
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS 1

Target Control of Directed Networks based on
Network Flow Problems

Guoqi Li, IEEE Member, Xumin Chen, Pei Tang, Gaoxi Xiao, IEEE Member, Changyun Wen, IEEE Fellow
and Luping Shi

Abstract—Target control of directed networks, which aims to
control only a target subset instead of the entire set of nodes
in large natural and technological networks, is an outstanding
challenge faced in various real world applications. We address
one fundamental issue regarding this challenge, i.e., for a given
target subset, how to allocate a minimum number of control
sources which provide input signals to the network nodes. This
issue remains open in general networks with loops. We show that
the issue is essentially a path cover problem and can be further
converted into a maximum network flow problem. A method
termed “Maximum Flow based Target Path-cover” (MFTP) with
complexity O(|V |1/2|E|) in which |V | and |E| denote the number
of network nodes and edges is proposed. It is also rigorously
proven to provide the minimum number of control sources on
arbitrary directed networks, whether loops exist or not. We
anticipate that this work would serve wide applications in target
control of real-life networks, as well as counter control of various
complex systems which may contribute to enhancing system
robustness and resilience.

Keywords:Target controllability, Path cover problems,
Maximum network flow, Directed networks

I. INTRODUCTION

Over the past decade complex natural and technological
systems that permeate many aspects of daily life—including
human brain intelligence, medical science, social science,
biology, and economics—have been widely studied [1]–[3].
Recent efforts mainly focus on the structural controllability
of directed networks [4]–[7] with linear dynamics ẋ(t) =
Ax(t) + Bu(t) where x, A, B and u denote system states,
adjacency matrix, input matrix and input signals, respectively.
Maximum matching, a classic concept in graph theory, has
been successfully and efficiently used to allocate the minimum
number of external control sources which provide input signals
to the network nodes, to guarantee the structural controllability
of the entire network [4] [8]. However, it is often unfeasible
or unnecessary to fully control the entire large-scale networks,
which motivates the control of a prescribed subset, denoted as
a target set S, of large natural and technological networks. This

The work was partially supported by National Science Foundation of China
(61603209), and the Study of Brain-Inspired Computing System of Tsinghua
University program (20151080467), and Ministry of Education, Singapore,
under contracts MOE2014-T2-1-028 and MOE2016-T2-1-119.

G. Li, P. Tang and L. Shi are with Department of Precision Instrument,
Tsinghua University, P. R. China. (e-mail: liguoqi@mail.tsinghua.edu.cn;
tangp14@mails.tsinghua.edu.cn; lpshi@mail.tsinghua.edu.cn ). X. Chen is
with the Department of Computer Science, Tsinghua University, P. R.
China. (e-mail:chen.xm.mu@gmail.com). G. Xiao and C. Wen are with
the School of EEE, Nanyang Technological University, Singapore. (e-mail:
egxxiao@ntu.edu.sg, ecywen@ntu.edu.sg).

specific form of output control is known as target control. In
[9], it is claimed that the required energy cost to target control
can be reduced substantially. Nevertheless, to the best of
our knowledge, target control remains largely an outstanding
challenge faced in various real world applications including the
areas of biology, chemical engineering and economic networks
[10]. Therefore, allocating a minimum number of external
control sources to guarantee the structural controllability of
target set S instead of the whole network becomes an essential
issue that must be solved.

In [10], Gao et al. first considered the target control problem
and proposed a k−walk theory to address this problem. The
k−walk theory shows that when the length of the path from a
node denoted as Node 1 to each target node is unique, only
one driver node (Node 1) is needed [10]. This interesting
discovery is, however, only applicable to directed-tree like net-
works with single input case. In [11] [12], target controllability
is also investigated from a topological viewpoint based on a
constructed distance-information preserving topology matrix.
For example, as mentioned in [12], the matrix A can be found
using p runs of Dijkstra’s algorithm [13]. If the matrix A in
[12] becomes an adjacency matrix considered in this work,
the target controllability problem could be quite different and
new techniques are yet to be addressed. Thus, although some
interesting algorithms are presented in [10] [11] [12], for
general real life networks ẋ(t) = Ax(t) + Bu(t) where
the network topology described by the adjacency matrix that
usually contains many loops, finding the minimum number of
control sources to guarantee the target controllability remains
an open problem.

We address one fundamental issue regarding target control
of real-life networks in this paper, which is to allocate a
minimum number of control sources for a given target subset
S. We first show that the issue is essentially a path cover
problem, which is to locate a set of directed paths denoted
as P and circles denoted as C to cover S. The minimum
number of external control sources is equal to the minimum
number of directed paths in P denoted as |P | as long as
|P | ≠ 0), and has nothing to do with the number of circles
in C. blue Then, we uncover that the path cover problem can
be further transformed to a maximum network flow problem
in graph theory by building a flow network under specific
constraint conditions. A “Maximum flow based target path-
cover” (MFTP) algorithm is presented to obtain the solution
of the maximum flow problem. By proving the validity of
such a model transformation, the optimality of the proposed
MFTP is rigorously established. Last but not least, we obtain
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computational complexity of MFTP as O(|V |1/2|E|), where
|V | and |E| denote the number of network nodes and edges,
respectively. Generally speaking, target controllability is more
difficult to be determined than the controllability of an entire
network as fundamentally it becomes a different problem.
However, compared with the computational complexity of
MM for solving the structural controllability of entire network
with O(|V |1/2|E|) in [4], MFTP is consistent with the MM
algorithm when S = V . This implies that we can always solve
the target controllability of a target node set S ⊆ V based on
MFTP.

There are also some rated works [14] [15] [16], where some
interesting aspects of network controllability are considered.
For example, for the minimal controllability problem in [14],
the input matrix B is considered as N × N dimensional
diagonal matrix and the authors are seeking to minimize
the number of nonzero entries of B, and this problem is
shown to be NP-hard. In [15] [16], some applications of target
controllability are demonstrated in new therapeutic targets for
disease intervention in biological networks tough the rigorous
theoretical results are undergoing research. To the best of our
knowledge, for the first time, this work provides solutions for
target control of directed networks with minimum number of
control sources. We build a link from target controllability to
network flow problems and anticipate that this would serve as
the entry point leading to real applications in target control of
real-life complex systems.

II. TARGET CONTROL OF DIRECTED NETWORKS

A. Target controllability

We first investigate the problem of target controllability of
directed networks with linear dynamics using the minimum
number of external control sources. Although most of real
systems exhibit nonlinear dynamics, studying their linearized
dynamics is a prerequisite for studying those systems.

Without loss of generality, define a directed graph D(V,E)
where V is the node set V = {v1, ..., vN} and E is the
edge set. Denote the target node set that needs to be directly
controlled as S = {vs1 , vs2 , ..., vs|S|} where s1, ..., si, ..., s|S|
are indexes of the nodes in S and |S| is the cardinality of S,
i.e., the number of nodes in S. Obviously, we have S ⊆ V
and |S| ≤ N . In this paper, we consider the following linear
time-invariant (LTI) dynamic system

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where x(t) = [x1(t), . . . , xN (t)]T is the state vector of
V = {v1, ..., vN} at time t with an initial state x(0),
u(t) = [u1(t), . . . , uM (t)]T is the time-dependent external
control input vector of M external control sources in which
the same control source input ui(t) may connect to multiple
nodes, and y(t) = [y1(t), . . . , y|S|(t)]

T represents the output
vector of a target set S.

And the link weight denotes the connection strength. B =
[bim]N×M is an input matrix where bim is nonzero when
control source m is connected to node i and zero otherwise.

C = [cik]|S|×N = [I(s1), ..., I(si), ..., I(c|S|)] is an output
matrix where I(si) denotes the sith row of an N ×N identity
matrix, when k = si (i = 1, 2, ..., |S|) and si is the i−th target
node in S, Cisi = 1 and all other elements are zero.

The objective is to determine the minimum number (i.e. the
smallest M ) of external control sources which are required to
connect to N nodes such that the state of S can be driven to
any desired final state in finite time for a proper designed u(t).
Therefore, the system (A,B,C) is said to be target control-
lable [10] if and only if rank[CB,CAB, ..., CAN−1B] = |S|
for an determined input matrix B, a pre-given A and the
chosen target node set S.

When both B and C are pre-given such that (A,B,C) is
target controllable, we design the input signal u(t) as

u(t) = −BT eA
T (tf−t)CT [CWBC

T ]−1CeAtfx0 (2)

where WB =
∫ tf
0

eA(tf−t)BBT eA
T (tf−t)dt. Then, the states

of the target node S could reach the origin at time t = tf , i.e.

y(tf ) = CeAtfx0 − CWBC
T (CWBC

T )−1CeAtfx0 = 0
(3)

Rearranging the node index of the target node S such that
S = [v1 ... v|S|]

T . Denote X1 = [x1 ... x|S|]
T and X2 =

[x|S|+1, ..., xN ]T as the state of the target set S and non-target
set V − S, respectively, we have[

Ẋ1(t)

Ẋ2(t)

]
=

[
A11 A12

A21 A22

] [
X1(t)
X2(t)

]
+

[
B1

B2

]
u(t)

(4)
where A11 represents the adjacency matrix of the target set S,
A22 the adjacency matrix of the N − |S| non-target nodes in
the set V −S. The non-zero entries in A21 and A12 represent
the connections between S and V − S. B1 and B2 are the
corresponding input matrices for S and V − S, respectively.
The (A,B,C) is target controllable implies that state variable
X1 is structurally controllable.

Definition 1. a) Let D(V,E) be the diagraph constructed
based on A. Denote G(A,B) as a digraph D(Ṽ , Ẽ) where
the vertex set is Ṽ = V ∪ VB and Ẽ = E ∪ EB , where
VB represents the M vertices corresponding to the M control
sources and EB represents the newly added edge set connected
to the control sources based on B. A node vi in G(A,B) is
called inaccessible iff there are no directed paths reaching xi

from the input vertices VB . A node with a self-loop edge is an
accessible node. b) The digraph G(A,B) contains a dilation
iff there is a subset S ⊆ V such that |T (S)| < |S|. Here, the
neighborhood set T (S) of a set S is defined as the set of all
nodes xj where there exists a directed edge from xj to a node
in S, i.e., T (S) = {xj |(xj → xi) ∈ E, xi ∈ S}, and |T (S)| is
the cardinality of set T (S).

Lemma 1: (Lin’s Structural Controllability Theorem [17]).
The following two statements are equivalent (A is the adjacent
matrix of the network and B is control matrix of the network):
a) A linear system (A,B) is structurally controllable.
b) The digraph G(A,B) contains no inaccessible nodes or

dilation. �
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Fig. 1: An illustration example of the target control
problem. There are 14 nodes in the network (a). The subset
nodes are colored with orange, where the target node set
is selected as S = {v4, v5, v9, v12}. In (b), a path v12v8v9
and a circle v4v5v4 cover the subset nodes. In (c), a path
v4v5v9 and a circle v12v13v14v12 cover the subset nodes. (d)
According to (b) or (c) only one external source colored with
red is necessary to control the target subset. (e) However, if
we select the control source through employing maximum
matching (MM) algorithm, the control paths and circles are
depicted in (e). (f) According to (e), the number of external
control sources is 2. This evidently shows that selecting the
control sources based on MM algorithm may not achieve the
optimal solution.

Denote B = [bl1 , ..., bli , ..., blM ] where li is a column
number index and bli represents the lith column of B. We
have the following lemma.

Lemma 2: [18] A linear structured system is structurally
controllable iff there exists a vertex disjoint union of cacti in
the digraph G(A,B) that covers all the state vertices of X.
This criteria is satisfied iff for any li, lj ∈ {1, 2, ...,M} for
li ̸= lj .

a) G(A, bl1) contains a cactus.
b) The cacti G(A, bli) and G(A, blj ) are vertex disjoint.
c) The graphs G(A, bl1), G(A, bl2), ..., G(A, blM ) covers the

state vertices of X.
If such a vertex disjoint union of cacti exists, we call it a

cactus cover. �

Lemma 3: [18] The vertex set S corresponding to X1 in
equation (4) is structurally controllable if S can be covered by
a union of cacti structure contained in the digraph G(A,B).

From Lemmas 1-3, it is known that when S = V the target
controllability problem is reduced to the traditional structural
controllability problem, which can be well solved either by
employing the maximum matching (MM) algorithm. When
S ⊂ V , the MM algorithm becomes inapplicable and currently
there is no algorithm to address this issue as the target
controllability problem becomes fundamentally different. An

example in Figure 1 is presented to illustrate that MM algo-
rithm does not work for the target control problem. Therefore,
determining the minimum number of external control sources
for ensuring the target controllability is to be investigated in
the following Sections.

B. Converting the target controllability problem into the path
cover problem in Graph Theory

For a graph network D = (V,E), define a set of simple
directed paths P = {vak,1

vak,2
...vak,pk

|k = 1, 2, ..., |P |}
where pk is the length of the kth directed path, ak,i is the index
of the ith vertex in V along the kth directed path and |P | is
the total number of paths. Also, define a set of simple directed
circles C = {vbk,1

vbk,2
...vbk,ck

vbk,1
|k = 1, 2, ..., |C|} where ck

is the length of the kth circle, bk,i is the index of the vertex
on the kth circle and |C| is the total number of circles. For
the path set Q = {vlk,1

vlk,2
...vlk,qk

|k = 1, 2, ..., |Q|} where
qk is the length of the kth path, lk,i is the index of the vertex
in V along the kth path and |Q| is the total number of paths,
define the nodes covered by Q as Cover(Q) = {vlk,i

|i =
1, 2, ..., qk, k = 1, 2, ..., |Q|}.

By Lemmas 1-3, for a given target node set S, the target
controllability problem can be converted into the following
path cover problem:

argminP |P |+

s.t. |Cover(P ∪ C)| =
∑|P |

k=1 pk +
∑|C|

k=1 ck
S ⊆ Cover(P ∪ C)

(5)

where |P |+ = max{|P |, 1} which is to consist with the case
when all the nodes in S exist and only exist in a circle path.
Therefore what we want to do is to find one feasible solution
that |P | is minimal such that every node exists and only exists
in P ∪ C for at most once. Therefore, to guarantee that all
the nodes in S are target controllable, at least |P | control
sources should be allocated and the first node of each directed
path should be connected to a different control source. Thus,
minimizing the number of control sources is equivalent to
minimizing |P | in the above path cover problem.

III. MODEL TRANSFORMATION TO NETWORK FLOW
PROBLEMS

In the last section, we have shown that the original target
controllability problem is equivalent to a path cover problem,
in which the minimum number of external control sources
equals the minimum number of paths. In this section, by
firstly presenting some preliminary knowledge and definitions
in Section III-A, we shall then propose a graph transformation
method in Section III-B to solve the path cover problem. An
example is shown in Figure 2. In Section III-C, we show
that the path cover problem can be further transformed into
the maximum network flow problem. In this way, the target
controllability problem can be solved exactly as a maximum
network flow problem. To verify the validity of the graph
transfer, we prove the equality of the transformation in The-
orem 3. Finally in Theorem 4, it is shown that the maximum
network flow problem can be solved within polynomial time
complexity.
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A. Preliminary knowledge and definitions
Some definitions of a network’s maximum flow problem are

given as follows [19]–[22].

Capacity function: Given a directed graph D = (V,E),
capacity function c(e) is a non-negative function defined in
E. For an arc e = (vi, vj), c(e) = cij is called the capacity
of an arc e.

Capacity network: Given a directed graph D = (V,E)
and its capacity function c(e), D = (V,E, c(e)) is called the
capacity network.

Flow of the capacity network: Given a capacity network,
flow f(e) is a function defined in E. For an arc e = (vi, vj),
f(e) = fij is called the flow value on arc e, which is bounded
by c(e). If f(e) is an integer, we call it an integer flow.

Source, sink and intermediate vertices: In a capacity net-
work, the source node is denoted as vs whose in-degree equals
zero. The sink node is denoted as vt whose out-degree equals
zero. All the other nodes are called intermediate vertices.

Capacity constraints : For every arc e in E, its flow f(e)
cannot exceed its capacity c(e), i.e., ∀e = (vi, vj) ∈ E,

0 ≤ fij ≤ cij . (6)

Conservation constraints: For every intermediate vertex, the
sum of the flows entering it (in-flow) must equal the sum of
the flows exiting it (out-flow). Namely ∀vi ∈ V − {vs, vt},∑

(vi,vj)∈E

fij −
∑

(vj ,vi)∈E

fji = 0. (7)

Feasible flow: For a capacity network with source and sink,
a flow f = {fij} from vs to vt is called a feasible flow if flow
f satisfies the capacity constraints and conservation constraints
simultaneously. There may be multiple source and sink nodes
in a network. The value of a feasible flow f is defined as

v(f) =
∑

(vs,vj)∈E

fsj =
∑

(vj ,vt)∈E

fjt. (8)

If all fij are integers, f is called integral feasible flow.

Lower bounds and upper bounds: Given a directed graph
D = (V,E), for an edge e ∈ E, the lower bound flow l(e) and
upper bound flow c(e) are two non-negative functions defined
in A respectively with l(e) ≤ c(e).

Feasible circulation: A circulation f is a flow of D(V,E)
such that

∀vi ∈ V,
∑

(vi,vj)∈E

fij −
∑

(vj ,vi)∈E

fji = 0. (9)

A feasible circulation is a circulation f of D(V,E) such that

∀e = (vi, vj) ∈ E, l(e) ≤ f(e) ≤ c(e). (10)

B. From the path cover problem to the network flow problem
According to the path cover problem described in Section

II-B, we are now endeavoring to find a path set P with the
minimal cardinality |P | such that the given target node set
S ⊆ Cover(P ∪ C). To introduce the concept flow into the
path cover problem, we artificially add a source vs and a
sink vt into D(V,E). And for every intermediate vertex vi
in D(V,E, vs, vt), there is an arc entering vi from vs with
c((vs, vi)) = 1 and an arc exiting vi to vt with c((vi, vt)) = 1.
For vs and vt, there is an arc from vt to vs with capacity
c((vt, vs)) = ∞. For each arc e ∈ E, we set its capacity as
c(e) = 1. Now we convert a directed network D(V,E) to
a capacity network D(V,E, vs, vt, c(e)). This is illustrated in
Figures 2 (a)-(b).

Considering the problem we aim to solve, for every vertex
vsub in S, there should be one and only one path in the path
set P covering vsub. In the following, we will introduce a
graph transfer method to ensure fulfilling this condition.

Graph transfer - node splitting: We split a node v ∈ V
into two types of virtual vertices vin and vout, respectively.
Therefore, as shown in Figure 2 (c), the network contains three
types of nodes. The first type of nodes are the source and sink
node vs and vt. The second type of nodes are vinsub (vsub ∈ S)
and vini (vi ∈ V − S) , the original arcs (edges) entering the
node vsub or vi now enter vinsub or vini . Similarly, the third
type of nodes correspond to voutsub and vouti , by which the arcs
exiting node vsub or vi now exit voutsub or vouti . Besides, for
every pair vinsub and voutsub, we add an arc e = (vinsub, v

out
sub) from

vinsub to voutsub with lower bound l(e) = 1 and upper bound
c(e) = 1. For other nodes vi ∈ V −S, the process of splitting
is same as that for vsub except that the lower bound is zero,
viz. l(e) = 0.

Node splitting converts a capacity network into a capac-
ity network with lower bounds and upper bounds D′ =
(V ′, E′, vs, vt, l(e

′), c(e′)) where V ′ = {vin, vout} and E′ =
E ∪ {(vin, vout)}. In the following paragraphs, we will show
how to convert a path cover problem to a maximum flow
problem.

Theorem 1: The feasible circulation of the network D′ =
(V ′, E′, vs, vt, l(e

′), c(e′)) corresponds to a structurally con-
trollable subset S ⊆ V of the linear system (A,B,C).

Proof. The feasible circulation of the capacity network D
satisfies the capacity constraints and the conservation con-
straints. Specifically, for the nodes in the subset S, we have

f
(
(vinsub, v

out
sub)

)
= 1.

Thus, the flows of the arcs from vs to the nodes in the subset
S are exactly 1. The flows from vs to vt are control paths,
while the flow from vi to itself is a circle. Then every node in
S is on a certain control path or circle as f

(
(vinsub, v

out
sub)

)
= 1.

According to Lemma 1, the subset of the linear system G is
structurally controllable. �

To show the existence of the feasible circulation, we in-
troduce another graph transfer method for constructing the
associate graph, which is shown in Figure 2 (e).
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Constructing the associate graph: Given a capacity network
with lower bounds and upper bounds

D′ = (V ′, E′, vs, vt, l(e
′), c(e′)) ,

an additional source vadds and an additional sink vaddt are added
into the network. For every node vi ∈ V ′, a new arc e is added
from vadds to vi with l(e) = 0 and c(e) =

∑
e′=(vj ,vi)∈E′ l(e′).

And a new arc e is added from vi to vaddt with l(e) = 0 and
c(e) =

∑
e′=(vi,vj)∈E′ l(e′). Meanwhile the original arcs in

the network D′ decrease their l(e′) to zero and c(e′) to c(e′)−
l(e′). The new network, termed associate graph hereafter, is
D′′ = (V ′′, E′′, c′(e′′)) with all l′(e′′) ≡ 0, where

V ′′ = V ′ ∪ {vadds , vaddt }, (11)

E′′ = E′ ∪ {(vadds , vi)|vi ∈ V ′} ∪ {(vi, vaddt )|vi ∈ V ′},
(12)

∀vi ∈ V ′, c′(vadds , vi) =
∑

e′=(vj ,vi)∈E′

l(e′),

c′(vi, v
add
t ) =

∑
e′=(vi,vj)∈E′

l(e′),
(13)

∀e′ = (vi, vj) ∈ E′, c′(e′) = c(e′)− l(e′). (14)

Lemma 4: [19] Iff the value of the maximum flow of the
associate graph D′′ from vadds to vaddt is equal to the sum of
lower bound values of all arcs in the capacity network D′, the
feasible circulation of D′ exists.

Theorem 2: The feasible circulation of the network D′

converted from the linear system G(A,B,C) always exists.

Proof. As the source vs and the sink vt are connected to
every node in V , vs is connected to every vin and vt is
connected to every vout. Thus, there is always a circulation
from vadds to vaddt , viz. vadds voutsub...vtvs...v

in
subv

add
t . Obviously,

in the associate graph D′′, the value of the maximum flow
from vadds to vaddt equals the number of the nodes in the subset
S. In the capacity network D′, only the arcs from vinsub to voutsub

have the lower bound value l(e) = 1 while the lower bounds
of other acrs are zero. Thus, the sum of lower bound values
of all arcs in D′ is also equal to the number of nodes in the
subset S. According to Lemma 4, the feasible circulation of
D′ always exists. �

Based on the above Lemmas and Theorems, for a
given target set in D(V,E) that corresponds to a lin-
ear system G(A,B,C) in (1) as illustrated in Figure 2
(a), we can re-construct a new graph network D(N) =
(V (N), E(N)), and convert it to a capacity network D(N) =
(V (N), E(N), vs, vt, c(e)). The procedures are described as
follows.

a) For every node v ∈ V , split it into two nodes vin and
vout. Define a node set V (I) = {vin|v ∈ V }, V (O) =
{vout|v ∈ V }.

b) Define V (N) = V (I) ∪ V (O) ∪ {vs, vt} where vs repre-
sents the source and vt represents the sink. By setting
the upper bound of each edge as c ((vi, vj)) = 1 where
vi, vj ∈ V (N) and lower bound as l((vinsub, v

out
sub)) = 1

and l((vi, vj)) = 0 where (vi, vj) /∈ E − {(vinsub, voutsub)},
we build a flow network denoted as (D(N), cap) where
cap denotes the capacity function.

c) Construct the edge sets E(1) = {(vt, vout)|v ∈ S} ,
E(2) = {(v(in), s)|v ∈ S}, E(3) = {(vin, vout)|v ̸∈ S},
E(4) = {(vouti , vinj )|(vi, vj) ∈ E} and E(N) = E(1) ∪
E(2) ∪ E(3) ∪ E(4).

d) For each edge (vi, vj) ∈ E(N), set its upper capacity as
c((vi, vj)) = 1.

Finally, by defining a residual network as (D(N), cap, flow)
where flow(e) is the flow of edge e such that l(e) ≤
flow(e) ≤ c(e), we can convert the path cover problem into
a maximum network flow problem in (D(N), cap, vs, vt) as
shown in Figure 2 (i) from vs to vt.

An example for the graph re-construction is illustrated
in Fig.2 (a)-Fig.2 (i). For a given linear system (A,B,C),
the adjacent matrix A gives the topology information of the
capacity network. An arc e = (vi, vj) is in the arc set E if
A(i, j) = 1. The source vs and the sink vt can be treated as
the same node as they both represent the set of external drivers
defined by the control matrix B, viz. there is an arc from vt
to vs with capacity of infinity c ((vt, vs)) = ∞. As they are
external drivers, there are arcs from vs to every vertex in the
network and arcs from every vertex to vt. As capacity function
c(e) = 1,∀e ∈ E, the sum of out-flow of vs or the sum of
in-flow of vt is equal to the number of external drivers.

The detailed process of re-constructing the edge sets in the
procedure c) is shown in Figs. 2 (c)-(i). After the procedure
b), we rearrange the position of the nodes as shown in Figs.2
(c)-(d). For this capacity network with upper bounds and lower
bounds, we have to re-construct it by means of constructing
the associate graph as described before. An additional source
vadds and an additional sink vaddt are added into the network to
transform the capacity network with upper and lower bounds
to the associate network with its all lower bounds l(e) = 0 as
illustrated in Figure 2 (e). Based on the Theorem 1, to find
the structurally controllable scheme with the minimal external
sources, we start from the feasible circulation, which is shown
in Figure 2 (f). While ensuring the feasibility of the circulation
in D′, the control scheme with the minimal controllers can be
achieved as long as the value of flow from vs to vt decreases
to the minimum. Thus for the vertex vi ∈ V ′ − S, the flow
of the arcs from vs to vini or from vouti to vt is zero. And
the arcs can be removed, which is shown in Figure 2 (g). The
minimum flow problem from vs to vt can be converted to
the maximum flow problem from vt to vs, which is shown
in Figure 2 (h). In order to find the maximum flow from vt
to vs, the arcs from vadds or to vaddt can be removed as they
cannot contribute to the increase of the flow, which is shown
in Figure 2 (i).
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Fig. 2: The procedure of graph re-construction to transform the problem to a network flow problem. (a) The network
we aim to control. It contains 4 nodes and 3 edges with node 2 and node 4 being in the target set. (b) By adding a source
vs, a sink vt, arcs from vs to other intermediate vertices and arcs from other intermediate vertices to vt, the network can be
converted into a capacity network. (c) After applying the method of splitting the nodes, the network arc capacities contain
lower bounds and upper bounds, which are respectively represented by the left and right numbers in the brackets beside the
arcs. (d) By rearranging the position of nodes, the equivalent graph is formed with a source vs, a sink vt, a set of in-nodes
and a set of out-nodes. The orange lines from vin2 to vout2 and from vin4 to vout4 are the arcs with lower bounds l(a) = 1
and upper bound c(a) = 1. (e) After applying the graph transfer method of constructing the associate graph, the orange lines
are replaced by the arcs from vadds and to vaddt , which transforms the network with lower bounds and upper bounds of the
capacity network. (f) The flow of the red lines is 1 and the flow of the black lines is 0. The flows in the graph form a feasible
circulation. (g) To find the minimum flow from vs to vt, the arcs from vs to vin1 and vout3 and the arcs from vout1 and vout3

to vt can be removed as their flow is always 0. (h) The solution to the minimum flow problem is equivalent to solving the
maximum flow problem from vt to vs. In the network, the direction of the arcs from vs to vin2 and vin4 and the arcs from
vout2 and vout4 to vt should be reversed. (i) While finding the maximum flow from vt to vs, the flow of the arcs from vadds to
vout2 and vout4 and the arcs from vin2 and vout4 to vaddt should be always zero. Thus these arcs can be removed. Finally, the
structural control problem of (a) is equivalent to the maximum flow problem from vt to vs in (i).

C. Maximum-flow based target path-cover (MFTP) algorithm

In this subsection, we focus on discussing how to locate
the circle path set C and the simple directed path set P
containing the least number of simple paths |P | to cover S. In
the previous subsection, we carried out graph transformation
method to address the path cover problem through solving the
maximum network flow problem (D(N), cap, vs, vt) from vs
to vt. In the following, an algorithm named “maximum-flow
based target path-cover” (MFTP) is first proposed regarding
how to obtain the maximum flow of (D(N), cap, vs, vt) from
vt to vs in Figure 2 (i). In the next subsection, it will be
shown in Theorems 3-4 that the solution of the original target

controllability problem is equivalent to finding the maximum
flow in (D(N), cap, vs, vt) which can be solved by introducing
the Dinic algorithm with a polynomial complexity. The MFTP
algorithm is presented as follows.

step 1) For a given graph network D(V,E), build a new
graph network D(N) = (V (N), E(N)) according to
procedure (a)-(d) described in Section III-B.

step 2) Define E(F ) = {(vi, vj)|(vouti , vinj ) ∈
E(4), f low((vouti , vinj )) = 1}. Obtain the edge set
E(F ) by applying the Dinic algorithm [23] [24] to
the maximum flow problem in (D(N), cap, vs, vt).
Let directed path set P ← ∅, circle path set C ← ∅,
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do the following steps:
step 3) For each node vi ∈ S, if there does not exist a

node vj ∈ V such that (vi, vj) ∈ E(F ) or (vj , vi) ∈
E(F ), then update P ← P ∪{(vi)}, i.e., add all the
simple paths that contain only a single node vi to
P .

step 4) Find one node v1 such that there exist no n-
ode v0 satisfying (v0, v1) ∈ E(F ). Contin-
ue the process to find nodes v2, ..., vp which
form a unique sequence v1v2...vp such that
(v1, v2), (v2, v3), ..., (vp−1, vp) ∈ E(F ) until there
does not exist vp+1 satisfying that (vp, vp+1) ∈
E(F ). Then, add the path v1v2...vp to P , i.e., update
P ← P ∪ {v1v2...vp} and delete all the edges
(v1, v2), (v2, v3), ..., (vp−1, vp) ∈ E(F ).

step 5) Repeat Step 4 until no more v1 can be found.
step 6) If there exists any edge in E(F ), then for

an arbitrary edge (v1, v2) ∈ E(F ), find
a unique sequence v3, v4, ..., vc such that
(v2, v3), ..., (vc−1, vc), (vc, v1) ∈ E(F ). As
will be proved in Theorem 3 such node v1 always
exists. Then, add the path v1v2...vcv1 to C and
update C ← C ∪ {v1v2...vcv1}, and delete all the
edges (v1, v2), (v2, v3), ..., (vc, v1) ∈ E(F ).

step 7) Repeat the process in Step 6 until E(F ) becomes
an empty set, and all the simple paths and circles
in P and C are finally obtained.

D. Equivalence of the path cover problem and the maximum
network flow problem

In this subsection, we will prove that the solution of the
original target controllability problem is equivalent to find-
ing the maximum flow in (D(N), cap, vs, vt) which can be
solved by introducing the Dinic algorithm with a polynomial
complexity, and the number of the minimum external sources
equals the minimum number of simple paths in P given by
min{|P |} = |S| −maxflow(D(N), cap, s, t).

Theorem 3: The target controllability problem in the origi-
nal graph network D(V,E) in (5) is equivalent to the converted
maximum flow problem maxflow(D(N), cap, vs, vt).

Proof. We need to prove the following four statements:
1. Any feasible flow in the flow network (D(N), cap)

corresponds to a feasible solution of the original target con-
trollability problem in D(V,E). This is to prove that there
exists an injective mapping from a feasible residual network
(D(N), cap, flow) with integral flow to the set P ∪ C such
that S ⊆ P ∪ C and each element of S exists and only exists
once in P ∪C. Here, the residual network refers to the network
(D(N), cap) with its flow reaching maximum.

As we can build P and C based on the obtained E(F ) from
the above described algorithm, we only need to prove that
its solution is a feasible solution. Note that here we are not
discussing on how to build P and C when a maximum flow
has been achieved. Instead, we are proving that any

E(F ) = {(vi, vj)|(vouti , v
(in)
j ) ∈ E(4), f low((vouti , vinj )) = 1}

corresponding to a feasible flow gives a feasible solution of (5)
in the residual network (D(N), cap, flow) with only integral
flow.

To this end, firstly, we prove that

a) ∀vi ∈ V : there exists at most one vj ∈ V such that
(vi, vj) ∈ E(F ), or there exists at most one vj ∈ V such
that (vj , vi) ∈ E(F ). This is to prove that there exists at
most one node vj ∈ V such that (vouti , vinj ) ∈ E(F ) and
flow((vouti , vinj )) = 1.
Consider the input edges of a node vouti : if vi ∈ S, then
there exists one and only one edge (vt, v

out
i ) ∈ E(1) ⊆

E(N); if vi ̸∈ S, then there exists one and only one edge
(vini , vouti ) ∈ E(3) ⊆ E(N). By combining both cases,
there exists only one edge with capacity 1 pointing to
vouti . As the flow in the network is always an integer,
there exists at most one vj ∈ V such that (vouti , vinj ) ∈
E(4) and flow((vouti , vinj )) = 1. Similarly, considering
that vini has at most one output edge belonging to either
E(2) or E(3) depending on whether vi belongs to S or
not, then there exists at most one vj ∈ V such that
(vj , vi) ∈ E(F ).

b) If Step 3 of MFTP algorithm can be processed, a simple
path can always be located in which all nodes are
covered only once.
In the case that we cannot find a simple path or Step
3 goes into an infinite loop, then there must exist a
circle path and the algorithm goes into an infinite loop.
In this case, on the path v1, v2, ...., vp, ..., there must
exist repetitious nodes. Without loss of generality, we
assume that the first repetitious node pair is vi and
vj with (i < j), i.e. vi and vj are the same node
appearing in different places on the path. If vi = v1, then
(vj−1, vj) = (vj−1, vi) = (vj−1, v1) ∈ E(F ), which
contradicts the fact that v1 does not have any input; if
vi ̸= v1, then (vj−1, vj) = (vj−1, vi) = (vi−1, vi) ∈
E(F ). But it is known that vi−1 ̸= vj−1 as vi and vj are
the first repetitious node pair, which manifests that vi has
two input edges from vi−1 and vj−1 respectively. This
contradicts the fact that the input degree of each node
cannot be greater than 1. Thus we draw the conclusion
that a simple path can always be located as long as Step
3 can be processed.

c) If the Step 4 of MFTP algorithm has been accomplished,
then a simple circle can always be located by implement-
ing Step 5 .
At this stage, we cannot find any node that has an output
edge but does not have any input edge; otherwise, the
proposed algorithm goes back to Step 3. Note that the
input degree of all nodes is not smaller than 1 while
the input degree cannot be greater than 1. Therefore,
the remaining nodes have one and only one input edge.
Then, by starting from an arbitrary node, we can always
come back to this node and a circle can be uniquely
found, and the remaining edges exist in one and only
one circle.

d) All the nodes exist and only exist once in P ∪ C and
S ⊆ cover(P ∪ C).
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This is obvious since if a node has any input or output
edge existing in E(F ), then it must have been deleted in
Step 3 or Step 5; otherwise, it would contradict the fact
that all input and output degrees are not greater than 1.
If one node v ∈ S but it does not have an edge in E(F ),
then it will be added into P in Step 2.

2. The flow from vt to vs of the residual network
(D(N), cap, flow) equals |S| − |P |.

Based on the conservation constraints in Section 3.1, when
the total flow of the residual network (D(N), cap, flow) equals
f , we could obtain f paths on the flow network:

vtvp1,1vp1,2 ...vp1,d1
vs,

vtvp2,1vp2,2 ...vp2,d2
vs,

...
vtvpf,1

vpf,2
...vpf,df

vs.

(15)

where all these paths start from vt and end at vs, and the flow
of an edge (vi, vj) ∈ E(N) equals the occurrence number
of (vi, vj) in all paths. Thus, for the i-th path, (vt, vpi,1) ∈
E(1), vpi,1 ∈ V (O) as vt only points to V (O); and (vpi,1 , vs) ∈
E(2), vpdi,1

∈ V (I).

Consider that ∀vout ∈ V (O), its output edges all belong to
E(4). Therefore, as long as vpi,j

∈ V (O), (vpi,j
, vpi,j+1

) ∈
E(4), and vpi,j+1 ∈ V (I). Also, as there is no output edge
of vs, vpi,j

̸= vs. For ∀vin ∈ V (I), the edges starting
from vin belong to either E(2) or E(3). As all the edges
in E(2) point to vs, if vpi,j

∈ V (I) and j < di, then
(vpi,j , vpi,j+1) ∈ E(3) and vpi,j+1 ∈ V (O). Therefore, for
each path i, di is an even number. And ∀1 ≤ j ≤ di

2 ,
vpi,2j−1 ∈ V (O), vpi,2j ∈ V (I) and (vpi,2j−1, vpi,2j) ∈ E(4);
∀1 ≤ j ≤ di

2 − 1, (vpi,2j , vpi,2j+1) ∈ E(3). Thus, the f paths
can be rewritten as

vtv
out
p
′
1,1

vin
p
′
1,2

vout
p
′
1,2

vin
p
′
1,3

...vin
p
′

1,
d1
2

+1

vs,

vtv
out
p
′
2,1

vin
p
′
2,2

vout
p
′
2,2

vin
p
′
2,3

...vin
p
′

1,
d2
2

+1

vs,

...
vtv

out
p
′
f,1

vin
p
′
f,2

vout
p
′
f,2

vin
p
′
f,3

...vin
p
′

1,
df
2

+1

vs.

(16)

In addition, we have that

E(F )

=



(vp′
1,1

, vp′
1,2

), (vp′
1,2

, vp′
1,3

), ..., (vp′

1,
d1
2

, vp′

1,
d1
2

+1

)

(vp′
2,1

, vp′
2,2

), (vp′
2,2

, vp′
2,3

), ..., (vp′

2,
d2
2

, vp′

2,
d2
2

+1

)

...
(vp′

f,1
, vp′

f,2
), (vp′

f,2
, vp′

f,3
), ..., (vp′

f,
df
2

, vp′

f,
df
2

+1

)


Since E(1) and E(2) are built only based on the nodes in the
subset S, and E(3) is only based on V −S, for each path i, we
conclude that vp′

i,1
, vp′

i,
di
2

+1

∈ S and vp′
i,2
, vp′

i,3
, ..., vp′

i,
di
2

∈

V − S. As we know that the capacity of edges is 1, all vp′
i,1

are all different, and all vp′

i,
di
2

+1

are different.

Based on the inductive method, now we prove the following
conclusion: when the edge set E(F ) only contains the elements
of the first f rows (specifically the first d1 + d2 + ... + df
elements), we have f = |S| − |P |.

In the first step, we aim to prove by inductive method
that by applying the proposed algorithm every time when
we add a row into E(F ), e.g. the ith row is added, we can
always find two paths in P , one ends at vp′

i,1
denoted as

v−liv−li+1...vp′
i,1

and the other starts from vp′

i,
di
2

+1

denoted

as vp′

i,
di
2

+1

...vri−1vri .

Firstly, according to the above conclusion that
vp′

i,1
, vp′

i,
di
2

+1

∈ S, when f = 0, i.e. E(F ) = ∅,

P = {v|v ∈ S}, we can find two paths in P , one
ends at vp′

1,1
denoted as v−l1v−l1+1...vp′

1,1
(actually this

path is vp′
1,1

) and the other starts from vp′

1,
d1
2

+1

denoted as

vp′

1,
d1
2

+1

...vr1−1vr1 (actually this path is vp′

1,
d1
2

+1

).

Secondly, suppose that after the kth row was added into
E(F ), we can find those two paths as mentioned above. In the
following, we are going to prove that if the (k+1)th row was
added to E(F ), we can still find those two paths.

When we add the kth row

{(vp′
k,1

, vp′
k,2

), (vp′
k,2

, vp′
k,3

), ..., (vp′

k,
dk
2

, vp′

k,
dk
2

+1

)}

into E(F ), we can find the two paths, one ends at vp′
k,1

de-
noted as v−lkv−lk+1...vp′

k,1
and the other starts from vp′

k,
dk
2

+1

denoted as vp′

k,
dk
2

+1

...vrk−1vrk .

If these two paths are the same, then v−lk = vp′

k,
dk
2

+1

and

vp′
k,1

= vrk . The proposed algorithm will delete this path from
P and add a circle

vp′
k,1

vp′
k,2

...vp′

k,
dk
2

vp′

k,
dk
2

+1

v−lk+1...vrk−1vp′
k,1

to C. If these two paths are not the same, the proposed
algorithm will delete these two paths from P and add an
updated path

v−lkv−lk+1...vp′
k,1

vp′
k,2

...vp′

k,
dk
2

vp′

k,
dk
2

+1

...vrk−1vrk

to P . Note that we only updated the two or one path we found
while all the other paths in P remain unchanged. If the two
paths are the same, vp′

k,
dk
2

+1

will be deleted from the set of

starting vertices of all paths in P . If the two paths are not
the same, the new path still starts from v−lk , vp′

k,
dk
2

+1

is also

deleted from the set of starting vertices of all paths in P . This
is also valid for the path ending at vp′

k,1
.

In general, we only delete vp′

k,
dk
2

+1

from the set of starting

vertices of all paths in P and vp′
k,1

from the set of ending
vertices of all paths in P . According to the conclusion that
vp′

i,1
, vp′

i,
di
2

+1

∈ S, all vp′
i,1

are all different in all paths, and

all vp′

i,
di
2

+1

are different, vp′

k+1,
dk+1

2
+1

∈ S is still in the set
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of starting vertices of all paths in P and vp′
k+1,1

∈ S is still
in the set of ending vertices of all paths in P , which implies
that after the (k + 1)th row is added to E(F ), the two paths
can also be found.

Now we have proven that those two paths can always be
found each time we add a row into E(F ).

In the second step, we aim to prove that f = |S| − |P | is
valid when we add the first f rows into E(F ).

Firstly, when f = 0, i.e. E(F ) = ∅, we have |P | = |S| as
P = {v|v ∈ S}.

Secondly, suppose that k−1 = |S|−|P | when E(F ) contains
k − 1 rows. In the following, we are going to prove that, if
one row

{(vp′
k,1

, vp′
k,2

), (vp′
k,2

, vp′
k,3

), ..., (vp′

k,
dk
2

, vp′

k,
dk
2

+1

)}

is added to E(F ), we have k = |S| − |P |, which implies that
|P | is reduced by 1 in this case.

To avoid confusion, let j = dk

2 . According to the proof
in the first step, we can always find two paths in the existing
P , one ends at vp′

k,1
denoted as v−lv−l+1...vp′

k,1
and the other

starts from vp′
k,j+1

denoted as vp′
k,j+1

...vr−1vr. And according
to the first step, if these two paths are the same path, the
proposed algorithm will delete this path from P and add a
circle vp′

k,1
vp′

k,2
...vp′

k,j
vp′

k,j+1
v−l+1...vr−1vp′

k,1
to C . Then

|P | will be reduced by 1. If these two paths are not the same,
our proposed algorithm will delete these two paths from P
and add an updated path

v−lv−l+1...vp′
k,1

vp′
k,2

...vp′
k,j+1

...vr−1vr

to P . Then |P | will be also reduced by 1. Thus, f = k =
|S| − |P | is still valid.

Finally, we obtain that f = |S| − |P |.
3. Any feasible solution of the original problem corresponds

to an integer feasible flow in the flow network (D(N), cap),
and |S| − |P | is no larger than the flow. This is to prove that
there exists an injective mapping which maps a path cover
P ∪C in which all nodes in subset S exist and only exist once
in a residual network (D(N), cap, flow) with integer flow, and
the network flow is not smaller than |S| − |P |.

Firstly, for each simple path in P , delete the first and last
few nodes that do not belong to S such that the first and the
end nodes belong to S. In the case that all the nodes on the
path do not belong to S, we delete the whole path. It is seen
that such operations do not change the fact that all the nodes
in S appear and only appear once in the cover P ∪ C.

Secondly, we construct the feasible flow based on transpos-
ing the steps as discussed before: we open all the paths and
circles at the nodes belonging to S such that the first and last
nodes of all new paths belong to S. Then, a feasible flow can
be constructed from vs to vt for each simple path. Finally,
feasible circulations can be constructed based on those nodes
that are not in S.

4. The maximum flow is the optimal solution of original
problem.

From the network flow theory, if the flow capacities of all
the links are integers, then for a given integer flow from vs to

vt, there exists an integer feasible flow , and it can be proven
that the maximum flow is also an integer.

At the same time, the maximum flow algorithm guarantees
that the maximum flow has been obtained from vt to vs.

Based on the proofs of sub problems 1 and 2 above, we
could obtain all the paths and circles that cover the subset with
the network flow being |S| − |P |. On the other hand, there
does not exist a solution with a smaller |P |; otherwise, we
should have obtained a solution which corresponds to feasible
flow being |S|− |P |. This contradicts with the maximum flow
theory.

Based on the four proofs above, we prove the existence and
optimality of the proposed method. �

Theorem 4: Finding the optimal solution of the Maximum
Flow Problem in MFTP by Dinic algorithm has a time
complexity of O

(
|V |1/2|E|

)
.

Proof. The proof can be seen in [25]. The time complexity of
original Dinic’s is O

(
|V |2|E|

)
which is fast enough for most

graphs. Furthermore, the Dinic’s itself can be optimized to
O (|V ||E| log |V |) with a data structure called dynamic trees.

When the edge capacities are all equal to one, the algo-
rithm has a complexity of O(|V |2/3|E|), and if the vertex
capacities are all equal to one, the algorithm has a complexity
of O(|V |1/2|E|). Since the graph is transformed from the
network with unit capacities for all vertices other than the
source and the sink, all edge capacities are equal to 1 and every
vertex v other than s or t either has a single edge emanating
from it or has a single edge entering it. According to [25],
this kind of network is of type 2 and the time complexity of
Dinic’s can be reduced into O

(
|V |1/2|E|

)
, i.e. we can solve

the Problem 2 which is more general in this complexity. �

In [4], it is known that we can solve the structural controlla-
bility of the entire network by employing MM algorithm with
complexity O(|V |1/2|E|). As stated above, our MFTP algo-
rithm has the same time complexity but can deal with more
general cases. Actually, a maximum matching problem itself
can be solved by transforming it into a network flow problem.
Therefore, MFTP is consistent with the MM algorithm when
S = V and can be applied to more complicated cases where
S ⊂ V or there are multiple layers in the network.

IV. EXPERIMENTAL RESULTS

A. Illustration of target control in a simple network

Consider a simple example in Figure 3, the target node set
is selected as S = {node 2, node 3, node 7, node 9}. The
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matrices A and C are given by

A =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0


,

C =

 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1

 .

1

2

3

4

5

6

7

8

9

Fig. 3: A simple example of the target control problem.
There are 9 nodes in the network with the target set S being
{node 2, node 3, node 7, node 9} colored with orange.

Recall that the objective is to allocate the minimum number
of external control sources such that S is controllable. As
shown in Section 4, this problem can be converted into the
maximum flow problem on the reconstructed flow network in
Figure 4 similar to Figure 2 .

Here is a step by step explanation of how this graph is
constructed:

1) For the network in Figure 3, we first use the graph
transfer methods node splitting to get a graph with node
set V (N) = V ∪ V (I) ∪ V (O) ∪ vs, vt and edge set
E(N) = E ∪ {(vs, vini )} ∪ {(vouti , vt)}.

2) Then use the graph transfer methods associate graph con-
struct and reverse the direction of edges in {(vs, vini )} ∪
{(vouti , vt)} to get the graph shown in Figure 4.

3) After this, use Dinic algorithm to get the maximum flow

1 2

43

vs

vt

1 2

3 4

in

out

5

5

6

6

7

7

8

8

9

9

Fig. 4: The reconstructed flow network.

t
0 0.5 1 1.5 2 2.5 3

-30

-20

-10

0
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20

30

Fig. 5: Illustration of the convergence of the system states.
The time constant tf is set as tf = 3.

from vt to vs which is obviously

f(e) =


1, e ∈


(vt, v

out
2 ), (vout2 , vin3 ), (vin3 , vs),

(vs, v
out
9 ), (vout9 , vin7 ), (vin7 , vs)

(vt, v
out
3 ), (vout3 , vin6 ), (vin6 , vout6 ),

(vout6 , vin2 ), (vin2 , vs)


0, others

.

4) Thus according to step 2 of MFTP, E(F ) =
{(v2, v3), (v7, v9), (v3, v6), (v6, v2)}. We set P ← ∅ and
C ← ∅.

5) Then we add path v9v7 into P according to step 4 and
step 5 of MFTP, and add v2v3v6v2 into C according to
step 6 and step 7 of MFTP.

Since target controllability can be guaranteed as long as
the nodes in S are covered by a cactus structure when the
matrix B is chosen as B = [0 1 0 0 0 0 0 0 1]T . As we
obtain P = {node 9, node 7}, C = {node 2, node 3, node 6},
all the nodes covered by the cactus P ∪ C (|P | + |C| = 5)
structure are controllable. As |P | = 1, there is only one
required control source, and node 9 together with one node
in C shall be connected to the external control source, say
node 2 for example. In this case, the input matrix B is set as
B = [0 1 0 0 0 0 0 0 1]T , and the input u(t) can be designed
based on (2). By doing this, the states of all nodes in S are
plotted in Figure 5. It is seen that all the states approach the
original point at time t = tf . This verifies the effectiveness of
our method.

B. Target control in ER, SF and real-life networks.

In this subsection, we test MFTP1 in Erdos-Renyi (ER)
[26] networks and Scale-Free (SF) [27] networks as well as
some real-life networks. The reason of choosing ER and SF
networks is because both of them preserve quite common
properties of a vast number of natural and artificial networks.
Figure 6 shows the results in ER networks with N = 1000
nodes and µ varying from µ = 1 to µ = 5, where µ is the
mean degree of the network hereafter. For a given fraction of
network nodes selected as target nodes (denoted as S), the
required minimum number of external control sources for this

1codes are available on GitHub site: https://github.com/PinkTwoP/MFTP
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µ = 1

µ = 2

µ = 3

µ = 4

µ = 5

Tendency of  Target 
Controllable Node

Fig. 6: Minimum number of required external control
sources in ER networks. The y-axis is normalized by the
total minimum number of driver nodes of the whole network,
i.e. the y-axis is the ratio ( nD

ND
, where nD is the minimum

number of driver nodes of target subset).

case is close to the neutral expected fraction of external control
sources. That is to say, to control an f fraction of target nodes
we need approximately about fND external control sources,
where ND is the minimum number of driver nodes using MM
[4] algorithm when S = V . As shown in Theorem 4, these
external control sources can be located based on MFTP. We
would like to note that this conclusion is still valid when SF
networks are tested with µ = 3, and γ = 3 (N = 1000) as
shown in Figure 7, where γ is the tail index of SF networks.
However, generally SF networks require more external control
sources than ER networks. Because typically a SF network has
a much larger portion of low-degree nodes compared to an
ER network made up of the same volume of nodes and links.
This may lead to significant differences in the external control
sources allocation. We have also tested MFTP in a few real life
networks (Wiki-Vote [28], Crop-own [29], Circuit-s838 [30]
p2p-Gnutella [31] physican-discuss-rev [32], physican-friend-
rev [33], celegans [34] and one-mode-char [35]) as shown
in Figure 8. It is observed that different network topologies
may lead to significant differences when locating the target
controllable nodes. Such observations may be important if one
want to understand how the structures of the networks affect
the target control of real-life networks.

V. DISCUSSIONS AND CONCLUSION

In this work, we have solved an open problem regarding
how to allocate the minimum number of sources for ensuring
the target controllability of a subset of nodes S in real-life
networks in which loops are generally exist. The target con-
trollability problem is converted to a maximum flow problem
in graph theory under specific constraint conditions. We have
rigorously proven the validity of the model transformation. An
algorithm termed “maximum flow based target path cover”

µ = 1

µ = 2

µ = 3

µ = 4

µ = 5

Tendency of  Target 
Controllable Node

Fig. 7: Minimum number of required external control
sources in SF networks. The y-axis is normalized by the
total minimum number of driver nodes of the whole network,
i.e. the y-axis is the ratio ( nD

ND
, where nD is the minimum

number of driver nodes of target subset).
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Fig. 8: Results in real life networks. The y-axis is normalized
by the total minimum number of driver nodes of the whole
network, i.e. the y-axis is the ratio ( nD

ND
, where nD is the

minimum number of driver nodes of target subset).

(MFTP) was proposed to solve the transformed problem. Ex-
perimental examples demonstrated the effectiveness of MFTP.

It is shown that the solution of the maximum network flow
problem provides strictly the minimum number of control
sources for arbitrary directed networks, whether the loops
exist or not. By this work, a link from target structural
controllability to network flow problems has been established.
We anticipate that our work would serve wide applications
in target control of real-life complex networks, as well as
counter control of various systems which may contribute to
enhancing system robustness and resilience. As seen in this
work, our model considers only LTI systems and we believe
that extending the results to directed networks with nonlinear
dynamics light up the way of our future research.

.
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