condition, i.e., B is restricted to be

an orthonormal matrix. In this case, the minimum cost control problem is formulated as a constrained

optimization problem, where the objective is to drive the system from an initial state x0 to the origin

during the time interval [0, tf ] with the minimum cost:

minu, B E

[

∫ tf
0 ‖u(t)‖2 dt

]

s.t. B ∈ RN×M with BTB = IM and (A,B) is controllable

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,x(tf ) = 0

(21)

where x(t) = [xT
1 (t), ..., x

T
M (t)]T and u(t) = [uT

1 (t), ..., u
T
M (t)]T withM being the number of control inputs,

and IM is an identity matrix with dimension M . Note that both u(t) and B are decision variables to be

determined throughout the process in ILQR, where u(t) specifies the values of controller inputs at each

operating time and B determines the nodes to which the controller inputs are connected and the weights

of the connections.

When B is selectable, both x(t) and u(t) become functions of B, which are denoted as x(t, B) and

u(t, B), respectively. The energy cost function therefore becomes a function of tf and B, which can be

rewritten as

min E(tf , B) = E

[

∫ tf
0 uT (t, B)u(t, B)dt

]

s.t. BTB = IM ,

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,x(tf ) = 0

(22)

where (A,B) is controllable (implies that M > ND) and x(t, B) = [xT
1 (t, B), ..., xT

M (t, B)]T and u(t, B) =

[uT
1 (t, B), ..., uT

M (t, B)]T . In [53, 54], u(t, B) is given by

u(t, B) = −BT eA
T (tf−t)W−1

B eAtfx0 (23)

where WB is the Gramian matrix

WB =
∫ tf
0

eAtBBT eA
T tdt (24)

This is because, with Equation (23), we have

x(tf , B) = eAtx0 +
∫ tf
0

eA(tf−τ)Bu(τ)dτ

= eAtfx0 −
∫ tf
0

eA(tf−τ)BBT eA
T (tf−τ)W−1

B eAtfx0dτ

= eAtfx0 −
[

∫ tf
0

eA(tf−τ)BBT eA
T (tf−τ)dτ

]

W−1
B eAtfx0

(25)
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By letting t̃ = tf − τ , we obtain

x(tf , B) = eAtx0 +
∫ tf
0 eA(tf−τ)Bu(τ)dτ

= eAtfx0 −
∫ tf
0 eAt̃BBT eA

T t̃W−1
B eAtfx0dt̃

= eAtfx0 −
[

∫ tf
0 eAt̃BBT eA

T t̃dt̃
]

W−1
B eAtfx0

= eAtfx0 −WBW
−1
B eAtfx0

= 0

(26)

Thus for any given B satisfying that (A,B) is controllable, we can always design u(t) to drive the system

from an arbitrary initial state to the origin in a fixed time interval [0, tf ]. For a given tf , the control cost

function E(.) is only dependent on the selection of B. Our objective is therefore to find an optimal input

matrix B such that E(B) is minimized. Before presenting orthonormal-condition-based projected gradient

method (OPGM) that searches such a B iteratively, we need to consider the derivative of E(tf , B) with

respect to B, i.e.,
∂
∫ tf
0 u

T (t,B)u(t,B)dt

∂B and
∂
∫ tf
0 x

T (t,B)x(t,B)dt

∂B , respectively.

From Equations (23) and (24), we obtain

∫ tf
0

uT (t, B)u(t, B)dt =
∫ tf
0

xT
0 e

AT tfW−T
B eA(tf−t)BBT eA

T (tf−t)W−1
B eAtfx0dt

= xT
0 e

AT tfW−T
B ·

∫ tf
0

eA(tf−t)BBT eA
T (tf−t)dt ·W−1

B eAtfx0

= xT
0 e

AT tfW−T
B ·WB ·W−1

B eAtfx0

= xT
0 e

AT tfW−T
B eAtfx0

= xT
0 e

AT tfW−1
B eAtfx0

= tr
(

xT
0 e

AT tfW−1
B eAtfx0

)

= tr
(

W−1
B eAtfx0x

T
0 e

AT tf
)

(27)

where tr(.) denotes matrix trace operator.

By assuming that each element of initial state x0 = [x01, . . . , x0N ]T is an identical independent

distributed (i.i.d) variable with zero mean and variance 1, we obtain a constrained non-convex matrix

optimization problem with the input matrix B as its variables:

minB E(B) = tr

(

[

∫ tf
0

eAtBBT eA
T tdt

]−1

eAtfE(x0x
T
0 )e

AT tf

)

s.t. (A,B) is controllable,

BTB = IM

(28)

where E
[

x0x
T
0

]

= IN . Note that (A,B) is controllable requires that M ≥ ND.
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3.2 Convergence Proof of OPGM

To prove the convergence of OPGM proposed in Equations (2) and (3) in the main paper, we introduce

the following lemmas first.

Lemma 2. BTB = IM is equivalent to N(B) = 0 where N(B) = tr(BTBBTB)− 2tr(BTB) +M .

Proof ∀B ∈ R
N×M , BTB = IM ⇔ IM − BTB = 0 ⇔ tr

(

(IM −BTB)T (IM −BTB)
)

= 0 ⇔

tr(BTBBTB − 2BTB + IM ) = 0 ⇔ N(B) = 0. �

Lemma 3. Given x ≥ 0, for every ε > 0, there exists η > 0 such that

|(1 + η · x)− 1
2 − (1 − 1

2η · x)| < ε

Proof. The result can be easily obtained by applying Taylor expression. Thus the proof is omitted.

�

Lemma 4. Denote that T̂k = (IN −BkB
T
k ) and

∂E(Bk)
∂Bk

= F (Bk) · Bk where F (Bk) ∈ R
N×N and

F (Bk) = −
∫ tf

0

2eA
T tW−T

Bk
eAtfE(x0x

T
0 )e

AT tfW−T
Bk

eAtdt

As E(x0x
T
0 ) = I, we have

F (Bk) = −
∫ tf

0

2eA
T tW−T

Bk
eAtf eA

T tfW−T
Bk

eAtdt

Also, by denoting that B̂k+1 = Bk − η∆Bk and ∆Bk = T̂k · ∇E(Bk) = T̂k · F (Bk) ·Bk, we have

T̂ T
k = T̂k, FT (Bk) = F (Bk)
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and

tr(∆Bk
TBkB

T
k Bk) = tr(BT

k ∆BkB
T
k Bk)

= tr(BT
k Bk∆BT

k Bk)

= tr(BT
k BkB

T
k ∆Bk),

tr(∆Bk
T∆BkB

T
k Bk) = tr(∆BT

k Bk∆BT
k Bk)

= tr(BT
k ∆Bk∆BT

k Bk)

= tr(∆BT
k BkB

T
k ∆Bk)

= tr(BT
k Bk∆BT

k ∆Bk)

= tr(BT
k ∆BkB

T
k ∆Bk)

(29)

and

tr(∆Bk
T∆Bk∆BT

k Bk) = tr(∆BT
k ∆BkB

T
k ∆Bk)

= tr(∆BT
k Bk∆BT

k ∆Bk)

= tr(BT
k ∆Bk∆BT

k ∆Bk)

(30)

Proof. It is easy to obtain that FT (Bk) = F (Bk) and T̂ T
k = T̂k. From the definition of F (Bk) and

∆Bk, we have

tr(∆BT
k BkB

T
k Bk) = tr(BTF (Bk)

T T̂ T
k BkB

T
k Bk)

= tr(BTF (Bk)T̂kBkB
T
k Bk)

= tr(BT T̂kF (Bk)BkB
T
k Bk)

= tr(BT
k ∆BkB

T
k Bk).

(31)

Similar to Equation (31), it is easy to obtain Equations (29) and (30). �

Lemma 5. ∀B ∈ R
N×M and B 6= 0, tr2(BTB)

tr(BTBBTB) ≤ M.

Proof. Let Q = BTB ∈ R
M×M , and λi(i = 1, 2, 3, ...,M) be the eigenvalue of Q. Then we have QT =

(BTB)T = BTB = Q, tr(BTB) = tr(Q), tr(BTBBTB) = tr(QTQ) = tr(Q2) and λ2
i (i = 1, 2, 3, ...,M) is

the eigenvalue of Q2.
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Considering L =
∑M

i=1(λi − λ̄)2 ≥ 0, where λ̄ = tr(Q)
M , we obtain

L =
∑M

i=1(λi − λ̄)2

=
∑k

i=1 λ
2
i − 2 ·∑k

i=1 λi · λ̄+Mλ̄2

= tr(Q2)− 2 · tr(Q)λ̄ +Mλ̄2

= tr(Q2)− 2Mλ̄ · λ̄+Mλ̄2

= tr(Q2)−Mλ̄2

= tr(Q2)−M · tr2(Q)
M2

≥ 0

(32)

Thus, we have tr2(Q)
tr(Q2) ≤ M ⇒ tr2(BTB)

tr(BTBBTB) ≤ M.�

Lemma 6. For a controllable (A,B), F (Bk) is a negative definite matrix, where

F (Bk) = −
∫ tf
0

2eA
T tW−T

Bk
eAteA

T tTW−T
Bk

eAtdt (33)

Proof. Let C =
√
2 · eAT tW−T

Bk
eAt, then F (Bk) can be written as F (Bk) = −

∫ tf
0 CTCdt < 0, which

means that F (Bk) is a negative definite matrix. �

Lemma 7. For symmetric matrices X, Y ∈ R
N×N and random matrices U ∈ R

M×N , Z ∈ R
N×M ,

tr(UXY Z) = tr(UY XZ), if ZU is symmetric.

Proof. From tr(QT ) = tr(Q) and tr(QGJ) = tr(GJQ) = tr(JQG), ∀Q, G, J , we have

tr(UXY Z) = tr(XY ZU)

= tr
(

(XY ZU)T
)

= tr
(

(ZU)TY TXT
)

= tr(ZUY X)

= tr(UY XZ).

(34)

�

Theorem 7. For iterative process of OPGM:

B̂k+1 = Bk − η ·
(

IN −BkB
T
k

)

· ∇E(Bk)

Bk+1 =

√

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
· B̂k+1
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where ∇E(Bk) is the gradient of ∇E(B) at B = Bk, we have

∇E(B) = −∂E(B)
∂B = −

∫ tf
0

2eA
T tW−T

B eAtf eA
T tfW−T

B eAtdt · B

(which is given in Equations (2)-(3) in the main paper) is convergent, and E(Bk) converges to an extreme

point E(B∗) where B∗ has orthonormal columns, i.e., B∗TB∗ = IM , if η is sufficiently small.

Proof. We use T̂k, ∇N(Bk) and ∇E(B) to denote (IN − BkB
T
k ),

∂N(Bk)
∂BK

and ∂E(Bk)
∂Bk

respectively.

Our gradient descent method is to minimize E(B) and N(B) simultaneously. The convergence is proven

if we can establish

E(Bk+1)− E(Bk) ≤ 0, and E(Bk) ≥ 0, (35)

and

N(Bk+1)−N(Bk) ≤ 0, and N(Bk) ≥ 0 (36)

From Lemma 5 and the iterative process of OPGM, we have

0 < tr(BT
k+1Bk+1)

= tr

(

(√

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
· B̂k+1

)T (√
tr(B̂T

k+1B̂k+1)
tr(B̂T

k+1B̂k+1B̂T
k+1B̂k+1)

· B̂k+1

)

)

=
tr(B̂T

k+1B̂k+1)
tr(B̂T

k+1B̂k+1B̂T
k+1B̂k+1)

· tr(B̂T
k+1B̂k+1)

≤ M,

(37)

and

tr(BT
k+1Bk+1B

T
k+1Bk+1)

=
tr2(B̂T

k+1B̂k+1)
tr2(B̂T

k+1B̂k+1B̂T
k+1B̂k+1)

· tr
(

B̂T
k+1B̂k+1B̂

T
k+1B̂k+1

)

=
tr2(B̂T

k+1B̂k+1)
tr(B̂T

k+1B̂k+1B̂T
k+1B̂k+1)

= tr(BT
k+1Bk+1)

> 0

(38)

For N(Bk+1), from Equations (37) and (38), we have

N(Bk+1) = tr(BT
k+1Bk+1B

T
k+1Bk+1)− 2tr(BT

k+1Bk+1) +M

= M − tr(BT
k+1Bk+1)

≥ 0.

(39)
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For N(B̂k+1)−N(Bk), we have

∇N(Bk) = ∂N(Bk)
∂Bk

=
∂(tr(BT

k BkB
T
k Bk)−2tr(BT

k Bk)+M)
∂Bk

= 4BkB
T
k Bk − 4Bk

= 4(BkB
T
k − IN )Bk.

(40)

Using Taylor expansion to expand N(B) [55], we have

N(B̂k+1) = N(Bk − η∆Bk)

= N(Bk)− ηtr(∇N(Bk)
T ·∆Bk)

= N(Bk)− ηtr
(

(

4(BkB
T
k − IN )Bk

)T T̂kF (Bk)Bk

)

= N(Bk)− 4η · tr
(

BT
k (BkB

T
k − IN )(IN −BkB

T
k )F (Bk)Bk

)

= N(Bk) + 4η · tr
(

BT
k (IN −BkB

T
k )(IN −BkB

T
k )F (Bk)Bk

)

.

(41)

From Lemma 6 and Lemma 7, Equation (41) can be written as

N(B̂k+1)−N(Bk) = 4η · tr
(

BT
k (IN −BkB

T
k )(IN −BkB

T
k )F (Bk)Bk

)

= 4η · tr
(

BT
k (IN −BkB

T
k )F (Bk)(IN −BkB

T
k )Bk

)

≤ 0.

(42)

as BkB
T
k is symmetric and F (Bk) is symmetric and negative definite.

Regarding N(Bk+1)−N(B̂k+1), we have

N(Bk+1)

= N

(√

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
· B̂k+1

)

=
tr2(B̂T

k+1B̂k+1)
tr2(B̂T

k+1B̂k+1B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂

T
k+1B̂k+1)− 2

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
tr(B̂T

k+1B̂k+1) +M

= M − tr2(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
.

(43)

Thus,

N(Bk+1)−N(B̂k+1)

= M − tr2(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
−
(

tr(B̂T
k+1B̂k+1B̂

T
k+1B̂k+1)− 2tr(B̂T

k+1B̂k+1) +M
)

= 2tr(B̂T
k+1B̂k+1)−

tr2(B̂T
k+1B̂k+1)

tr(B̂T
k+1

B̂k+1B̂T
k+1

B̂k+1)
− tr(B̂T

k+1B̂k+1B̂
T
k+1B̂k+1)

= − (tr(B̂T
k+1B̂k+1B̂

T
k+1B̂k+1)−tr(B̂T

k+1B̂k+1))
2

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)

≤ 0.

(44)
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From Equations (42) and (44), we have

N(Bk+1)−N(Bk) = N(Bk+1)−N(B̂k+1) +N(B̂k+1)−N(Bk) ≤ 0. (45)

Thus the first inequality in (36) is proven. Now letting Q = BTB for Lemma 2, N(B) becomes a

convex function of Q. Note that since N(Q) has a quadratic form, it has a unique global optimal point

corresponding to Q = BTB = I. Then, from Equations (39) and (45), the convergence of N(B) is proven.

This means that for any ǫ > 0, ∃K ∈ N such that ∀k > K, |N(Bk)| < ǫ, and this can be also written as

N(Bk) = o(η) or BT
k Bk = IM + o(η) (46)

For E(B), we have

E(Bk) = E{
∫ tf
0

uT (t, Bk)u(t, Bk)dt}

= E{
∫ tf
0
||u(t, Bk)||2dt}

≥ 0.

(47)

To prove that E(Bk+1) − E(Bk) ≤ 0, we first use Bk to express Bk+1 directly. By letting ∆Bk =

T̂k · ∇E(Bk), we have

Bk+1

=

√

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
· B̂k+1

=

√

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
· (Bk − η ·∆Bk)

=
√

tr((Bk−η∆Bk)T (Bk−η∆Bk))
tr((Bk−η∆Bk)T (Bk−η∆Bk)(Bk−η∆Bk)T (Bk−η∆Bk))

· (Bk − η ·∆Bk)

=
(

tr(BT
k Bk − η∆BT

k Bk − ηBT
k ∆Bk + η2∆BT

k ∆Bk)
)

1
2 ·
(

tr(BT
k BkB

T
k Bk −∆BT

k BkB
T
k Bk −BT

k ∆BkB
T
k Bk

+∆BT
k ∆BkB

T
k Bk −BT

k Bk∆BT
k Bk +∆BT

k Bk∆BT
k Bk +BT

k ∆Bk∆BT
k Bk

−∆BT
k ∆Bk∆BT

k Bk −BT
k BkB

T
k ∆Bk

+∆BT
k BkB

T
k ∆Bk +BT

k ∆BkB
T
k ∆Bk −∆BT

k ∆BkB
T
k ∆Bk +BT

k Bk∆BT
k ∆Bk

−∆BT
k Bk∆BT

k ∆Bk −BT
k ∆Bk∆BT

k ∆Bk +∆BT
k ∆Bk∆BT

k ∆Bk)

)− 1
2

· (Bk − η ·∆Bk)

(48)
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From Lemma 2 and Lemma 3, Equation (48) can be written as

Bk+1

=
(

tr(BT
k Bk)− 2ηtr(∆BT

k Bk) + η2tr(∆BT
k ∆Bk)

)
1
2 · (tr(BT

k BkB
T
k Bk)− 4ηtr(∆BT

k BkB
T
k Bk)

+ 6η2tr(∆BT
k ∆BkB

T
k Bk)− 4η3tr(∆BT

k ∆Bk∆BT
k Bk) + η4tr(∆BT

k ∆Bk∆BT
k ∆Bk))

− 1
2 · (Bk − η ·∆Bk)

=
(

tr(BT
k Bk)

(

1− 2η
tr(∆BT

k Bk)

tr(BT
k
Bk)

+ o(η)
))

1
2 ·
(

tr(BT
k BkB

T
k Bk)

(

1− 4η
tr(∆BT

k BkB
T
k Bk)

tr(BT
k
BkBT

k
Bk)

+ o(η)
))− 1

2 · (Bk − η ·∆Bk)

= tr
1
2 (BT

k Bk)
(

1− η
tr(∆BT

k Bk)

tr(BT
k Bk)

+ o(η)
)

· tr− 1
2 (BT

k BkB
T
k Bk)

(

1 + 2η
tr(∆BT

k BkB
T
k Bk)

tr(BT
k BkBT

k Bk)
+ o(η)

)

· (Bk − η ·∆Bk)

=

√

tr(BT
k Bk)

tr(BT
k BkBT

k Bk)

(

1− η
tr(∆BT

k Bk)

tr(BT
k Bk)

+ 2η
tr(∆BT

k BkB
T
k Bk)

tr(BT
k BkBT

k Bk)
+ o(η)

)

· (Bk − η ·∆Bk)

(49)

By using Equation (38) we have

√

tr(BT
k Bk)

tr(BT
k BkBT

k Bk)
= 1. Then applying Taylor expansion to expand

E(B) [55], we have

E(Bk+2)

= E

(

(

1− η
tr(∆BT

k+1Bk+1)

tr(BT
k+1Bk+1)

+ 2η
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1BT

k+1Bk+1)
+ o(η)

)

· (Bk+1 − η ·∆Bk+1)

)

= E

(

Bk+1 −
(

η
tr(∆BT

k+1Bk+1)

tr(BT
k+1Bk+1)

− 2η
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1BT

k+1Bk+1)

)

· Bk+1 − η∆Bk+1 + o(η)

)

= E(Bk+1)− ηtr

(

∇E
T (Bk+1)

[

( tr(∆BT
k+1Bk+1)

tr(BT
k+1Bk+1)

− 2
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1BT

k+1Bk+1)

)

Bk+1 +∆Bk+1

]

)

+ o(η)

= E(Bk+1)− η
(

tr(∆BT
k+1Bk+1)

tr(BT
k+1Bk+1)

− 2
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1BT

k+1Bk+1)

)

· tr(∇E
T (Bk+1)Bk+1)− ηtr(∇E

T (Bk+1)∆Bk+1) + o(η)

= E(Bk+1)− η
(

tr(∆BT
k+1Bk+1)

tr(BT
k+1Bk+1)

− 2
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1BT

k+1Bk+1)

)

· tr(BT
k+1F

T (Bk+1)Bk+1)

− ηtr(BT
k+1F

T (Bk+1)T̃k+1F (Bk+1)Bk+1) + o(η)

(50)

From Equation (46), ∃K ∈ N, ∀k > K, we have BT
k Bk = IM + o(η). Then, it follows that

T̂ 2
k+1 = (IN −Bk+1B

T
k+1)

2

= IN −Bk+1B
T
k+1 −Bk+1B

T
k+1 + Bk+1B

T
k+1Bk+1B

T
k+1

= IN −Bk+1B
T
k+1 −Bk+1B

T
k+1 + Bk+1 (IM + o(η))BT

k+1

= IN −Bk+1B
T
k+1 + o(η)

= T̂k+1 + o(η).

(51)

Thus,

ηtr(BT
k+1F

T (Bk+1)T̂k+1F (Bk+1)Bk+1) = ηtr
(

BT
k+1F

T (Bk+1)
(

T̂ 2
k+1 + o(η)

)

F (Bk+1)Bk+1

)

= ηtr
(

BT
k+1F

T (Bk+1)T̂ 2
k+1F (Bk+1)Bk+1

)

+ o(η).
(52)
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Likewise, for

η
(

tr(∆BT
k+1Bk+1)

tr(BT
k+1Bk+1)

− 2
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1B

T
k+1Bk+1)

)

· tr(BT
k+1F

T (Bk+1)Bk+1)

we have

tr(∆BT
k+1Bk+1) = tr

(

BT
k+1F

T (Bk+1)(IN −Bk+1B
T
k+1)Bk+1

)

= tr
(

BT
k+1F

T (Bk+1)(Bk+1 −Bk+1B
T
k+1Bk+1)

)

= tr
(

BT
k+1F

T (Bk+1) (Bk+1 −Bk+1(IM + o(η)))
)

= tr
(

BT
k+1F

T (Bk+1) (Bk+1 −Bk+1 + o(η))
)

= o(η),

(53)

and

tr(∆BT
k+1Bk+1B

T
k+1Bk+1) = tr

(

BT
k+1F

T (Bk+1)(IN −Bk+1B
T
k+1) ·Bk+1B

T
k+1Bk+1

)

= tr

(

BT
k+1F

T (Bk+1)(Bk+1 −Bk+1B
T
k+1Bk+1) · BT

k+1Bk+1

)

= tr

(

BT
k+1F

T (Bk+1) (Bk+1 −Bk+1(IM + o(η))) · BT
k+1Bk+1

)

= tr

(

BT
k+1F

T (Bk+1) (Bk+1 −Bk+1 + o(η)) ·BT
k+1Bk+1

)

= o(η).

(54)

Thus, we have

η
(

tr(∆BT
k+1Bk+1)

tr(BT
k+1Bk+1)

− 2
tr(∆BT

k+1Bk+1B
T
k+1Bk+1)

tr(BT
k+1Bk+1BT

k+1Bk+1)

)

· tr(BT
k+1F

T (Bk+1)Bk+1) = o(η). (55)

With Equations (52) and (55), Equation (50) can be expressed as ∃K ∈ N, ∀k > K,

E(Bk+2)− E(Bk+1) = −ηtr
(

BT
k+1F

T (Bk+1)T̂ 2
k+1F (Bk+1)Bk+1

)

+ o(η) ≤ 0. (56)

From Equations (47) and (56), the convergence of E(Bk) is shown for a sufficiently small η. By combining

the results shown in Equation (46), E(Bk) converges to E(B∗) with B∗ being an orthonormal matrix. �

Remarks: The update rule from B̂k+1 to Bk+1 in Equation (3) of the main paper is explained as

follows. We define a norm function as

N(B) = tr
(

(

BTB − IM
)T (

BTB − IM
)

)

= tr(BTBBTB)− 2tr(BTB) +M (57)

Note that ∀B ∈ R
N×M , BTB = IM is equivalent to N(B) = 0. Let Bk+1 = ρk · B̂k+1. It is seen that

there is no exact solution ρk satisfying that N(Bk+1) = 0 since it is generally impossible to drag a tensor
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of B on the boundary constraints by just automatic scaling. In the iteration, we minimize N(Bk+1) by

solving
∂N(ρk·B̂k+1)

∂ρk
= 0, which gives

N(ρk) = ρ4ktr(B̂
T
k+1B̂k+1B̂

T
k+1B̂k+1)− 2ρ2ktr(B̂

T
k+1B̂k+1) +M (58)

Then we can obtain ρk =

√

tr(B̂T
k+1B̂k+1)

tr(B̂T
k+1B̂k+1B̂T

k+1B̂k+1)
. �

3.3 Control node selection

Note that both B0 and B∗ obtained by OPGM imply that each node can be connected to each of the M

controllers, which may not yield a practical solution for large-size networks. A practical and interesting

problem therefore is to find the minimum cost control solution under the constraint that only a small

set of nodes can be directly connected to external controllers. We term this small node set as control

node set and consider the case where each control node can be connected to only a unique controller for

achieving the lowest connection complexity.

For this case, we propose a very simple approach to derive the control node set from B∗. Note that

the absolute value of link weight
∣

∣B∗
ij

∣

∣ reflects the importance of the node i for the j−th controller. Define

an importance index vector

r = [r1 ... ri ... rN ]
max(r1,...,ri,...,rN)

(59)

where ri =
∑

j

∣

∣B∗
ij

∣

∣ for i = 1, ..., N . Clearly, we have max{r} = 1. The importance index of node i

evaluates the relative importance of this node in achieving the minimum cost control objective. We form

the control node set as the first M nodes with the largest importance index values. The corresponding

connection matrix, denoted as B∗, can be easily constructed: if a node i is the k−th node of the control

node set, we set B∗
i,k = 1; otherwise, B∗

i,k = 0.

3.4 Comparisons between PGM and OPGM

Note that the matrix optimization model in the main paper with orthornormal boundary constraint

BTB = IM is revisited from the trace boundary constraint tr(BTB) = M in one of our most recent

work in [52], where projected gradient method (PGM) is proposed to locate the control nodes and then

determine input matrix B.

Our finding is that the orthornormal boundary condition slightly outperforms trace boundary con-

straint for the problem of optimal cost control of complex networks since the control nodes selected by

OPGM is more concentrated on the nodes that divide an elementary dilation equally for achieving a

lower energy cost. The experiment is done in a dilation topology with N = 6,M = 3. To ensure the
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Figure S17: Control nodes by OPGM and PGM on an elementary dilation. The length of the
dilation is N = 6 and the number of control node is M = 3.

controllability of the networks in Figure S17, node 1 must be selected as a control node. When node 1

is fixed as a control node, there are totally 7 types of control nodes selection method which ensure the

controllability of the network. Among them, control node set {node 1, node 3, node 5} divides the dilation

equally, and it consumes the lowest energy. By experimenting the projected gradient algorithms under

different boundary constraints repeatedly, we could obtain the estimated probability for each control node

set selection method. The experimental results are presented in Table S4.

We observe that OPGM tends to divide the dilation equally with a higher probability for consuming

less energy. By repeating the simulation 10000 times, the probability for selecting {node 1, node 3, node 5}

is around 44.63% for OPGM, which is higher than that of PGM.

In addition, if we orthogonalize B0 to satisfy that BT
0 B0 = IM , the performance of OPGM can be

further improved as the selected control nodes are more concentrated on node set {node 1, node 3, node 5}.

This implies that although convergence of OPGM is guaranteed under arbitrary initial B0, having an

orthogonalized initial B0 helps improve the performance significantly.

Table S4: Comparisons of OPGM and PGM on an elementary dilation. Control nodes selected
by OPGM are more concentrated on the nodes dividing the elementary dilation equally. The length of
the dilation is N = 6 and the number of control node is M = 3. For conciseness, {node 1, node 3, node 5}
is written as (1, 3, 5).
Algorithm Initial condition (1,3,5) (1,2,5) (1,2,4) (1,4,5) (1,2,3) (1,5,6) (1,2,6)

PGM tr(BT
0 B0) = M 39.95% 16.60% 12.06% 14.79% 11.54% 2.98% 2.08%

OPGM Arbitrary 44.63% 14.70% 12.26% 14.02% 11.61% 1.74% 1.05%
OPGM BT

0 B0 = IM 65.685% 34.229% 0.057% 0.029% 0.000% 0.000% 0.000%

4 Minimizing Longest Control Path

For the illustration of MLCP, first locate original NLM
D directed control paths (DCPs) and NC circled

control paths (CCPs) using LM algorithm. Denote the length of each DCP and CCP as Li for 1 ≤ i ≤

57



NLM
D , and Cj for 1 ≤ j ≤ NC , respectively. In implementing MLCP, it is assumed that all nodes have

the same information that LM obtained. The steps of MLCP are presented as follows.

4.1 MLCP Algorithm

The detailed flow of MLCP algorithm is as follows:

Step 1. Randomly select a CCP (j−th path, for example), and break it by removing one of its links;

then imagine that it is connected to the end node of a randomly selected LCP (i−th path, for example)

to form a new DCP. Whether a physical link exists between the end node of the broken CCP and the

end of the randomly selected LCP does not matter, as we shall see more clearly later. Update the length

of the path to Li + Cj → Li; repeat this process until there is no CCP left. Finally we shall still have

NLM
D DCPs.

Step 2. Determine the assignment of the m0 new external control inputs to these newly formed DCPs.

Suppose that each path is assigned ni control inputs, obviously we have
∑

i ni = m0:

Initialize ni = 0 for all 1 ≤ i ≤ NLM
D

for k = 1, 2, ...,m0

if Li

1+ni
attains the maximum at the i-th DCP.

then ni = ni + 1

end

end

Step 3. For each DCP, mark the κ · p Li

1+κq + 1 th node as an independent control node (refer to the

concept definition section) for the i−th path where κ = 0, 1, . . . , ni. Totally there are NLM
D +m0 marked

nodes and each should be connected to an external control input.

Step 4. If there is no independent control node in one of the original CCPs, randomly select one node

and mark it as a dependent control node, which is connected a nearest existing external input.

As can be seen from the above discussions, only a small set of nodes are determined as control nodes

and to be connected to external inputs, and each control node can only be binary connected to one of the

M external input, which yields a practical solution for large-size networks. For more detailed information,

please refer to the following example.

4.2 Example illustration

A simple example is presented in Figure S18 to illustrate the implementation of the MLCP algorithm.

As shown in Figure S18(a), the network has 15 nodes and 18 edges. Now we have m0 = 2 extra external

control inputs. After LM algorithm, there are four segments left as shown in Figure S18(b), i.e. two
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Figure S18: An example of MLCP algorithm. (a) The origin topology structure of the network.
(b) After the LM algorithm, only matches are left. Thus the network is decomposed into four segments,
which include blue and brown DCPs, and green and purple CCPs. (c) At the 1st step, green CCP is
selected to be broken. Edge (7 → 9) is removed. A directed dashed arrow from node 15 to node 9 is
added and C1 becomes the tail part of L2. (d) The purple CCP is selected to be broken. Edge (11 → 12)
is removed. Node 5 is assumed to be connected to Node 12. (e) At the beginning of the 2nd step, n1 = 0
and n2 = 0. (f) Because L1

1+n1
= 8 > L2

1+n2
= 7, the first extra external control input is connected to

L1. Then n1 = 1 and L1

1+n1
= 4. (g) Because L1

1+n1
= 4 < L2

1+n2
= 7, the second extra external control

input is connected to L2. Then n2 = 1 and L2

1+n2
= 3.5. (h) Node 1, node 5, node 8 and node 13 are set

as independent control nodes which are colored in orange. Node 12 is set as a dependent control node
colored in yellow. (i) Back to the origin topology of the network, external control inputs are denoted as
carmine five-pointed stars.
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DCPs and two CCPs. The length of the blue DCP is 5, and the length of the brown DCP is 3. The

length of the green CCP is 4, and the length of the purple CCP is 3.

Now we use the MLCP algorithm to locate the external control inputs. In the first step, we randomly

select one CCP. In this example as shown in Figure S18(c), we choose the green CCP denoted as C1.

Break it by randomly removing one of its edges. In this example, edge (7 → 9) is removed. Then imagine

it is connected to the end node of a randomly selected DCP. In this example, brown DCP is selected.

An directed edge is added from the end node of the brown path to the origin of broken circle (i.e., green

path). The added edge is denoted as a directed dashed line. Now the green CCP becomes the tail part

of the brown DCP, which increases L2 by C2. Thus now L2 = 4 + 3 = 7.

There is still one CCP left, i.e., the purple CCP as shown in Figure S18(d). Similarly as before, we

break it by randomly removing one edge of it, say, edge (11 → 12), and then add a directed dashed from

node 5 to node 12. Now L1 = 5+3 = 8. As there is no CCP left, the MLCP algorithm goes to the second

step.

At this step, we allocate the extra external control inputs. At the beginning, the blue DCP has n1 = 0

extra external control inputs, and the brown DCP has n2 = 0. As shown in Figure S18(e), the blue DCP

has a larger Li

1+ni
. Thus the first extra external control input is connected to the blue DCP.

Afterwards, n1 = 1 and n2 is still zero, and the brown DCP now has a larger Li

1+ni
as shown in Figure

S18(f). Therefore, the second external control input is connected to the brown DCP. Now n1 = 1 and

n2 = 1, as shown in Figure S18(g).

The third step is to distribute the external control inputs as uniformly as possible in each DCP. For

the blue DCP, it has two external control inputs. The first one has to be connected to the origin of the

DCP to ensure the structural controllability. The second one is set on node 5 to divide DCP as evenly

as possible. Because node 12, node 10 and node 11 which originally consist the purple CCP all lack

independent control inputs directly setting on them, we randomly choose one node from the purple CCP

(in this example, node 12 is selected which is colored in yellow as shown in Figure S18(h)) and connect

the nearest external control input in the blue DCP, which is the control input set on node 5, to node 12.

As for the brown DCP, similarly as before we set the origin and node 8 as the independent control

nodes. The result is shown in Figure S18(h). All the independent control nodes are colored in orange.

At last, we allocate the four external control inputs into the network as shown in Figure S18(i).

External control inputs are denoted as carmine five-pointed stars.
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Table S5: Network Experiment Results. NLM
D represents the number of driver nodes found by LM,

with which the network becomes controllable. m0 represents the number of extra control inputs added
into network. N.A denotes “not available” because PGM and OPGM are not applicable to large size
networks due to the computational complexity issues. The elements in the input matrix B∗ are allowed
to be real values for PGM and OPGM but only binary values for MLCP and RAM.

Network Nodes Edges ND NLM
D m0

Energy Cost
PGM OPGM MLCP RAM

circuit-s208 122 189 29 29 48 3.42E02 3.39E02 9.39E02 6.48E09
circuit-s420 252 399 59 59 74 1.32E03 1.22E03 1.41E04 6.61E10
circuit-s838 512 819 119 119 178 2.57E03 1.94E03 4.75E03 2.86E10
Maspalomas 30 87 9 9 6 1.55E02 1.65E02 3.52E03 1.05E07

Rhode 25 58 8 8 7 0.83E02 1.00E02 4.20E02 1.39E05
p2p-Gnutella04 10876 39994 4640 4700 3940 N.A N.A 4.64E04 3.29E07
p2p-Gnutella25 22687 54705 16478 16478 2000 N.A N.A 1.89E05 3.06E08
E-R Network 100 299 19 19 31 3.95E02 3.92E02 3.11E03 1.98E05

500 1492 87 87 176 1.64E03 1.80E03 9.0E03 2.62E07
1000 3033 182 182 528 N.A N.A 5.15E03 2.76E05

B-A Network 100 341 21 21 20 1.75E03 1.39E03 2.39E04 6.59E07
500 1548 144 144 100 2.81E03 2.56E03 3.35E04 1.48E07
1000 3039 263 263 355 N.A N.A 9.61E03 5.53E06

physician-discuss 231 498 85 85 100 3.80E02 3.18E02 9.22E02 4.50E04
physician-friend 228 506 52 52 66 1.01E03 9.40E02 2.37E04 1.3612E06

corp-own 7253 6713 5777 5777 800 N.A N.A 1.65E04 3.26E06

Table S6: Dense Network Experiment Results. NLM
D represents the number of driver nodes found

by LM, with which the network becomes controllable. m0 represents the extra number of control inputs
added into network.

Network Nodes Edges ND NLM
D m0

Energy Cost
PGM OPGM MLCP RAM

us 1574 28236 581 588 493 N.A N.A 8.49E01 1.36E02
CrystalC 24 125 10 10 7 0.48E02 0.40E02 3.71E03 4.48E03

E-R Network 200 1534 2 2 80 1.00E03 9.73E02 1.49E04 1.73E04
B-A Network 200 1531 2 2 80 1.12E03 1.07E03 1.93E04 2.16E04

celegans 297 2345 49 49 121 7.87E02 6.84E02 7.33E03 1.55E04
cons-frequency 46 879 2 2 15 0.05E02 0.05E02 1.23E02 1.27E02
Wiki-Vote 7115 103689 4736 4736 1000 N.A N.A 3.50E03 9.40E03
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4.3 Performance of Minimizing Longest Control Path

MLCP is applied to a few synthetic networks including the ER network with Poisson nodal-degree dis-

tribution [24], the BA network with power-law nodal-degree distribution [25] [26], and a large number

of real-life networks. To evaluate the performance of the MLCP method, we let it be compared with a

method with random connections between controllers and network nodes. In order to generate a random

solution that ensures network controllability, we first apply the LM algorithm to find one set of driver

nodes, which is very close to the optimal solutions found by MM as shown in Table S2 and S3, Section

2. Then we randomly choose m0 additional nodes in the network to construct the control node set. This

simple method is termed as Random Allocation Method (RAM) in the main paper. For MLCP, similarly

we use the LM algorithm to generate the driver node set and then use MLCP to allocate the m0 additional

control nodes. We calculate the control costs of network corresponding to MLCP and RAM solutions,

respectively.

The results on both synthetic networks and real-life networks are summarized in Tables S5-S6. Data

of the topologies of the real-life networks is freely available in the cited references.

From Table S5, we observe that MLCP performs comparably against OPGM though each control

node is restricted to be connected to a single external input, and it steadily outperforms RAM by

an average of about four orders of magnitude. From Table S6, however, the observations are rather

different. As the listed networks are relatively dense networks, the control costs obtained by MLCP are

averagely only about half less than those obtained by RAM. Overall, similar conclusions have held in all

our extensive simulations: MLCP significantly outperforms RAM in low-degree networks while the two

methods perform almost indistinguishably as the networks become dense.

4.4 Experiments and Analysis for Figure 4(c) in the Main Paper

To demonstrate that MLCP performs much better than RAM in sparse networks, while the performances

of the two methods become less distinguishable as the mean degree of the network becomes higher, we

illustrate on one case in an evolving network with an increasing mean nodal degree. The results are

presented in Figure 4(c) in the main paper. The network evolution and the simulation testing method

are summarized as follows: (1) generate an ER network with an mean degree of about µ = 1; (2) randomly

choose a pair of nodes and add one directed edge between them; (3) using MLCP and RAM to assign

M = NLM
D + m0 external control inputs into the network; and (4) calculate the control costs of the

network corresponding to MLCP and RAM solutions, respectively. Repeat the steps (2)-(4) until the

mean degree equals 14.

For a sparse network with a low mean degree, the number of driver nodes has to be relatively high
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to ensure structural controllability, which leads to a relatively low control cost. As the mean degree in-

creases, the number of driver nodes needed decreases and the average/maximum length of control paths

gradually increases, which interestingly drives up the control cost as we set m0 a constant value of 80

in this set of experiments. This explains the increasing control cost with the mean degree that can be

observed in Figure 4(c). When the mean degree of the network is further increased, the number of driver

nodes NLM
D decreases insignificantly but adding edges makes the average/maximum length of control

paths become shorter, which reduces the control cost. Overall, the conclusion is that either having a

larger number of controllers or a higher network density helps shorten the average/maximum control

path length, and consequently lowers network control cost. As to the comparisons between MLCP and

RAM, we see that MLCP outperforms RAM by up to eight orders of magnitude in sparse network, while

the two methods perform comparably when the mean in-/out-degree of the network is larger than 6.
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