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An Optimal Control Approach to Identify the
Worst-Case Cascading Failures in Power Systems

Chao Zhai, Hehong Zhang, Gaoxi Xiao, and Tso-Chien Pan

Abstract—Cascading failures in power systems normally occur
as a result of initial disturbances or faults on electrical elements,
closely followed by situational awareness errors of human op-
erators. It remains a great challenge to systematically trace the
source of cascading failures in power systems. In this paper, we
develop a mathematical model to describe the cascading outages
of transmission lines in power networks. In particular, the direct
current (DC) power flow equation is employed to calculate the
power flow on the branches. By regarding the disturbances on
branches as the control inputs, the problem of identifying the
initial disruptive disturbances is formulated with optimal control
theory, which provides a systematic approach to explore the
most disruptive disturbances that give rise to changes of branch
admittance in addition to direct branch outages. Moreover, an
iterative search algorithm is proposed to look for the optimal
solution leading to the worst-case cascading failures. Theoretical
analysis guarantees the asymptotic convergence of the iterative
search algorithm. Finally, numerical simulations are carried out
on the IEEE test systems to validate the proposed approach.

Index Terms—Cascading failure, optimal control, DC power
flow equation, disturbance, power systems.

NOMENCLATURE

Pi j power flow on the branch that connects Bus i to
Bus j.

ci j power flow threshold of the branch that connects
Bus i to Bus j.

Y k
p branch admittance vector at the k-th cascading step.

yk
p,i admittance on the i-th branch at the k-th cascading

step.
A branch-bus incidence matrix.
Y k

b nodal admittance matrix at the k-th cascading step.
uk control input or disturbance at the k-th cascading

step.
θ k vector of voltage phase angle on buses at the k-th

cascading step.
Si the i-th subnetwork in power system.
Vi set of Bus IDs in the i-th subnetwork.
ei unit vector with the i-th element being 1 and 0

otherwise.
Pk vector of power injected on buses at the k-th cas-

cading step.
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Eik diagonal matrix to select the ik-th branch at the k-th
cascading step.

m number of buses in power system.
n number of transmission lines in power system.
h number of cascading steps in power system.

I. INTRODUCTION

THE stability and secure operation of power grids have a
great impact on other interdependent critical infrastruc-

ture systems such as energy systems, transportation systems,
finance systems and communication systems. Nevertheless,
contingencies on vulnerable components of power systems
and situational awareness errors of human operators 1could
trigger a chain reaction of circuit breakers, leading to a large
blackout of power networks. For instance, the North America
cascading blackout on August 14, 2003 resulted in a power
outage affecting 50 million people [2]. The misoperation of a
German operator in November 2006 triggered a chain reaction
of power grids that caused 15 million Europeans to lose access
to power [3]. Recently, a relay fault near the Taj Mahal in India
gave rise to a severe cascading blackout on July 31, 2012
affecting 600 million people. It is vital to identify the worst
possible attacks or initial disturbances on the critical electrical
elements in advance and develop effective protection strategies
to alleviate cascading blackouts in power systems.

A cascading blackout in power systems is defined as a
sequence of component outages that include at least one
triggering component outage caused by initial contingencies
[4], [5] and subsequent tripping component outages due to the
overload of transmission lines and situational awareness errors
of human operators [6]–[8]. Besides line failures, multiple
factors contribute to the occurrence of cascading blackouts,
such as weather condition, human factors (e.g. misoperations
of operators), the equipment aging and so on. Note that a
cascading failure does not necessarily lead to a cascading
blackout or load shedding. The existing cascading models
basically fall into 3 categories [6]. The first type of models
only reveals the topological properties, but ignores physics of
power grids. As a result, these models are unable to accurately
describe the cascading evolution of power networks in practice
[9]–[11]. The second type of models focuses on the quasi-
steady-state of power systems and computes the power flow
on branches by solving the DC or alternating current (AC)
power flow equations [5], [12], [13]. The third one resorts to

1the errors of human operators due to the inadequate situational aware-
ness, which includes three components: perception of the environment ele-
ments, comprehension of the situation, and projection of future status [1]
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the dynamic transient-related modeling of cascading failures
in order to allow for the effects of component dynamics [14]–
[16]. For example, a dynamic multiprocess-integrated model
of cascading failure was presented to deal with the interdepen-
dencies of different mechanisms with the transient dynamics
of generators and protective relays [15]. It is suggested the
transient dynamical behaviors in power systems play a crucial
role in the emergence of cascading failures [16].

Actually, many factors (e.g. temperature, frequency, short
circuit, poor contactor, etc) may contribute to the changes of
branch impedance other than line outages. Some disturbances
or faults on the transmission lines of power grids can be
described by impedance or admittance changes [17], [18]. As
a special case, the outage of a transmission line can lead to
infinite impedance or zero admittance between two relevant
buses. Linear or nonlinear programming is normally employed
to formulate the problem of determining the changes of branch
admittance related to disruptive disturbances. [17] presents two
different optimization formulations to analyze the vulnerability
of power grids. Specifically, nonlinear programming is adopt-
ed to address the voltage disturbance, and nonlinear bilevel
optimization is employed to deal with the power adjustment.
Nevertheless, there is still a lack of mathematical framework
and theoretical results for investigating the effects of initial
disturbances on the ongoing dynamics of cascading failures.
Previous optimization formulations are not sufficient to de-
scribe the outage sequence of transmission lines in practice,
because the final configuration of a power network strongly
depends on the evolution process of transmission lines (i.e.
the line outage sequence) in addition to initial conditions.

In this paper, we will develop a cascading model of power
networks to describe the changes of branch admittance of
the outage sequence. The dynamics of the cascade process
includes the sequence of line outages and the redistribution of
power flow on branches. Moreover, the problem of identifying
initial disturbances causing the worst disruption of cascades
is formulated and solved in the framework of optimal control
theory by treating the disruptive disturbances as control inputs
in the optimal control system. The proposed approach provides
a new insight into tracing disruptive disturbances on vulnerable
components of power grids. It helps to find the changes of
branch admittance related to the most disruptive disturbances
in addition to direct branch outages. Since it is difficult to
directly identify the initial disturbances that cause the worst-
case cascades of real power systems, this work provides a
theoretical approach to search for the worst-case cascades in
a simplified model. Moreover, it is expected to determine the
most disruptive disturbances at the early stage of cascades in
practice.

The remainder of this paper is organized as follows. Section
II presents the cascading model of power systems and the
optimal control approach. Section III provides theoretical
results for the problem of identifying disruptive disturbances,
followed by simulations and validation on the IEEE test
systems in Section IV. Finally, we conclude the paper and
discuss future work in Section V.

Fig. 1: Schematic diagram of power systems suffering from
the lightning on transmission lines.

II. PROBLEM FORMULATION

The power system is basically composed of power sta-
tions, transformers, power transmission networks, distribution
stations, and consumers (see Fig. 1). In this work, we are
interested in identifying disruptive disturbances (e.g. lightning,
storm, temperature fluctuation [19], etc) on transmission lines
that trigger chain reactions and cause cascading blackouts in
power grids. The disturbances give rise to admittance changes
on transmission lines, which results in the redistribution of
power flow in power grids. The focus of this work is on
the identification of initial disruptive disturbances that cause
the worst-case cascades. In practice, most initial disturbances
can be modeled as the changes of branch admittance, as can
be observed in major blackouts in history [2], [20], [21].
Theoretically, it is reasonable to model a branch disturbance as
a change of branch admittance [17]–[19], [22]. The overload
of transmission lines causes certain circuit breakers to sever
the corresponding branches and readjust the power network
topology. The above process does not stop until the power
grid reaches a new steady state and transmission lines are not
overloaded any more. In this section, we propose a model to
describe the cascading outage process of transmission lines,
where the DC power flow equation is solved to obtain the
power flow on each branch. More significantly, the mathe-
matical formulation based on optimal control is presented by
regarding the disruptive disturbances of power grids as the
control inputs in the optimal control system.

A. Cascading model

The existing cascading failure models are mainly concerned
about the direct branch outages, which ignores the effects of
continuous changes of branch admittance. For this reason, we
make a cascading model that describes the changes of branch
admittance during the cascades. To characterize the connection
state of the transmission line, we introduce the state function of
the transmission line that connects Bus i and Bus j as follows:

g(Pi j,ci j) =


0, |Pi j| ≥

√
c2

i j +
π

2σ
;

1, |Pi j| ≤
√

c2
i j−

π

2σ
;

1−sinσ(P2
i j−c2

i j)

2 , otherwise.

(1)
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Fig. 2: The state function g(Pi j,ci j) of the transmission line
connecting Bus i to Bus j with the power threshold ci j = 5.

where i, j∈ Im = {1,2, ...,m}, i 6= j and m is the total number of
buses in the power system. σ is a tunable positive parameter.
Pi j refers to the steady-state power flow on the transmission
line that links Bus i and Bus j, and ci j denotes its power
flow threshold. The state function g(Pi j,ci j) is differentiable
with respect to Pi j, and more closely resembles a step function
as σ increases (see Fig. 2). The transmission line is in good
condition when g(Pi j,ci j) = 1, while g(Pi j,ci j) = 0 implies that
the transmission line has been severed by the circuit breaker.
Essentially, σ quantifies the approximation level of g(Pi j,ci j)
to a step function. By properly tuning the parameter σ , the
function g(Pi j,ci j) is able to reflect the system characteristic
of branch outage while guaranteeing its differentiability with
respect to Pi j, which is indispensable to derive the necessary
condition for optimality using optimal control theory.

Remark II.1. The value of g(Pi j,ci j) is fractional when
P2

i j is in the interval (c2
i j − π/2σ ,c2

i j + π/2σ). Clearly, the
interval length is π/σ , and it is sufficiently small when σ

is large enough. As a result, we can increase σ to eliminate
the fractional state when it occurs in numerical simulations.
Alternatively, the post-processing method is adopted to replace
the fractional state with values 0 and 1 respectively and then
opt for the one with the smaller cost function value.

The cascading model of power networks at the k-th cascad-
ing step can be presented as:

Y k+1
p = G(Pk

i j,ci j) ·Y k
p +Eik uk, k = 0,1,2, ...h−1 (2)

where Y k
p = (yk

p,1,y
k
p,2, ...,y

k
p,n)

T is the admittance vector for
the n transmission lines or branches at the k-th step, and
uk = (uk,1,uk,2, ...,uk,n)

T denotes the control inputs or dis-
turbances on transmission lines. h is the total number of
cascading steps in power networks. G(Pk

i j,ci j) and Eik are the
diagonal matrixes defined as G(Pk

i j,ci j) = diag(gk
1,g

k
2, ...,g

k
n)

with gk
s = g(Pk

is js ,cis js),s ∈ In = {1,2, ...,n} and

Eik = diag(0, ...,0,1︸ ︷︷ ︸
ik

,0, ...,0) ∈ Rn×n,

respectively. Here Eik is a predetermined matrix. By assigning
1 to the ik-th diagonal element in Eik , we can add the control
input onto the ik-th branch and thus change the admittance of
the selected branch. The cascading model (2) is formulated

based on the steady-state power flow on branches, and it
mainly allows for the branch outage caused by persistent
branch overloads. The branch admittance becomes zero and
remains unchanged once the branch is severed. In fact, E-
quation (2) can be rewritten in the element-wise form (i.e.
yk+1

p,s = g(Pk
is js ,cis js) · yk

p,s + eT
s Eik uk, s ∈ In).

Compared to existing models, the proposed model enables
to identify the disruptive disturbances that cause the changes
of branch admittance not restricted to the direct branch outage,
by using optimal control theory. Meanwhile, it is flexible to in-
corporate various factors (e.g. protective relays, load variation,
generation control, etc) that affect the cascades. In addition,
it is able to reflect the physical characteristics of cascades
at the early stage as well as to avoid the non-convergence
of numerical algorithms (see Section 1 and Section 2 in
Supplementary Materials for more details [23]).

B. DC power flow equation

In this work, we care about the outage sequence of transmis-
sion lines in power systems and thus compute the DC power
flow to deal with the overloading problem. Specifically, the
DC power flow equation is given by

Pi =
m

∑
j=1

Yb(i, j)(θi−θ j) (3)

where Pi and θi refer to the injection power and voltage phase
angle of Bus i, respectively. Yb(i, j) represents the mutual
susceptance between Bus i and Bus j, where i, j∈ Im. Equation
(3) can be rewritten in matrix form [24]: P = Ybθ , where
P = (P1,P2, ...,Pm)

T , θ = (θ1,θ2, ...,θm)
T , and Yb is the nodal

admittance matrix of power networks with its (i, j) entry
Yb(i, j). The nodal admittance matrix Y k

b at the k-th cascading
step can be obtained as

Y k
b = AT diag(Y k

p )A

where A denotes the branch-bus incidence matrix [25], and
Y k

p = (yk
p,1,y

k
p,2, ...,y

k
p,n)

T with

yk
p,i =−

1
Im(zk

p,i)
, i ∈ In (4)

zk
p,i denotes the impedance of the i-th branch at the k-th step.

Then the DC power flow equation at the k-th step is given by

Pk = Y k
b θ

k (5)

where Pk = (Pk
1 ,P

k
2 , ...,P

k
m)

T and θ k = (θ k
1 ,θ

k
2 , ...,θ

k
m)

T . Dur-
ing the cascades, the power network may be divided into
several subnetworks (i.e., islands), which can be identified
by analyzing the nodal admittance matrix Y k

b . Suppose Y k
b is

composed of q isolated components or subnetworks denoted
by Si, i ∈ Iq = {1,2, ...,q} and each subnetwork Si includes ki
buses. Let Vi = {v1,v2, ...,vki} denote the set of bus IDs in
the subnetwork Si, where v1, v2,..., vki denote the bus IDs and
∑

q
i=1 ki =m. Notice that Bus v1 in Subnetwork Si is designated

as the reference bus, which is normally a generator bus
connected to the largest generating station. Thus, the power
variation of reference bus accounts for a small percentage of
its generating capacity. When there is no generator buses in the
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subnetwork, the power flow on each branch of this subnetwork
is zero. In addition, the injected power on the reference bus
can be adjusted to balance the power supply and consumption
in the subnetwork. Moreover, the nodal admittance matrix of
the i-th subnetwork can be computed as

Y k
b,i = E T

i Y k
b Ei, i ∈ Iq

where Ei = (ei1 ,ei2 , ...,eiki
). For simplicity, we introduce two

operators ∗ and −1∗ to facilitate the analytical expression and
theoretical analysis of solving the DC power flow equation.

Definition II.1. Given the nodal admittance matrix Y k
b , the

operators ∗ and −1∗ are defined by(
Y k

b

)∗
=

q

∑
i=1

Ei

(
0 0T

ki−1
0ki−1 Iki−1

)
Y k

b,i

(
0 0T

ki−1
0ki−1 Iki−1

)
E T

i

and(
Y k

b

)−1∗

=
q

∑
i=1

Ei

(
0T

ki−1
Iki−1

)(
Y k

b,i

)−1 (
0ki−1 Iki−1

)
E T

i ,

respectively, where

Y k
b,i =

(
0ki−1 Iki−1

)
Y k

b,i

(
0T

ki−1
Iki−1

)
.

Iki−1 is the (ki−1)×(ki−1) identity matrix and 0ki−1 denotes
the (ki−1) dimensional column vector with zero elements.

In this work, the DC power flow equation is solved with
the operator −1∗ directly without using any power system
simulators.

Remark II.2. The power network represented by the nodal
admittance matrix Y k

b can be decomposed into q isolated
subnetworks, and each subnetwork is described by a submatrix
Y k

b,i, i ∈ Iq. By using breadth-first search or depth-first search,
the identification of subnetworks can be completed in linear
time in terms of the numbers of nodes and branches in the
power network [27]. The operators ∗ and −1∗ replace all the
elements in the 1st row and the 1st column of Y k

b,i with 0.
Moreover, the operator −1∗ also replaces the remaining part
of Y k

b,i with its inverse matrix. According to algebraic graph
theory, the rank of the nodal admittance matrix Y k

b,i is ki− 1
since each subnetwork Si, i ∈ Iq is connected [26]. Thus it is
guaranteed that the matrix Y k

b,i has full rank ki−1, and hence
it is invertible.

Remark II.3. For the branch with resistance R and reactance
X, the dependence of branch impedance on the temperature
can be described by the formulas [28]: R(Tc) = R(T0) ·
[1+α(Tc−T0)] and X(Tc,ω) = X(T0,ω) · [1+β (Tc−T0)],
where α and β refer to the temperature coefficients of re-
sistivity and reactance, respectively. T0 denotes the reference
temperature (usually 20◦C), and Tc represents the conductor
temperature. R(T0) and X(T0,ω) are determined at the refer-
ence temperature T0, and ω is the operating angular frequency.

C. Optimization formulation

The cascading dynamics of power system are composed
of the cascading model defined by Equation (2) and the DC

Fig. 3: Optimal control approach to identify disruptive dis-
turbances.

power flow equation described by Equation (5). These two
components, coupled with each other, characterize the cas-
cading process of power grids after suffering from disruptive
disturbances. The optimal control algorithm allows to obtain
the disruptive disturbances by treating the disturbances as
the control inputs in the optimal control system (see Fig.
3). Specifically, the cascading model describes the admittance
changes of branch outage and updates the branch admittance
with the latest power flow, which is provided by the DC power
flow equation. Meanwhile, the DC power flow equation is
solved with the up-to-date admittance of branches from the
cascading model. The above two processes occur iteratively
in describing the evolution of admittance and power flow
on transmission lines. Moreover, the cascading dynamics of
power system exactly function as the state equation of the
optimal control system. In this way, optimal control theory
enables us to gain the optimal control inputs that lead to the
worst-case cascading failures in power systems.

The identification of admittance changes related to disrup-
tive disturbances in power systems can be formulated as the
following optimal control problem:

min
uk

J(Y h
p ,uk) (6)

with the cost function

J(Y h
p ,uk) = T(Y h

p )+ ε

h−1

∑
k=0

‖uk‖2

max{0, ι− k}
(7)

where ε is a positive weight, and ‖ · ‖ represents the 2-
norm. As mentioned before, the state equation of the optimal
control system consists of Equations (2) and (5). The above
cost function includes two terms. Specifically, the first term
T(Y h

p ) denotes the endpoint cost of cascading failures and
it is differentiable with respect to Y h

p . The second term
characterizes the control energy at the first ι time steps with
the constraint 1 ≤ ι ≤ (h−1). In practice, T(Y h

p ) is designed
according to the specific concerns about the worst-case sce-
nario of power systems. For example, it can be designed as
T (Y h

p ) = ‖Y h
p ‖2 regarding the connectivity of power network
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or T (Y h
p ) = ∑

m
i=1 ∑

m
j=1[Pi j(Y h

p )]
2 in terms of the total power

flow. In particular, the parameter ε is set small enough that
the first term dominates the cost function. In brief, the idea
behind Equation (7) is that the cost function is dominated by
its endpoint cost T(Y h

p ) that quantifies the final disruption of
cascades triggered by initial disturbances (i.e. control inputs).
Essentially, the minimization of cost function is done over
the first ι control inputs (i.e. uk, k = 0,1, ..., ι − 1), and the
design of the term ‖uk‖2/max{0, ι− k} enables us to add
the control input uk at the specified time steps by setting
ι . The objective of this work is to minimize T(Y h

p ) (e.g. to
minimize the connectivity of power networks or the power
consumption) by adding the appropriate control inputs on the
selected branch at the beginning of cascades. Optimal control
theory enables us to obtain the optimal control inputs (i.e. the
most disruptive disturbances) and the minimum T(Y h

p ) (i.e. the
worst-case cascading failures).

D. Extensibility

The proposed optimal control approach can be extended
to allow for multiple factors of cascading failures. Though
detailed studies on such extensions are largely out of scope
of this paper, we provide some brief discussions in terms
of other relays, protective actions (e.g. load shedding and
generation control), uncertainties and hidden failures, and
power fluctuations as follows.

First of all, the proposed approach can be extended to
reflect the physical characteristics of other relays. For example,
the time-inverse characteristics of over-current relays can be
described by comparing the integral of the branch current over
a time interval with the threshold [15]. In addition, the time
delay in distance relays can be addressed with the aid of
adaptive dynamic programming in optimal control [29].

Protection actions of power system have impacts on the
evolution of cascading blackouts [30], [31]. By updating
Pk at certain cascading steps, the protection actions such
as load shedding and generator tripping can be taken into
account without affecting the applicability of the proposed
approach, though it may increase the computation burden and
complexity of the corresponding optimal control problems (6).
By minimizing the change of injected power on buses, a non-
linear programming problem can be formulated to allow for
protective actions (e.g. load shedding and generation dispatch)
against the cascades. It follows from the Karush-Kuhn-Tucker
(KKT) conditions that the nonlinear programming problem can
be converted into a system of (7m+6n) algebraic equations.
By combining it with the system (8), we obtain an extended
system of 7m+(6+h)n algebraic equations with 7m+(6+h)n
unknowns. The solutions to the extended system of algebraic
equations enable us to compute the disruptive disturbances
that cause the worst-case cascading failures of power grids
with protective actions. Compared to the system (8), both the
number of algebraic equations and the number of unknowns
in the extended system increase by (7m+6n) (see Section 3
in Supplementary Materials for more details [23]).

The uncertainties in power systems and hidden failures of
the relays are important factors of cascading failures. Optimal

control of uncertain systems can be adopted to deal with
the uncertainties (e.g. the variations of power generation,
consumption, and branch impedance, etc) in power systems
[32]. For hidden failures of the relays, the probabilistic model
based on Markov chain is more suitable to allow for the
stochastic factors [33], and statistics of cascading line outages
from utility data can be used as the benchmark to validate
the model [34]–[36]. For this case, optimal control of Markov
decision processes provides a useful framework to identify the
disruptive disturbance by regarding the disturbances in power
systems as the policy or actions in Markov decision processes
[37], [38].

Other than line failures, there are multiple contributors of
cascading failures such as weather condition, human factors,
protection actions, voltage instability, device aging, and so on.
Considering that the triggering events (i.e. the initial disruptive
disturbances) of most major blackouts in history can be
modeled by changes of branch admittance [2], [20], [21], this
work focuses on the identification of initial disruptive distur-
bances or faults that change the branch admittance and cause
the worst-case cascades. Actually, the proposed approach is
also applied to identify the fluctuation of injected power on
buses caused by load variation and generation control. In
addition, the probabilistic model based on Markov chain is
more suitable to allow for the stochastic contributing factors
such as device aging and human factors.

III. THEORETICAL ANALYSIS

In this section, we present some theoretical results on the
proposed optimal control problem. The main theoretical results
are presented in Theorem III.1, which provides the necessary
conditions of optimal solutions to the proposed optimal control
problem (i.e. a system of algebraic equations). Specifically,
Lemma III.1 contributes to the proof of Lemma III.3, and
Lemma III.2 allows to compute the power flow on each branch.
Both Lemma III.2 and Lemma III.3 are used to derive the
system of algebraic equations in Theorem III.1. First of all, the
properties of operators ∗ and −1∗ are given by the following
lemmas.

Lemma III.1. For the nodal admittance matrix Y k
b ∈ Rm×m,

the equations(
Y k

b

)∗(
Y k

b

)−1∗

=
(

Y k
b

)−1∗ (
Y k

b

)∗
=

q

∑
i=1

Ei diag(0,1T
ki−1)E

T
i

hold, where 1ki−1 = (1,1, ...,1)T ∈ R(ki−1).

Proof: See Appendix A.
Lemma III.1 indicates that the two operators ∗ and −1∗ are

commutative for the same square matrix. Given the injection
power for each bus Pk = (Pk

1 ,P
k
2 , ...,P

k
m)

T at the k-th time step,
the quantitative relationship between Y k

p and power flow on
each branch is presented as follows.

Lemma III.2.

Pk
i j = eT

i Y k
b e j(ei− e j)

T (Y k
b )
−1∗Pk, i, j ∈ Im

where ei = (0, ...,0,1︸ ︷︷ ︸
i

,0, ...0)T ∈ Rm.
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Proof: See Appendix B.
Similar to the matrix inversion, the operators ∗ and −1∗

satisfy the following equation in terms of the derivative
operation.

Lemma III.3.
∂ (Y k

b )
−1∗

∂yk
p,i

=−(Y k
b )
−1∗(AT diag(ei)A)∗(Y k

b )
−1∗ .

Proof: See Appendix C.
Next, we present theoretical results about the optimal con-

trol problem (6), which is actually a special case (i.e., the
time invariant case) of the optimal control for the time-
varying discrete time nonlinear system in [39]. By applying the
approach in [39] to the optimal control problem (6), we obtain
the necessary conditions to identify the disruptive disturbance
of power systems with the cascading model (2) and the DC
power flow equation (5).

Theorem III.1. The necessary conditions for the optimal
control problem (6) are the solutions of the following system
of algebraic equations.

Y k+1
p −G(Pk

i j,ci j)Y k
p −Eik uk = 0n, (8)

where the control input uk is given by

uk =−
max{0, ι− k}

2ε
Eik

h−k−1

∏
s=0

∂Y h−s
p

∂Y h−s−1
p

·
∂T(Y h

p )

∂Y h
p

(9)

with k = 0,1, ...,h−1.

Proof: See Appendix D.

Remark III.1. Substituting (9) into (8) yields the system of
h×n algebraic equations with h×n unknowns (i.e., yk

p,i, i∈ In,
k ∈ Ih). Thus, the solution to the above system of algebraic
equations enables us to obtain the branch admittances at each
cascading step. The optimal control input uk is also available
by replacing the unknowns in (9) with the computed branch
admittances.

It is necessary to winnow the solutions to Equation (8),
since they just satisfy necessary conditions for optimal control
problem (6). Thus, we introduce a search algorithm to explore
the optimal control input or initial disturbances. Table I
presents the implementation process of the Iterative Search
Algorithm (ISA) in detail. First of all, we set the maximum
iteration steps imax of the ISA and the initial value of cost
function J∗, which is a sufficiently large number Jmax and
is larger than the maximum value of the cost function. The
solution to the system of algebraic equations (8) allows us to
obtain the control input ui from (9). Then we compute the cost
function Ji from (7) by adding the control input ui in power
systems. Then J∗ and u∗ are replaced with Ji and ui if Ji is
less than J∗. Finally, the algorithm goes to the next iteration
and solves the system of algebraic equations (8) once again.

Regarding the Iterative Search Algorithm in Table I, we
have the following theoretical result.

Theorem III.2. The Iterative Search Algorithm in Table I
ensures that the cost function J∗ and control input u∗ converge
to the optima as the iteration steps imax go to infinity.

TABLE I: Iterative Search Algorithm.

1: Set the maximum iteration steps imax, i = 0 and J∗ = Jmax
2: while (i <= imax)
3: Solve the system of algebraic equations (8)
4: Compute the control input ui from (9)
5: Validate the control input ui in (2)
6: Compute the resulting cost function Ji from (7)
7: if (Ji < J∗)
8: Set u∗ = ui and J∗ = Ji

9: end if
10: Set i = i+1
11: end while

Proof: The ISA in Table I indicates that the cost function
J∗ decreases monotonically as time proceeds. Considering
that J∗ is the lower bounded (i.e., J∗ ≥ 0), it can be proved
that J∗ asymptotically converges to the infimum according to
monotone convergence theorem in real analysis [40]. For each
iteration, the system of algebraic equation (8) is solved with a
random initial condition. As a result, the cost function J∗ and
control input u∗ converge to the optima as the iteration steps
imax go to infinity.

While the ISA does not guarantee the optimal solution, it
provides additional merits compared to greedy algorithms, as
explained in the following remarks.

Remark III.2. The estimated optimum by ISA approximates
the optimal solution as the iteration steps increase. Neverthe-
less, this does not imply that the optimal solution is always
available. This is because theoretical results only provide
the necessary condition for solutions to the optimal control
problem (6). For some special cases, we can guarantee that
the estimated optimum is the optimal solution if it results in
the smallest possible value of cost function.

Remark III.3. Compared with greedy algorithms to identify
the worst disruptions, the proposed optimal control approach
can provide additional merits. Specifically, the proposed ap-
proach provides a theoretical formulation that allows for the
dynamics and intermediate steps of cascades, and it is expect-
ed to approximate the global optimum with ISA. In contrast,
greedy algorithms choose the local optimum at each stage
without taking into account intermediate steps. In addition, the
proposed approach is able to identify the worst-case cascading
failures caused by changes of branch admittance in addition
to direct branch outages.

IV. SIMULATION AND VALIDATION

In this section, we implement the ISA in Table I to search
for the disruptive disturbance that is added on each branch of
the IEEE 14 Bus System. The numerical results on disruptive
disturbances are validated by disturbing the selected branch
with the computed magnitude of disturbance. To sever as many
branches as possible, we define the terminal constraint in the
cost function (7) as follows

T (Y h
p ) =

1
2
‖Y h

p ‖2
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and derive its partial derivative with respect to Y h
p

∂T(Y h
p )

∂Y h
p

= Y h
p (10)

Since the admittance of outage branch is 0, the smaller value
of T (Y h

p ) implies the fewer connected branches. Thus, the
choice of T (Y h

p ) allows to quantify the connectivity of power
networks. By substituting (10) into (9), we obtain the desired
control input for the system of algebraic equations (8). In
addition, numerical simulations are also conducted on the
larger IEEE test systems to validate the scalability of the
proposed approach.

A. Numerical simulations

The ISA has been implemented on each branch of the IEEE
14 Bus System to trace the initial disturbances that result in the
worst-case blackout of power network. The relevant data and
network topology of the IEEE 14 Bus System are presented
in Matpower [41], where Bus 1, Bus 2, Bus 3, Bus 6, and
Bus 8 are designated as generator buses, and all others are
load buses. It is worth noting that Bus 1 also acts as the
reference bus (slack bus) while computing the DC power flow
at the initial step. The net injection power on each bus is
equal to the difference between the consumption power and
the generation power. Per unit values are adopted with the
base value of power 100 MVA. Moreover, the solver “fsolve”
in Matlab is employed to solve the desired system of algebraic
equations (8). The iteration number in ISA is related to the
size of power networks and the initial condition of numerical
algorithm. Normally, the iteration number increases as the
network size gets larger. In addition, a proper selection of the
initial condition of numerical algorithm allows to obtain the
satisfactory solution with a relatively small number of itera-
tions. For simplicity, it is assumed that the injection power on
each bus remains constant during the numerical computation.
In addition, the power threshold of circuit breakers on each
branch is set to 0.3 except for c23 = 0.4 and c34 = 0.7. Such
settings of power threshold guarantee the normal operation
of the IEEE 14 Bus System when there are no disruptive
disturbances. The initial admittance of each branch can be
computed according to Equation (4). Other parameters are
given as follows: σ = 5× 104, ε = 10−4, ι = 1, imax = 10,
Jmax = 106, and h = 10. Figure 4 presents the computed
control input on each branch and the resulted cost level at
the final step. As we can see, the computed control inputs or
disturbances on Branch 3, Branch 6, Branch 9, Branch 10,
and Branch 15 lead to rather small values of cost function.
Moreover, the computed disturbances on Branch 1, Branch
2, Branch 3, Branch 4, Branch 11, Branch 13, and Branch
16 exactly result in the outage of their respective branches.
Of all the computed disturbances, we can observe that the
disturbance on Branch 6 leads to the least value (34.87) of
cost function, which implies the worst-case blackout of power
network. The iterative search process for the control inputs on
Branch 6 and the least cost values are illustrated in Fig. 5. We
can observe that the computed control inputs are 0 in the first
5 iteration steps or rounds with the maximum values of cost
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Fig. 4: The computed control inputs with the ISA and the
resulted cost on each branch.
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Fig. 5: Time evolution of the computed control input and the
resulted cost on Branch 6 during the ISA.

function. At the 6-th round, the ISA succeeds in finding the
optimal control input 1.95 on Branch 6 causing the minimum
cost value in the 10 rounds.

B. Cascading validation

The cascading process triggered by the initial admittance
change of 1.95 on Branch 6 is shown in Fig. 6. In particular,
this computed disturbance does not sever Branch 6 (red link)
at the 1st cascading step, but it leads to the outage of Branch 3
at the 2nd step, which initiates the chain reaction of cascading
failures. Branch 6 is severed at the 3rd step, and Branch 1,
Branch 2, Branch 4, Branch 5 and Branch 7 are removed
from the power network by circuit breakers at the 4th step.
Subsequently, Branch 8, Branch 14 and Branch 15 are cut
off at the 5th step. The process ends up with 2 connected
subnetworks and 8 isolated buses after 6 cascading steps. The
subnetwork with one generator bus (Bus 6) and 3 load buses
(Bus 5, Bus 12 and Bus 13) is still in operation, while the other
one with two load buses (Bus 9 and Bus 14) stops running
due to the lack of power supply.

The validation results on the IEEE 14 Bus System demon-
strate that power networks can be completely destroyed by
disruptive disturbances on certain branches. In the simulations,
the convergence rate of the ISA depends on the initial condi-
tion of the Matlab solver while solving the system of algebraic
equation (8) in each iteration.

C. Scalability

To validate the scalability of the optimal control approach,
the ISA is implemented in larger power networks including the
IEEE 24, 39, 57 and 118 Bus Systems [41]. The parameter
setting is the same as that for the IEEE 14 Bus System.
And the power flow threshold on each branch is 10% larger
than the normal power flow on the corresponding branch
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Fig. 6: Cascading process of the IEEE 14 Bus System under
the computed initial disturbances on Branch 6. Red balls
represent the generator buses, and green ones denote the load
buses. Bus ID and Branch ID are marked with black and
magenta numbers, respectively. The arrow on each branch
refers to the power flow, and it disappears if there is no
transmission power on the branch.

of power systems without any disturbances. In addition, the
normalized index γ is introduced to quantify the disruptive
level of cascading failures compared to the normal state. It is
defined as γ = J(Y h

p ,u)/J(Y h
p ,0), where a smaller γ indicates

a worse cascading failure of power system. For each bus
system, it is demonstrated that the ISA can identify the worst-
case cascading failures and their respective disturbances and
branch IDs in terms of the index γ as summarized in Table
II. Note that the identified disturbances on the IEEE 14, 24
and 57 Bus Systems (i.e. 1.95, 10.056 and 13.809) do not
lead to the direct outage of their respective branches (i.e.
Branch 6, Branch 7 and Branch 41) at the initial step. In
contrast, the identified disturbances on the IEEE 39 and 118
Bus Systems (i.e. 71.416 and 27.290) directly sever their
respective branches (i.e. Branch 35 and Branch 129).

TABLE II: The Worst-Case Cascading Failures Identified by
ISA

IEEE Test Systems Branch ID Disturbance γ

IEEE 14 Bus System 6 1.95 0.024
IEEE 24 Bus System 7 10.056 0.012
IEEE 39 Bus System 35 71.416 0.101
IEEE 57 Bus System 41 13.809 0.076

IEEE 118 Bus System 129 27.290 0.065

V. CONCLUSIONS

A cascading model of transmission lines was developed to
describe the evolution of branches on power systems under
malignant disturbances. With the cascading model and the
DC power flow equation, the identification problem of worst-
case cascading failures was formulated with the aid of optimal
control theory by treating the disturbances as the control
inputs. Moreover, the Iterative Search Algorithm was proposed
to search for the worst-case cascading failures. Simulation
results demonstrated the effectiveness of our approach. The
main advantage of the proposed approach over typical cas-
cading failure simulators lies in its capability of identifying
the disruptive disturbances that lead to changes of branch
admittance in addition to the direct branch outages. It provides
a new perspective of designing the corresponding protection
strategy to enhance the resilience and stability of power
systems and interdependent critical infrastructure systems.

APPENDIX A
PROOF OF LEMMA III.1

It follows from Definition II.1 that(
Y k

b

)∗(
Y k

b

)−1∗

=
q

∑
i=1

Ei

(
0 0T

ki−1
0ki−1 Iki−1

)
Y k

b,i

(
0 0T

ki−1
0ki−1 Iki−1

)
·
(

0T
ki−1

Iki−1

)(
Y k

b,i

)−1 (
0ki−1 Iki−1

)
E T

i

=
q

∑
i=1

Ei

(
0T

ki−1
Iki−1

)
Y k

b,i
(

0ki−1 Iki−1
)

·
(

0T
ki−1

Iki−1

)(
Y k

b,i

)−1 (
0ki−1 Iki−1

)
E T

i .

Moreover, since

Y k
b,i
(

0ki−1 Iki−1
)( 0T

ki−1
Iki−1

)(
Y k

b,i

)−1
= Iki−1

we obtain
(
Y k

b

)∗ (Y k
b

)−1∗
= ∑

q
i=1 Ei diag(0,1T

ki−1)E
T
i . Like-

wise, we can prove
(
Y k

b

)−1∗ (Y k
b

)∗
= ∑

q
i=1 Ei diag(0,1T

ki−1)E
T
i .

The proof is thus completed.

APPENDIX B
PROOF OF LEMMA III.2

It follows from the solution to the DC power flow equations
θ k = (Y k

b )
−1∗Pk that

Pk
i j = Y k

b (i, j)(θ k
i −θ

k
j ) = eT

i Y k
b e j(ei− e j)

T
θ

k

= eT
i Y k

b e j(ei− e j)
T (Y k

b )
−1∗Pk,
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which completes the proof.

APPENDIX C
PROOF OF LEMMA III.3

Lemma III.1 allows to obtain

(Y k
b )
∗ · (Y k

b )
−1∗ =

q

∑
i=1

Ei diag(0,1T
ki−1)E

T
i .

Since the derivative of the constant is 0, we have

∂
[
(Y k

b )
∗ · (Y k

b )
−1∗
]

∂yk
p,i

=
∂ (Y k

b )
∗

∂yk
p,i
· (Y k

b )
−1∗ +(Y k

b )
∗ ·

∂ (Y k
b )
−1∗

∂yk
p,i

=
∂

∂yk
p,i

q

∑
i=1

Ei diag(0,1T
ki−1)E

T
i

= 0m×m.

Then it follows from

(Y k
b )
−1∗ [

∂ (Y k
b )
∗

∂yk
p,i
· (Y k

b )
−1∗ +(Y k

b )
∗ ·

∂ (Y k
b )
−1∗

∂yk
p,i

]

= (Y k
b )
−1∗ ·

∂ (Y k
b )
∗

∂yk
p,i
· (Y k

b )
−1∗ +diag(0,1T

n−1) ·
∂ (Y k

b )
−1∗

∂yk
p,i

= (Y k
b )
−1∗ ·

∂ (Y k
b )
∗

∂yk
p,i
· (Y k

b )
−1∗ +

∂ (Y k
b )
−1∗

∂yk
p,i

= 0m×m

that

∂ (Y k
b )
−1∗

∂yk
p,i

=−(Y k
b )
−1∗ ∂ (Y k

b )
∗

∂yk
p,i

(Y k
b )
−1∗

=−(Y k
b )
−1∗(AT diag(

∂Y k
P

∂yk
p,i
)A)∗(Y k

b )
−1∗

=−(Y k
b )
−1∗(AT diag(ei)A)∗(Y k

b )
−1∗ .

The proof of this lemma is thus completed.

APPENDIX D
PROOF OF THEOREM III.1

Proof: According to the optimal control of discrete-time
nonlinear systems in [39], the necessary conditions for the
optimal control problem (6) can be determined as

Y k+1
p = G(Pk

i j,ci j) ·Y k
p +Eik uk (11)

(
∂Y k+1

p

∂uk

)T

λk+1 +
ε

max{0, ι− k}
· ∂‖uk‖2

∂uk
= 0 (12)

λk =

(
∂Y k+1

p

∂Y k
p

)T

λk+1 +
ε

max{0, ι− k}
· ∂‖uk‖2

∂Y k
p

(13)

∂T(Y h
p )

∂Y h
p
−λh = 0n (14)

where 0n = (0,0, ...,0)T ∈ Rn, and λk denotes the costate
vector. Solving Equation (12) leads to

uk =−Eik
λk+1

2ε
max{0, ι− k} (15)

and simplifying Equation (13) yields

λk =

(
∂Y k+1

p

∂Y k
p

)T

λk+1 (16)

with the final condition λh =
∂T(Y h

p )

∂Y h
p

being derived from
Equation (14). Therefore we have

λk+1 =
h−k−1

∏
s=0

∂Y h−s
p

∂Y h−s−1
p

·
∂T(Y h

p )

∂Y h
p

. (17)

Combining Equations (15) and (17), we obtain

uk =−
max{0, ι− k}

2ε
Eik

h−k−1

∏
s=0

∂Y h−s
p

∂Y h−s−1
p

·
∂T(Y h

p )

∂Y h
p

(18)

Substituting (18) into (11) yields the integrated mathematical
representation of the necessary conditions (11), (12), (13) and
(14) for the optimal control problem (6). Next, we focus on
the computation of the matrix

∂Y k+1
p

∂Y k
p

=

(
∂yk+1

p,l

∂yk
p,s

)
n×n

, k = 0,1, ...,h−1 (19)

where yk+1
p,l = g(Pk

il jl
,cil jl )y

k
p,l + eT

l Eik uk, l ∈ In. We have

∂yk+1
p,l

∂yk
p,s

=
∂g(Pk

il jl
,cil jl )

∂yk
p,s

yk
p,l +g(Pk

il jl ,cil jl )
∂yk

p,l

∂yk
p,s

=
∂g(Pk

il jl
,cil jl )

∂Pk
il jl

·
∂Pk

il jl
∂yk

p,s
yk

p,l +g(Pk
il jl ,cil jl )

∂yk
p,l

∂yk
p,s

,

(20)

for s, l ∈ In, where

∂yk
p,l

∂yk
p,s

=

{
1, s = l,
0, s 6= l. (21)

and
∂g(Pk

il jl
,cil jl )

∂Pk
il jl

=−Pk
il jl σ cosσ((Pk

il jl )
2− c2

il jl ) (22)

when c2
il jl −

π

2σ
< (Pk

il jl
)2 < c2

il jl +
π

2σ
. It follows from Lemma

III.2 and Lemma III.3 that

∂Pk
il jl

∂yk
p,s

=
∂

[
eT

il Y
k
b e jl

]
∂yk

p,s
(eil − e jl )

T (Y k
b )
−1∗Pk

+ eT
il Y

k
b e jl

∂
[
(eil − e jl )

T (Y k
b )
−1∗Pk

]
∂yk

p,s

= eT
il A

T diag

(
∂Y k

p

∂yk
p,s

)
Ae jl (eil − e jl )

T (Y k
b )
−1∗Pk

+ eT
il Y

k
b e jl (eil − e jl )

T ∂ (Y k
b )
−1∗

∂yk
p,s

Pk

= eT
il A

T diag(es)Ae jl (eil − e jl )
T (Y k

b )
−1∗Pk

− eT
il Y

k
b e jl (eil − e jl )

T (Y k
b )
−1∗

· (AT diag(es)A)∗(Y k
b )
−1∗Pk.

(23)
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Thus, each element in Matrix (19) is explicitly expressed by
Equation (20), which can be obtained by taking into account
Equations (1), (21), (22) and (23). This completes the proof
of Theorem III.1.
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[12] Y. Zhang, and O. Yaǧan, “Optimizing the robustness of electrical power
systems against cascading failures,” Scientific Reports, 6, 27625, 2016.

[13] B. A. Carreras, V. E. Lynch, M. L. Sachtjen, I. Dobson, and D. E.
Newman, “Modeling blackout dynamics in power transmission networks
with simple structure,” 34th Hawaii International Conference on System
Sciences, Maui, Hawaii, January 2001.

[14] E. G. Cate, K. Hemmaplardh, J. W. Manke, and D. P. Gelopulos, “Time
frame notion and time response of the models in transient, mid-term and
long-term stability programs,” IEEE Transactions on Power Apparatus and
Systems, PAS-103(1): 143-151, 1984.

[15] J. Song, E. Cotilla-Sanchez, G. Ghanavati, and P. D. Hines, “Dynamic
modeling of cascading failure in power systems,” IEEE Transactions on
Power Systems, 31(3): 2085-2095, 2016.
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