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SI Appendix 1: Analytical approach

Given an infinite random network with an initial degree distribution of p1(k). In the ith

time step, for those nodes with degrees lower than ks or having lost more than q proportion
of their neighbors, they may be pruned following an arbitrary probability fi(k). To track
the proportion of neighbors a node has lost, we introduce a degree transition matrix Di

where the element Di
jk keeps record of the probability that a node with an original degree

j has a degree k at the beginning of the ith time step.
Let pi(k) be the probability that a node randomly chosen at the beginning of the ith

time step has a degree k at that moment, p∗i (k) be the probability that a node randomly
chosen at the beginning of the ith time step has a degree k at that moment and does not
get pruned in this time step, and pnew

i (k) the probability that a node randomly chosen at
the beginning of the ith time step has a degree k at the end of this time step. θi denotes
the probability that a randomly followed edge at the beginning of the ith time step points
to a node not getting pruned in this time step. For the degree transition matrix Di, set
the initial matrix D1 as an identity matrix.

For the pruning process in the ith time step, we have

p∗i (k) = pi(k)γi(k), (1)

where γi(k) denotes the proportion of the nodes with a degree k at the beginning of the
ith time step which are not pruned in this time step. We have

γi(k) =
kmax
∑

j=k

ϕi
kjµ(k, j), (2)

where ϕi
kj denotes the probability that a node with a degree k at the beginning of the ith

time step has a degree j in the original network, and

µ(k, j) =

{

1 k ≥ (1 − q)j and k ≥ ks,
1 − fi(k) otherwise.

(3)

By following a randomly selected edge at the beginning of the ith time step, the probability
of hitting a node not pruned in this time step is:

θi =

∑

k kp∗i (k)
∑

k kpi(k)
. (4)

And the probability that a node randomly selected at the beginning of the ith time step
has a degree k at the end of this time step, before normalization, can be calculated as:

pnew
i (k) =

kmax
∑

k′=k

p∗i (k
′)

(

k′

k′ − k

)

θk
i (1 − θi)

k′
−k. (5)
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As later will be shown in equation (12), pnew
i (k), after normalization, shall show the degree

distribution at the beginning of the (i + 1)th time step.
The time-step degree transition matrix T i, where the element T i

k′k denotes the proba-
bility that a node with a degree k′ at the beginning of the ith time step ends up with a
degree k at the end of it, can be derived as:

T i
k′k =

(

k′

k′ − k

)

θk
i (1 − θi)

k′
−k. (6)

Define a matrix U i where the element U i
jk denotes the probability that an original degree

j node has a degree k at the beginning of the ith time step and does not leave the network
at the end of this time step. We have

U i
jk = Di

jkµ(j, k). (7)

The degree transition matrix Di+1 hence can be calculated by the following matrix mul-
tiplication:

Di+1 = U iT i. (8)

The probability that a node with a degree k at the beginning of the (i + 1)th time step
had a degree j in the original network is

ϕi+1

kj = p1(j)D
i+1

jk /c1(k, j), (9)

where p1(j) is the original degree distribution and c1(k, i) is the normalization factor that

c1(k, j) =
kmax
∑

j=1

p1(j)D
i+1

jk . (10)

The proportion of nodes remaining in the network at the end of the ith time step compared
with the network at the beginning of this time step is

P ∗

i =
∑

k

pnew
i (k). (11)

Normalizing pnew
i (k), we get the degree distribution of the network at the beginning of

the (i + 1)th time step:
pi+1(k) = pnew

i (k)/P ∗

i . (12)

The proportion of nodes remaining in the network after i time steps, compared with the
original network, can be calculated as:

Pi =

i
∏

m=1

P ∗

m. (13)
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The degree transition matrix and the proportion of nodes remaining in the network after
each time step can be calculated iteratively using equations (1)-(13).

As mentioned in the main paper, this analysis can be easily extended to a more general
case where nodes leave the network following an arbitrary criterion φ, including that of the
classic k-core problem, as long as the new criterion can be reflected by properly changing
µ(k, j) in equation (3) accordingly.
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SI Appendix 2: Cascade threshold of real-life networks

As pointed out in the subsection “Measuring the resilience of some real-life systems
against KQ-cascade”, the real-life networks may have multiple pseudo-steady states. This
makes finding their threshold values rather tricky, since there may exist some strong cores
persisting to exist when most network nodes have left. To get a sense of the resilience of
real-life networks, we make the simple definition that the threshold qth is the maximum
value of q leading to no more than 10% of nodes remaining in the final state of the network.
As mentioned in the main paper, we simulate 10 rounds for each real-life network and
average the results. For each round of simulation, we increase qth from 0 at a step length
of 0.01.

Figure S1 shows the comparison of threshold qth for three real-life networks. One thing
in common for these real-life networks is that with a very small value of ks, the networks
already start losing users, since they all have a significant portion of low-degree nodes. As
to their behaviors under KQ-cascade, they perform more like scale-free and exponential
networks than ER random networks.

Closer observations reveal that the three real-life network samples have different re-
silience performances under KQ cascade: with an increasing value of ks, qth increases
slowly in Orkut, but much faster in YouTube; LiveJournal performs in between of these
two systems. Hence the observation is that the YouTube sample appears to be the most
fragile one among the three: the surviving proportion of the KQ-cascade in YouTube
is highly sensitive to the value of ks. Orkut sample, on the other hand, demonstrates
opposite behaviors: even when a big mistake has been made leading to a relatively high
value of ks, the system still has a rather low threshold value of q, implying that it may
still be able to stand a strong competition. LiveJournal performs in between of these two
systems.

Note that the resilience of the three real-life networks is measured in their sampled
subnets, which may not necessarily reflect the resilience of the whole networks. Some
further discussions on the relationship between the resilience of randomly sampled subnets
and their corresponding whole networks can be found in SI Appendix 6.
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SI Appendix 3: Evolution of nodal degree distribution during
KQ-cascade

Illustration of the evolution of nodal degree distribution during the KQ-cascade helps
reveal the cascade dynamics in detail. We shall study on both cases where the network
finally crashes to nonexistence or survives with a nontrivial portion of nodes remaining,
respectively.

Figures S2-S7 illustrate the evolution of p(k) for different values of k during the cascade
process in the ER random network (Figures S2 and S3), random exponential network
(Figures S4 and S5) and random scale-free network (Figures S6 and S7), respectively.
Figures S2, S4 and S6 show the results where the networks finally crash; while Figures
S3, S5 and S7 are for the cases where the networks survive. In addition, Figures S8-
S13 illustrate the degree distribution of the remaining nodes at different time during the
cascade process. All the three networks adopt the same parameters as those in the main
paper. Both the analytical and simulation results are presented and the simulation results
show the average in 10 different networks. As we can see, the theoretical results match
very well with simulation results.

Our main observations on the evolution of nodal degree distribution during a KQ-
cascade in these networks can be briefly summarized as follows:

For the case where networks survive with a non-trivial proportion of nodes, for k
slightly higher than ks, p(k) increases and then sustains, while p(k) for larger values
of k decreases (refer to Figures S3, S5 and S7). Such can be easily understood:
many high-degree nodes lose some of their neighbors and become medium-degree
nodes. Medium-degree nodes, on the other hand, will stay rather stable as long as
the vulnerable nodes do not percolate into a giant cluster.

For the case where networks finally crash, the transition of nodal degrees appears
to be more complicated (refer to Figures S2, S4 and S6). Specifically, for k ≤ ks,
p(k) firstly decreases and then booms up right before the “sudden crash”, whereas
for k slightly larger than ks, p(k) firstly slightly increases and starts to quickly
decrease at the beginning of sudden crash. Such observations help explain the
pseudo-steady state and the sudden crash of the networks: at the beginning, nodes
with degrees lower than ks quickly leave, making high-degree and medium-degree
nodes lose their neighbors and gradually become medium- or low-degree nodes. The
vulnerable nodes thus gradually grow into a giant component, allowing the sudden
crash to finally happen.

Another interesting observation, which applies to both cases whether networks finally
crash or survive, is that even during the sudden crash, the degree distribution of the
networks still roughly keeps their “original shapes”. Specifically, an ER random net-
work shall roughly still have a Poisson degree distribution though with a lower average
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degree (Figures S8 and S9), an exponential network will roughly keep its exponential
nodal degree distribution (Figures S10 and S11), and a scale-free network would keep its
power-law degree distribution with the power-law exponent remaining almost unchanged
(Figures S12 and S13). Looking back to Figures S2 to S7, this may not be a surprise:
as we can observe, regardless of whether the networks finally crash or survive, the pro-
portion of medium-degree nodes increases and decreases following a similar pattern at
different degrees. This helps keep the distribution pattern of the remaining nodes roughly
unchanged.
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SI Appendix 4: Degree distribution and network resilience

In the main paper, it was shown that by using the proposed analysis, the threshold
values of q and ks could be obtained adopting a simple trial-and-error approach. Here we
carry out some further studies on how the resilience of the network may be affected by
network degree distribution. We use three random network models with the same average
degree z = 20 and size of N = 104: ER random network, random exponential network
with a degree cut-off of 100, and random scale-free network with γ = 2, the minimum
degree of 7 and degree cut-off of 100 (which makes its average degree to be about 20).

Figures S14, S15 and S16 show the cascade size in the three networks, respectively.
The results are the average in 10 random networks for each case. Figure S17 shows that
the three networks, though with the same average degree, demonstrate different levels
of resilience in different situations: for a small value of ks, the q required to crash the
network has its lowest value in the ER random network and highest one in the scale-free
network. This means that when an initial event (e.g., a mistake as that in the Friendster’s
crash) does not generate strong impacts, among the three networks, the most and least
resilient ones are the ER random network and the scale-free network respectively. When
an impactful event happens leading to a high value of ks, however, the ER random network
may crash immediately even with a high value of q: the event alone is fatal to the ER
random network. The scale-free network, on the other hand, performs totally differently:
it can sustain rather strong initial impacts and still keep a non-trivial proportion of its
nodes. For both cases, the performance of the exponential network lies in between the
other two networks. Comparing the performances of the three networks, we can see that
the uniform random networks may be sensitive to an initial event leading to an increase
in the value ks. If the impacts of such an event are not fatal, the network may appear to
be rather stable; otherwise it may crash almost immediately. On the contrary, networks
with more heterogeneous degree distributions may lose their users easily, e.g., by making a
relatively small mistake, yet they have stronger capabilities to survive from strong initial
impacts. This may to a certain extent explain why some social networks, usually known
to be closely resembling scale-free networks, appear to lose their popularity easily yet still
manage to survive over a long period of time with a significantly reduced number of users.

As we have discussed in the main paper, the existence of communities may help further
enhance the fault tolerance of the networks.

We also briefly evaluate the impacts of a few parameter values on cascade threshold
in different networks. Specifically, in the ER random network with degree distribution of
p(k) = (zke−z)/k! and exponential network with degree distribution of p(k) = 1/ze−k/z ,
we calculate the cascade threshold when the average nodal degree z changes from 5 to
50. Figures S18 and S19 show that, for a given value of q, the threshold ks increases
almost linearly with z in these two networks. Larger values of z have been tested and
the conclusion basically still holds. Similar observation has been made via numerical
simulation in [1].
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To evaluate the relation between the cascade threshold and power-law exponent γ in
the scale-free network, we still set the minimum and the maximum nodal degrees of the
network to be 7 and 100 respectively and increase γ from 2 to 2.8 by a step length of
0.2. Figure S20 shows that the threshold kth decreases when γ increases. This is mainly
because that, in scale-free networks with larger values of γ, there are fewer high-degree
nodes while most network nodes are of rather low degrees. These low-degree nodes are
more “vulnerable” under the KQ-cascade, making the network easier to be crashed.
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SI Appendix 5: The speedup loss of individuals in a system crash

Intuitively, the fast decline of a system may trigger an alarm or shake the individuals’
confidence, which may in turn further accelerate the crash. To better understand the
system dynamics under such kind of “accelerated crash”, we study a simple model where
q decreases at a constant rate. Figure S21 illustrates the evolution of the cascade in
a random scale-free network and the real-life Orkut online social network respectively.
For the scale-free network, we assume that ks = 4 and q starts with 0.28. The cascade
processes with q decreasing at different rates are presented. Figure S21 shows that even
a small decreasing rate of 0.002 per time step can significantly accelerate the crash of
the network. The figure also demonstrates that, for cases with a dynamic value of q, our
theoretical analysis results remain valid to achieve satisfactory accuracy. In all the other
networks we have tested, it remains as a valid conclusion that even a slowly decreasing q
significantly accelerates the crash of the systems.
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SI Appendix 6: Can random sampling of a network reflect the
resilience of the original network: a preliminary study

Methods for sampling real-life networks have been extensively studied [2–4]. It is
shown that, though different sampling techniques may have different impacts on accuracy
of the measurements of various parameters in the original networks, in many cases sim-
ple random sampling may approximately reflect the statistical characters of the original
networks, e.g., the power-law exponent of the scale-free networks, and the betweenness
centrality distribution, average path length, clustering coefficient and assortativity in ran-
dom networks, etc. [5] It has, however, not been studied whether a sampled sub-network
may properly reflect the resilience of the original network. While conducting a compre-
hensive study on this vitally important problem is beyond the scope of this contribution,
we present some preliminary results helping to reveal whether a randomly sampled sub-
network can correctly reflect the threshold of KQ-cascade of its original network.

We carry out simulations in three random network models with size of N = 104: ER
random network with a average degree z = 50; random exponential network with a average
degree of z = 50 and degree cut-off of 300; and random scale-free network with γ = 2,
the minimum degree of 17 and degree cut-off of 300 which makes its average degree to be
about 50. In addition, we also test on the Gowalla local social network [6] shown in Table I
of the main paper. As to the sampling technique, we adopt the simple one evaluated in [6]
which randomly chooses a proportion of nodes and keeps all the connections between the
sampled nodes. In random networks, the sampled subnets shall have an average degree of
αz where z is the average degree of the original network (shown in Figure S22). For the
sampled networks, we evaluate the threshold value of ks for different q (still denoted as
kth) for triggering the global cascade of the sampled networks. For each case, the average
results of 10 networks are presented.

Figures S23-S26 show the relationship between the sampling percentage α and the
cascade threshold kth in the four networks respectively. We observe that there exists
approximately linear relationship between α and threshold kth in both synthetic and real-
life networks. This may not be a surprise considering that i) in the sampled networks, z
changes roughly linearly with α; and ii) as pointed out in the SI Appendix 4, kth changes
approximately linearly with z. Such observations reveal that, by evaluating the threshold
kth of a sampled network at a given value of q, we may roughly estimate the kth value of the
original network. However, further studies are needed to better understand how specific
structures of the original networks, especially the community/clustering structures, may
affect the accuracy of the sampling-based estimation results.
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SI Appendix 7: Effects of community structures and degree cor-
relations on multi-stage pseudo-steady state

To evaluate the effects of community structures and degree correlations on the emer-
gence of multi-stage pseudo-steady state, we carried out the following randomization op-
erations on a few real-life networks: randomly selecting links A-B and C-D and replacing
them with links A-C and B-D. It is known that repeating such randomization operations
for a large enough times can reduce, and finally eliminate, the community structures and
degree correlations of the network without changing any node’s degree. To facilitate dis-
cussions, we term the networks before and after the extensive randomization operations
as original networks and randomized networks, respectively. In our extensive simulation
experiences, multi-stage pseudo-steady state has never been observed in any randomized
networks. Simulation results on Orkut and LiveJournal networks are presented in Figures
S27 and S28. We see that multi-stage pseudo-steady state can be observed in crashes of
the original networks, but not those of the randomized ones.

Another interesting observation is that the extensive randomization operations help
enhance network robustness against system crash in both Orkut and LiveJournal net-
works. Specifically, we see that for some ks and q values leading to crash of the original
networks, their corresponding randomized networks may survive with a nontrivial pro-
portion of network nodes. This could be understood: it is known that many real-life
social networks are assortative networks [7], where high-degree nodes tend to connect
high-degree nodes and low-degree nodes tend to connect to low-degree ones. Orkut and
LiveJournal networks are of no exception, with assortative coefficient values 0.31 [7] and
0.5625 [8], respectively. In such networks, once some low-degree nodes leave the network
as they have fewer than ks neighbors, their neighbors, being low-degree nodes themselves,
may soon find themselves satisfy the KQ-cascade conditions and hence leave as well. A
global cascade may therefore be triggered. The extensive randomization operations, by
weakening and finally eliminating network assortativity, make global cascade more diffi-
cult to happen.

Note that a strongly assortative network, though being more vulnerable to cascading
decline, may have one or multiple small communities composed by some high-degree nodes
in the original network persist to exist at the end of system crash, as we could observe in
Figure S28.
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Figure Legends

Figure S1. Comparison of the threshold value qth in real-life networks.
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Figure S2. Evolution of p(k) during the cascade process in the ER random
network with q = 0.1 and ks = 14, where the network finally crashes.
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Figure S3. Evolution of p(k) during the cascade process in the ER random
network with q = 0.3 and ks = 14, where the network survives. Note that for
k < 13, p(k) quickly drops to 0.
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Figure S4. Evolution of p(k) during the cascade process in the random
exponential network with q = 0.2 and ks = 10, where the network finally
crashes.
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Figure S5. Evolution of p(k) during the cascade process in the random
exponential network with q = 0.3 and ks = 10, where the network survives.
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Figure S6. Evolution of p(k) during the cascade process in the random
scale-free network with q = 0.4 and ks = 6, where the network finally crashes.
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Figure S7. Evolution of p(k) during the cascade process in the random
scale-free network with q = 0.5 and ks = 6, where the network survives.
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Figure S8. Degree distribution of the remaining nodes at different time
during cascade process in the ER random network with q = 0.1 and ks = 14,
where the network finally crashes.
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Figure S9. Degree distribution of the remaining nodes at different time
during cascade process in the ER random network with q = 0.3 and ks = 14,
where the network survives.
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Figure S10. Degree distribution of the remaining nodes at different time
during cascade process in the random exponential network with q = 0.2 and
ks = 10, where the network finally crashes.
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Figure S11. Degree distribution of the remaining nodes at different time
during cascade process in the random exponential network with q = 0.3 and
ks = 10, where the network survives.
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Figure S12. The degree distribution of the remaining nodes at different time
in the random scale-free network with q = 0.4 and ks = 6, where the network
finally crashes.
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Figure S13. The degree distribution of the remaining nodes at different time
in the random scale-free network with q = 0.5 and ks = 6, where the network
survives.
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Figure S14. Cascade size of ER random network with z=20 for different
values of q and ks. The cascade size is shown in color scale.
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Figure S15. Cascade size of random exponential network with z = 20 for
different values of q and ks. The cascade size is shown in color scale.
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Figure S16. Cascade size of random scale-free network with γ = 2 for
different values of q and ks. The cascade size is shown in color scale.
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Figure S17. Comparison between the analytical (circles) and simulation
results (lines) of cascade threshold in ER random network (red), exponential
network (black) and scale-free network (blue) with the same average degree
of z = 20. Both the analytical and simulation results of threshold are obtained by trial
and error. Specifically, for each ks, we test by increasing the value q by a step length of
0.01 until the threshold value is obtained. The simulation results show the average in 10
randomly generated networks with size N = 104.
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Figure S18. Relation between the average degree z and threshold kth in the
ER random network with different values of q.
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Figure S19. Relation between the average degree z and threshold kth in the
random exponential network with different values of q.
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Figure S20. Relation between the power-law exponent γ and threshold kth in
the random exponential network with different values of q.
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Figure S21. Decline of networks with speedup loss of nodes. Simulation results
in (a) random scale-free network with ks = 4, q = 0.28, f = 0.2, averaged over 100
independent realizations; and (b) the Orkut online social network with ks = 20, q = 0.3,
f = 0.5, averaged over 10 independent cascades.
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Figure S22. Sample percentage α vs. average degree z. (a) ER random network,
(b) random exponential network, (c) random scale-free network; and (d) Gowalla local
social network.
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Figure S23. Relation between the sample percentage α and threshold kth of
the sampled subnet of the ER random network with different values of q.
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Figure S24. Relation between the sample percentage α and threshold kth of
the sampled subnet of the random exponential network with different values
of q.
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Figure S25. Relation between the sample percentage α and threshold kth of
the sampled subnet of the random scale-free network with different values of
q.
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Figure S26. Comparison between the sample percentage α and threshold kth

of the sampled subnet of the Gowalla network with different values of q.
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Figure S27. Simulation results on the Orkut network. The randomized
network is generated by applying the randomization operation for
100-million times on the original network.
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Figure S28. Simulation results on the LiveJournal network. The randomized
network is generated by applying the randomization operation for
100-million times on the original network.


