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Abstract—Integrating massive electric vehicles (EVs) into the
power grid requires the charging to be coordinated to reduce
the energy cost and peak to average ratio (PAR) of the system.
The coordination becomes more challenging when the highly
fluctuant renewable energies constitute a significant portion of
the power resources. To tackle this problem, a novel two-stage
EV charging mechanism is designed in this paper, which mainly
includes three parts as follows. At the first stage, based on the
prediction of future energy requests and considering the elastic
charging property of EVs, an offline optimal energy generation
scheduling problem is formulated and solved in a day-ahead
manner to determine the energy generation in each time slot
next day. Then at the second stage, based on the planned energy
generation day-ahead, an adaptive real-time charging strategy
is developed to determine the charging rate of each vehicle in a
dynamic manner. Finally, we develop a charging rate compression
(CRC) algorithm which tremendously reduces the complexity
of the problem solving. The fast algorithm supports real-time
operations and enables the large-scale small-step scheduling more
efficiently. Simulation results indicate that the proposed scheme
can help effectively save the energy cost and reduce the system
PAR. Detailed evaluations on the impact of renewable energy
uncertainties show that our proposed approach achieves a good
performance in enhancing the system fault tolerance against
uncertainties and the noises of real-time data. We further extend
the mechanism to track a given load profile and handle the
scenario where EVs only have several discrete charging rates. As
a universal methodology, the proposed scheme is not restricted
to any specific data traces and can be easily applied to many
other cases as well.

Index Terms—Electric vehicles (EVs), charging mechanism
design, renewable energy, energy generation scheduling, power
regulation, peak shaving.

I. INTRODUCTION

IN the world today, fossil fuels are the dominant energy
sources for both transportation sector and electricity gener-

ation industry. Statistics show that transportation and electric-
ity generation account for over 60% of global primary energy
demands [1]. The future solution for the fossil fuels scarcity,
as well as the growing environmental problems associated
with their wide usage, will most likely involve an extensive
use of electric vehicles (EVs) and adopting renewable energy
sources for electric energy production [2]–[4]. Under such
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cases, renewable energy supplied EV charging is becoming
a popular approach for greener and more efficient energy
usage. Since EVs have controllable charging rate, they can be
considered as flexible loads in grid system which can benefit
the grid system with demand response or load following.
Accordingly, charging scheduling of EVs in the presence of
renewable energy becomes a practical and important research
problem [5], [6].

A number of technical and regulatory issues, however, have
to be resolved before renewable energy supplied EV charging
becomes a commonplace. The arrival of EVs and their required
energy amount may appear to be random, which increases
the demand side uncertainties. In addition, while renewable
energy offers a cheaper and cleaner energy supply, it imposes
great challenges to the stability and safety of the charging
system because of its high inter-temporal variation and lim-
ited predictability. Therefore, the stochastic characteristics of
both EVs and renewable energy sources should be carefully
considered. Stand-by generators, back-up energy suppliers or
bulk energy storage systems may be necessary to alleviate
the unbalancing issue caused by renewable energy fluctuation,
which results in extra cost. In order to minimize the cost
for obtaining extra energy and to increase energy efficiency,
a flexible and efficient EV charging mechanism has to be
properly designed to dynamically coordinate the renewable
energy generation and energy demands of EVs.

A. Related Work

The existing EV charging control mechanisms roughly
fall into two categories: centralized charging strategies and
decentralized charging strategies. The main idea of central-
ized control is utilizing centralized infrastructure to collect
information from all EVs and centrally optimize EV charging
considering the grid technical constraints. In such a strategy,
the master controller decides on the rate and duration for
each EV charge. References [7]–[10] develop various cen-
tralized charging strategies to achieve different optimization
objectives, including saving system cost, minimizing power
loss, adjusting power frequency and satisfying EV owners.
Optimization methods and heuristic algorithms are adopted
by researchers to solve such problems. In [11], a hierarchical
control scheme is proposed for EVs’ charging station loads in a
distribution network while minimizing energy cost and abiding
by substation supply constraints. The scheduling is based on
the forecast load information. Recent literature [12]–[14] all
adopt receding horizon control based techniques to tackle the
uncertainties in the dynamic systems. Jin et al. [15] study EV
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charging scheduling problems from a customer’s perspective
by jointly considering the aggregator’s revenue and customers’
demands and costs. Different from previous papers, both
static and dynamic charging scenarios are considered in [15].
Though the centralized charging strategy is straightforward,
the size of the centralized optimization increases with the
number of EVs. Accurate information collection from a large
number of EVs may also impose a challenge. Designing an
effective centralized EV charging strategy therefore remains
as a difficult problem.

In contrast, the vehicle owners directly control their EVs’
charging patterns employing the decentralized charging strate-
gies [16]–[27]. Gan et al. [16] propose a decentralized algo-
rithm to schedule EV charging to fill the electric load valley.
This charging control strategy iteratively solves an optimal
control problem in which the charging rate of each vehicle can
vary continuously within its upper and lower bounds. In each
iteration, each EV updates its own charging profile according
to the control signal broadcast by the utility and the utility
company alters the control signal to guide their updates. In
[17], [20]–[25], various decentralized charging frameworks to
coordinate charging demand of EVs are implemented based
on game theory concepts. Considering the selfish nature of
people, authors of [18] define some weighting factors in
the objective function of EV charging management problem
aiming at modeling users’ convenience in the presented opti-
mization procedure. In the decentralized charging strategy, the
global optimization is achieved through the influence of price
or control signals over the EVs. However, the last decision is
taken by each EV, indicating that there are some uncertainties
in the final results. Also, simultaneous reactions may happen,
that is, a huge number of EVs can change their charge rate
at the same moment in response to a significant fall/rise of
electricity prices [26]. In [19], an decentralized online valley
filling algorithm for EV charging is proposed. An optimal
power flow (OPF) framework is adopted to model the network
constraint that rises from charging EVs at different locations.
In [27], the authors formulate the EV charging problem as a
convex optimization problem and then propose a decentralized
water-filling-based algorithm to solve it. A receding horizon
approach (similar to that in [12]–[14]) is utilized to handle
the random arrival of EVs and the inaccuracy of the forecast
non-EV load.

In the above mentioned literature, the charging energy is
supplied purely from power grid, largely generated by conven-
tional units. The main goal of introducing EVs, namely reduc-
ing the pollution and green house gas of transportation sector
is consequently greatly abated, as the pollution is transferred
from vehicle itself to the conventional energy units. Renewable
energy should play a role as significantly as possible to achieve
the real environmental advantage. Renewable energy based EV
charging hence becomes a practical and critical problem.

Though the topic has not been well investigated in literature,
a few related works can still be found dealing with the
charging scheduling of EVs with renewable energy integration.
Moeini et al. [28] propose a charging management framework
considering multiple criteria including total loss of distribu-
tion networks, rescheduling cost and wind energy utilization.

In [28], it is assumed that the energy demand of EVs is
known by the controller. In [29], a price-incentive model is
utilized to generate the management strategy to coordinate
the charging of EVs and battery swapping station (BSS). In
[30], mathematical models are built for both smart charging
and V2G operation with distribution grid constraints. Authors
of both [29] and [30] assume that the EVs are static and
always available to be charged/discharged. In [31], a stochastic
optimization algorithm is presented to coordinate the charging
of electric-drive vehicles (EDVs) in order to maximize the
utilization of renewable energy in transportation. Due to the
stochastic nature of the transportation patterns, the Monte
Carlo simulation is applied to model uncertainties presented
by numerous scenarios. In [32], the charging problem is
formulated as a stochastic semi-Markov decision process with
the objective of maximizing the energy utilization. In recent
work [33], the uncertainties of the EV arrival and renewable
energy are described as independent Markov processes. In
[34] and [35], the authors tackle the EV charging scheduling
problem adopting Lyapunov optimization techniques, such that
statistics of the underlying processes does not need to be
known in prior.

Compared with what has been proposed in the past, our
EV charging mechanism mainly has the following several
advantages: 1) renewable energies can be effectively utilized
by the EVs; 2) compared with the online scheduling schemes,
the proposed mechanism incorporates useful estimated infor-
mation day-ahead to help reduce the uncertainties in the real-
time scheduling stage; 3) compared with the offline scheduling
schemes, our mechanism is fairly flexible such that it can
effectively respond to real-time incidents; 4) A fast computing
algorithm is designed which can easily tackle a large number
of EVs, i.e., one weakness of the centralized charging strate-
gies is overcome.

B. Main Contributions

In this paper, we consider charging scheduling of a large
number of EVs at a charging station which is equipped with
renewable energy generation devices. The charging station
can also obtain energy through controllable generators or
buying energy from outside power grid. Stimulated by the
fact that in practical scenario, EV arrival and renewable
energy may not follow Markov process yet obtaining some
statistical information of future EVs’ arrivals (departures) is
possible, we propose a novel two-stage EV charging mech-
anism to reduce the cost and efficiently utilize renewable
energy. Several uncertain quantities such as the arrival and
departure time of the EVs, their charging requirements and
available renewable energies are all taken into account. In
addition, the mechanism allows more information of EV
arrivals (departures) and renewable energy generation to be
effectively incorporated into the charging mechanism when
such information is available. The main contributions of this
paper can be briefly summarized as follows:

• A day-ahead cost minimization problem is formulated
and solved, based on the prediction of future renewable
energy generation and EVs’ arrivals (departures) to de-
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termine the amount of energy generated or imported in a
day ahead manner.

• We propose a real-time EV charging and power regulation
scheme based on the planned energy generation day-
ahead to determine the charging rate of each vehicle
and power output adjustments in a dynamic and flexible
manner.

• We develop a fast charging rate compression (CRC)
algorithm which significantly reduces the complexity of
solving the real-time EV charging scheduling problem.
The proposed algorithm supports real-time operations
and enables the large-scale small-step scheduling more
efficiently.

• We further extend our mechanism to be applicable to two
practical scenarios: 1) the charging station needs to track
a given load profile; and 2) the EVs only have discrete
charging rates.

Simulation results indicate that our proposed two-stage EV
charging mechanism can effectively reduce the system expen-
diture and peak to average ratio (PAR). Moreover, the proposed
mechanism enhances the system fault tolerance against re-
newable energy uncertainties and the noises of real-time data.
Note that the proposed charging scheme adopts a universal
methodology which is not restricted to the specific data traces
used in the paper: as long as the renewable energy generation
data and EVs pattern data (including EVs battery level, desired
charging amount, charging speed and arrival/departure times)
can be obtained, the proposed EV charging scheduling scheme
can be implemented with virtually no change.

The remainder of this paper is organized as follows: Section
II introduces the problem formulation and two-stage decision
making process. In Section III, we present the fast charging
compression algorithm. The simulation results and discussions
are presented in Section IV. An extension of the proposed
charging mechanism is discussed in Section V. Finally, Section
VI concludes the paper.

II. TWO-STAGE DECISION MAKING MODEL AND
PROBLEM FORMULATION

A. Two-stage Decision-making Model

As shown in Fig. 1, we consider a charging park where an
intelligent controller is responsible for the charging scheduling
of a large number of EVs. To meet the EVs’ energy demands,
the intelligent controller 1) acquires electricity from either
controllable energy plants (a dedicated power supply [2]) or
central power grid; and 2) harvests the renewable energy from
local solar panels or wind turbines. Considering the practice
of energy acquisition from controllable generators or power
grid and the limited predictability of renewable energy, we
propose a two-stage model for decision making as shown in
Fig. 2. Specifically, at the first stage, we divide time into
discrete time slots with equal length. The preliminary energy
acquisition profile Ẽc(h) and energy transfer factor α(h) are
determined day-ahead before dispatch based on the estimated
EV energy demand Ẽv(h) and renewable energy generation
Ẽr(h), where h ∈ H is the time slot index and H is the set
of time slots in day-ahead scale. Note that Ẽv(h) is computed

Controllable 

Energy Plants

...
EV Charging 

Station

Intelligent Controller

Solar Panels 

Fig. 1: The architecture of the EV charging station.

Fig. 2: Illustration of two-stage decision making model. First
stage (day-ahead): the decision variables are acquisition profile
Ẽc(h) and energy transfer factor α(h). Second stage (real-
time): the decision variables are the charging speeds of EVs
Vi(t).

through the EVs arriving and departing pattern predictions. On
the other hand, the supply of renewable power Pr(t) and EVs
real power demand Pv(t) at time t can only be known in real
time, which requires the real-time control to balance the power
supply and demand at the second stage (real-time stage) if
necessary. Hence during the real-time EV charging scheduling,
we try to obtain the proper EVs charging rates Vi(t) and real-
time power acquisition Pc(t) given the real-time renewable
power generation Pr(t), EVs real-time parking profiles and
day-ahead dispatched acquired power P̃c(t) (determined in
the first stage). Note that for the first stage, the decision
making is done one time day-ahead. For the second stage,
it is done more frequently in real time, i.e., as long as the
renewable power generation or the parking states change, the
EVs charging decision coordinates accordingly. Table I lists
the main notations to be used in the rest of this paper.
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TABLE I: Notations used in this paper

Symbol Defination

H Set of time slots in day-ahead scale, |H| = H
h Element in H, time slot index in day-ahead scheduling
t Time index in the real-time scheduling

Ẽc(h) Predetermined energy acquisition at time slot h
Ẽv(h) Estimated EV energy demand at time slot h
P̃v(t) Estimated EV power demand at time t

Ẽr(h) Estimated renewable energy generation at time slot h
T Length of one time slot

α(h) Energy transfer factor at time slot h
M(t) The number of EVs in the charging park at time t
wi(t) Priority factor of EV i at time t
Vimax The maximum charging rate of EV i
Vimin The minimum charging rate of EV i
Vi(t) Charging rate of vehicle i at time t
Vd(t) The desired total charging demand at time t
Pr(t) Renewable power realization at time t
Pc(t) Power generated or imported in real-time
Γ The set of charging tasks whose charging rates can vary
ΓS The set of charging tasks whose charging rates are fixed

to the maximum
τi Charging task of EV i.

B. Modeling System Uncertainties

It can be noticed that the intelligent charging operation
involves several uncertain quantities including power available
from the renewable energy system, the EVs’ arrival and depar-
ture time, and their required charging amount. These quantities
are crucial parameters for managing the energy generation
and consumption of the system. Although these quantities are
random, there are good reasons to expect that some statistical
information may be obtained through accumulation of histori-
cal records. For example, the average energy generated by the
renewable energy sources at each time slot can be estimated
in a day-ahead manner based on the historical data and the
weather forecast, inspecting a large number of samples of EVs’
arrival and departure time, a probability distribution trend can
be envisioned. We assume that the parking lot can roughly
estimate the following parameters day-ahead: EVs arrival time
distribution fA(x), departure time distribution fD(x), the total
number of EVs being charged in a day N̄ , and the average
charging rate of an EV µv . In this case, the estimated power
(energy density) demand at time t can be expressed as:

P̃v(t) =

∫ t

0

(
fA(x)− fD(x)

)
dx · N̄ · µv, (1)

and the estimated energy demand during time slot h is:

Ẽv(h) =

∫ h

h−1

P̃v(t)dt, ∀h ∈ H. (2)

C. Day-ahead Energy Acquisition Scheduling

The intelligent controller will firstly decide how much
energy needs to be generated or imported in a day-ahead
manner to minimize the expected energy acquisition cost
while fulfilling the energy demand of EV charging station.
The day-ahead energy acquisition scheduling problem can be

formulated as:

min
Ẽc(h),α(h)

H∑
h=1

Ch
(
Ẽc(h)

)
(3)

s.t. Ẽc(h) + Ẽr(h) ≥ Ẽv(h) · α(h) (4)
H∑

h=1

Ẽv(h) · α(h) =
H∑

h=1

Ẽv(h) (5)

αL ≤ α(h) ≤ αU ,∀h ∈ H, (6)

where Ch(·) is the cost function of the electricity acquisition
for the charging station, which is assumed to be an increasing
convex function. The convex property reflects the fact that
each additional unit of power needed to serve the demands
is provided at a non-decreasing cost. Example cases include
the quadratic cost function [36] [37] and the piecewise linear
cost function [38] [39], etc. Without loss of generality, we
consider quadratic cost function throughout this paper. As to
the renewable energy cost, for typical renewable energies (e.g.
solar and wind energy), capital cost dominates. The operation
and maintenance costs are typically very low or even negligible
[40] [41]. In this paper, it is assumed that the renewable energy
generators such as solar panels and wind turbines have already
been installed, and the marginal cost of renewable energy can
be neglected, leading to its omission in the objective function
[42]. Due to the flexibility of EVs’ charging tasks, it is possible
to shift some energy demand to other time slots to achieve the
demand response target and reduce the total cost. α(h) > 0 is
an energy transfer factor and 1−α(h) controls the portion of
demand at time slot h shifted to other time slots. If α(h) > 1,
energy demand from other time slots is transferred to time slot
h, whereas if α(h) < 1, the energy demand in time slot h is
shifted to other time slots. Note that α(h) can vary within its
lower bound αL and upper bound αU . Constraint (4) is the
load balance constraint, simply indicating that energy in each
time slot should be balanced. Constraint (5) reveals the fact
that the total energy required from EVs during a day remains
unchanged, i.e., demand only transfers between time slots.

D. Real-time Power Regulation and Elastic EV Charging

It is assumed that a two-way communication infrastructure
(e.g., a local area network (LAN)) is available between the
intelligent controller and vehicles. When an EV plugs in,
it informs the intelligent controller its unplug time, desired
charging amount, maximum and minimum allowable charging
rates. Also, it is assumed that the EV owners are rational so
that the desired charging amount won’t exceed the maximum
charging capacity of vehicle during its parking period. In
other words, if the vehicle is charged at its maximum speed
during the entire parking period, it can definitely reach the
pre-set desired battery level. For the real-time operation,
the intelligent controller has two tasks. First, given the real
renewable generation and EVs’ charging requirements, it has
to determine a proper charging rate for each EV to achieve the
optimal utilization of renewable energy and finish the charg-
ing tasks before EVs’ departures. Second, the total acquired
power should be properly regulated around the predetermined
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generation profile in real-time to match the fluctuant power
demand, i.e., demand and supply should be balanced at any
time instance.

From the standpoint of EV owners, it is desirable to
reduce their EVs’ charging time. For example, decreasing the
charging time provides more flexibility for the owners to leave
the charging station earlier. This objective can be captured by
the constrained optimization problem as follows:

min
Vi(t)

∑
τi∈Γ

wi(t)
(
Vimax − Vi(t)

)2
, (7)

s.t.
∑
τi∈Γ

Vi(t) +
∑

τi∈ΓS

Vimax ≤ Vd(t), (8)

Vi(t) ≥ Vimin
∀τi ∈ Γ, (9)

Vi(t) ≤ Vimax ∀τi ∈ Γ. (10)

In (7), decision variable is Vi(t) which is the charging speed of
EV i to be determined at time t. τi represents the charging task
of vehicle i. Parameter wi(t) ≥ 0 is a priority factor which
reflects the urgent degree of a charging task. More urgent tasks
would have larger wi(t). Without loss of generality, wi(t) can
be determined dynamically according to the state of the EV,
which is defined as follows:

wi(t) =
Er

i

T d
i − t

, ∀τi ∈ Γ, (11)

where Er
i is the amount of remaining requested energy for

charging and T d
i is EV i’s departure time. Equation (11)

indicates that urgent charging tasks will have a higher priority
factor so as to be charged faster. This is to ensure that EVs
depart with desired battery level. wi also denotes the average
charging rate EV i needs to finish the charging task τi on time.
Vimax is the maximum charging rate (i.e., the desired charging
rate) of EV i. Vimin is the minimum allowable charging rate of
EV i. At any time t, the charging tasks can be first classified
into two categories: Γ is the set of charging tasks whose
charging rate can vary, i.e., Γ = {τi| wi(t) < Vimax

}. ΓS

denotes the set of charging tasks whose charging rates have
to be fixed at the maximum charging rates because of the
urgent charging time, i.e., ΓS = {τi| wi(t) = Vimax}. Note
that elements in Γ and ΓS may vary with time and for τi ∈ Γ,
Vi ≤ Vimax , for τi ∈ ΓS , Vi = Vimax . This EV classification
approach ensures that all the EVs depart with satisfactory
charging amount. Vd(t) is the desired total charging demand
at time t. The way to set Vd(t) will be introduced later.

Notice that constraint (8) simply states the schedulability
condition, and the rest of the constraints bound the charg-
ing rates. Due to EVs’ arrivals and departures, the system
is dynamic and the number of vehicles and their charging
requirements will change over time. Therefore, the intelligent
controller can solve problem (7)-(10) to obtain the charging
rate for each EV at time t. When the renewable power
realization changes, or an EV’s status changes (τi changes
from Γ to ΓS) or a vehicle enters or departs the system, the
intelligent controller will update Γ, ΓS and Vd(t) in real time
and then re-do the calculation. Next, we will show how to
determine Vd(t) to optimally utilize the renewable energy.

Let P̃c(t) = Ẽc(h)
T denote the dispatched acquired power

(i.e., the day-ahead pre-scheduled power generation) at time

t, where T is the length of a time slot, and Pr(t) denote the
renewable generation realization at time t. Then, Vd(t) can be
defined as follows:

• If
∑

τi∈Γ Vimin +
∑

τi∈ΓS
Vimax > P̃c(t) + Pr(t), then

Vd(t) =
∑

τi∈Γ Vimin +
∑

τi∈ΓS
Vimax , Pc(t) = Vd(t)−

Pr(t), Pc(t) is the acquired power in real time. This
is for the case where the renewable energy generation
is very low, i.e., even though all the controllable EVs
(EVs that belong to set Γ) charge at their minimum
allowable charging rates, the demand is still higher than
the available supply. Therefore, up regulation is required
to guarantee the power balancing, i.e., more energy has
to be imported, either by raising up the output level of
fast response generators or buying more electricity from
ancillary service markets.

• If
∑

τi∈Γ Vimin +
∑

τi∈ΓS
Vimax ≤ P̃c(t) + Pr(t) ≤∑

τi∈Γ∪ΓS
Vimax , then Vd(t) = P̃c(t)+Pr(t) and Pc(t) =

P̃c(t). This investigates the scenario where the renewable
energy generation deviates not far from the previous
prediction, i.e., the power demand of EVs can be adjusted
to match the available supply. This represents the most
common situation the charging system encounters. Under
such case, the power demand of controllable EVs can
be adjusted to match the supply, thus power acquisition
profile does not need to be changed and is equal to the
dispatched load determined day-ahead.

• If
∑

τi∈Γ∪ΓS
Vimax < Pr(t) + P̃c(t), then Vd(t) =∑

τi∈Γ∪ΓS
Vimax

and Pc(t) =
∑

τi∈Γ∪ΓS
Vimax

− Pr(t).
This corresponds to the case where the renewable energy
generation is plenty enough that even the highest charging
demand can be satisfied, i.e., although all the EVs charge
at the maximum charging rates, available power still
exceeds. In this case, down regulation is required to make
sure that power is balanced, i.e., the intelligent controller
can reduce the acquired power level or sell the extra
power out and only compensate the mismatch between
the maximum charging demand and the renewable energy
output.

Remark: In day-ahead energy acquisition scheduling, the
intelligent controller aims at minimizing the expected cost of
the charging park given the estimated renewable energy supply
Ẽr(h) and EVs’ energy demand Ẽv(h), h ∈ H. Decision
variable Ẽc(h) is the scheduled electricity to be brought
from day-ahead energy market or generated by base-load
plants. In real-time power regulation, system reliability and
EVs’ charging requirements become the main concerns. The
aforementioned up/down regulation is provided by ancillary
service markets or fast response generators [43].

III. THE CHARGING RATE COMPRESSION ALGORITHM

The problem (7)-(10) belongs to the category of convex
quadratic programs and can be solved in polynomial time.
Many commercial optimization solvers including CPLEX,
Mosek, FortMP and Gurobi, etc., can be utilized to solve such
problems. However solving such a problem using quadratic
program solver during run time can be still too costly, espe-
cially when the number of EVs is large and the response time
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has to be very short so as to quickly respond to EVs. What
makes the above formulation attractive is that a charging rate
compression (CRC) algorithm can be proposed such that the
problem solving can be extremely fast. We first develop the
CRC algorithm and then introduce a lemma and a theorem to
prove that it can solve the problem (7)-(10).

At each time instance t, the set Γ of charging tasks can
be further divided into two subsets: a set Γf of charging
tasks with the minimum charging rate and a set Γv of
charging tasks whose charging rate can still be compressed.
Let V0 =

∑
i∈Γ Vimax be the maximum power level of the

charging task set Γ, Vv0 be the sum of maximum charging rates
of charging tasks in Γv , and Vf be the sum of the charging
rates of charging tasks in Γf . To achieve a desired power
level Vd(t) < V0 +

∑
i∈ΓS

Vimax , each charging task has to
be compressed up to the following charging rate:

∀τi ∈ Γv, Vi = Vimax − (Vv0 − Vm(t) + Vf )
Wv

wi
, (12)

where

Vm(t) = Vd(t)−
∑

τi∈ΓS

Vimax (13)

Vv0
=

∑
τi∈Γv

Vimax
(14)

Vf =
∑

τi∈Γf

Vimin (15)

Wv =
1∑

τ∈Γv

1
wi

. (16)

If there exist charging tasks where Vi < Vimin , then the
charging rates of these vehicles have to be fixed at their
minimum value Vimin . Sets Γf and Γv have to be updated
(Therefore Vf , Vv0 and Wv have to be recomputed) and (12) is
applied again to the charging tasks in Γv . If a feasible solution
exists, i.e., the desired power level of the system is higher
than or equal to the minimum power level

∑M(t)
i=1 Vimin , the

iterative process ends until each value computed by (12) is
greater than or equal to its corresponding minimum Vimin .
The algorithm for compressing the charging rate of a set Γ
of EVs to a desired charging power level Vd(t) is shown in
Algorithm 1.

Lemma 1. Given the constraint optimization problem as
specified in (7)-(10) and

∑
τi∈Γ Vimax > Vm(t), any solution,

V ∗
i (t), to the problem must satisfy

∑
τi∈Γ V

∗
i (t) = Vm(t) and

V ∗
i (t) ̸= Vimax , for all τi ∈ Γ.
Theorem 1. Given the optimization problem as specified in

(7)-(10),
∑

τi∈Γ Vimax > Vm(t), and
∑

τi∈Γ Vimin < Vm(t),
let V̂ (t) =

∑
V ∗
i (t)̸=Vimin

Vimax
+
∑

V ∗
i (t)=Vimin

Vimin
. A

solution is optimal if and only if

V ∗
i (t) = Vimax

−
1

wi(t)
(V̂ (t)− Vm(t))∑

V ∗
j (t) ̸=Vjmin

(1/wj)
, (17)

for V̂ (t) > Vm(t) and V ∗
i (t) > Vimin , and V ∗

i (t) = Vimin

otherwise.
The proofs of Lemma 1 and Theorem 1 are given in the

Appendix. Based on the previous lemma and theorem, we can
draw the conclusion as follows:

Algorithm 1 Algorithm for compressing the charging rate for
a charging task set of Γ at time t.

Input: Vd(t), Vimin , Vimax , wi, ∀τi ∈ Γ.
Output: Vi, ∀τi ∈ Γ.

1: Begin
2: V0 =

∑
τi∈Γ Vimax ;

3: Vmin =
∑

τi∈Γ Vimin ;
4: Vm(t) = Vd(t)−

∑
τi∈ΓS

Vimax ;
5: if (Vm(t) < Vmin)
6: Return INFEASIBLE;
7: else
8: do {
9: Γf = {τi|Vi = Vimin};

10: Γv = Γ− Γf ;
11: Vv0 =

∑
τi∈Γv

Vimax ;
12: Vf =

∑
τi∈Γf

Vimin ;
13: Wv = 1∑

τ∈Γv
1
wi

;
14: OK= 1;
15: for (each τi ∈ Γv)
16: Vi = Vimax

− (Vv0 − Vm(t) + Vf )
Wv

wi
;

17: if (Vi < Vimin)
18: Vi = Vimin

;
19: OK= 0;
20: end if
21: end for
22: } while (OK== 0);
23: return FEASIBLE;
24: end if
25: End

Corollary 1. Consider the charging tasks of |Γ ∪ ΓS | EVs,
where Vi(t) is the charging rate of the ith vehicle. Let Vimax

denote the initial desired charging rate of charging task τi ∈
Γ∪ΓS and wi(t) be the set of priority factors. Let Vd(t) be the
desired power level of the system and

∑
τi∈Γ Vimax > Vm(t).

The charging rate Vi, τi ∈ Γ, obtained from Algorithm 1
minimizes ∑

τi∈Γ

wi(t)
(
Vimax − Vi(t)

)2
subject to the inequality constraints

∑
τi∈Γ Vi(t) +∑

τi∈ΓS
Vimax ≤ Vd(t), Vi(t) ≥ Vimin , and Vi(t) ≤ Vimax for

τi ∈ Γ.
Remark: Through analysis, the time complexity of Algo-

rithm 1 is O(n2), where n is the number of tasks in Γ.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results based on real
world traces for assessing the performance of the proposed
two-stage EV charging scheme.

A. Parameters and Settings

We assume there are solar panels providing renewable
energy for the charging station. The area of the solar panels
in the system is set to be 6.25 × 104 m2. The energy
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Fig. 3: Solar irradiance in a day

conversion efficiency is 0.4. The solar radiation intensity
statistic is adopted from [44], from which we employ the solar
radiation data of a typical day in winter (17/01/2013). The
data utilized for the day-ahead energy acquisition scheduling
and real-time EV charging are depicted in Fig. 3. Note that
the predicted average solar radiance utilized in the day-ahead
energy generation scheduling is plotted in the blue circled
line, and the actual real-time solar radiance adopted in the
real-time charging is shown by the red curve. We envision
the scenario that the charging station is located at a work
place (e.g., a campus) that is active from 6:00 AM to 6:00
PM. Vehicles arrive earlier than 6:00 AM start to charge at
6:00 AM while those depart later than 6:00 PM finish their
charging before 6:00 PM. We simulate the operation process
of a large scale charging station which serves totally 3000
EVs arriving and departing independently in a typical day.
It is assumed that the arrival time distribution and departure
time distribution are all Gaussian with parameters shown in
Table II (similar assumptions can be found in many papers,
e.g., [34] [45]). EVs are active for charging during their
parking time and discharging is not permitted. The amount
of energy needed for the EVs are evenly distributed between
20 KWh and 50 KWh. The maximum allowable charging rate
of an EV is 62.5 KW (e.g., high-voltage (up to 500 VDC)
high-current (125 A) automotive fast charging [46]) and the
minimum charging rate of an EV is 0 KW. The cost function
of the electricity acquisition is Ch

(
Ẽc(h)

)
= ah · Ẽc(h)

2 and
ah = 150 $ · (MWh)−2.

TABLE II: Parameters of the arrival and departure time
probability distribution

Time parameter Arrival Departure

mean: µr 10 14
standard deviation: σr 1.2 1.3
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Fig. 4: Energy supply from conventional generators under
different charging schemes

B. Results and Discussions

The simulation process contains two parts. First, given the
estimated solar energy in each time slot (in the simulation, one
time slot is set as one hour), we solve the day-ahead energy
acquisition scheduling problem (3)-(6) and obtain Ẽc(h) and
α(h) for h = 1, ...,H . The upper bound and lower bound
of energy transfer parameter α(h) is set to be 2 and 0.5
respectively. Once the dispatched energy acquisition in each
time slot is obtained, we are ready to simulate the charging
process of EVs based on the real time renewable power
generation and EVs’ real time arrival (departure) patterns.
Adopting the data previously mentioned, all the simulations
are conducted on an Intel workstation with 6 processors
clocking at 3.2 GHZ and 16 GB of RAM. We repeated the
simulation for 10 times. All the 3000 EVs complete charging
with required amount before their departures. By utilizing the
CRC algorithm introduced in Section III, the simulation time
is reduced from 1005.1 s to 101.2 s, showing that the proposed
CRC algorithm can significantly reduce the complexity of
the problem solving. Note that our CRC algorithm does not
sacrifice the problem solving accuracy and we obtain exactly
the same results when adopting quadratic programming solvers
and our CRC algorithm.

We first investigate the effectiveness of our proposed EV
charging mechanism. Specifically, two charging schemes are
compared. In the first scheme, EVs are kept charging during
their parking time and the charge speeds are the average
rates that they need to fulfill the charging tasks. Conventional
generators generate electricity for the unbalanced power de-
mand in an on-demand manner. While in the second scheme,
the charging station charges EVs’ batteries according to the
mechanism we proposed, and electricity is generated based
on the day-ahead scheduling and real-time adjustment. The
simulation results concerning the power supply curves, total
system cost and peak to average ratio (PAR) under these two
schemes are given in Fig. 4 and Fig. 5, respectively. As we
mentioned previously, quadratic cost functions are adopted to
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schemes

compute the system expenditures for both schemes.
In Fig. 4, it is shown that by optimally controlling the charg-

ing rates of EVs, our proposed charging strategy successfully
transfers the peak demand to the off-peak hours, which can
help stabilize the operations of the charging system and reduce
the energy cost. As shown in Fig. 5, the total expenditure of the
charging station decreases from $4.1×104 per day in scheme
1 to $1.8 × 104 per day in our proposed scheme, achieving
a cost saving of 56.1%. Therefore, one of the aims of the
developed charging strategy, which is reducing the expenditure
of the system, is achieved. To investigate the variation of PAR,
we study two cases: 1) PAR of the aggregated supply (i.e., the
supply from controllable generators plus the supply from solar
panels); and 2) PAR of the controllable generators’ output. As
we observe in Fig. 5, with scheme 1, the PAR of the aggregated
supply and the PAR of controllable generators’ output are 2.69
and 3.95, respectively. By adopting the proposed charging
scheme, these two PAR values reduce to 2.02 and 1.78
(decrease about 25% and 55%), respectively. The proposed
EV charging strategy presents much better PAR performance
during the 12-hour operation. An interesting observation is
that in scheme 1, the PAR of controllable generators’ output is
much higher than that of the aggregated power supply, however
the situation is exactly opposite in our proposed scheme. In
other words, under normal circumstances, utilizing renewable
energy will make the output of controllable generators more
fluctuant, whereas EVs can help solve this problem by properly
varying their charging speeds, i.e., charging quickly when
renewable energy is sufficient and reducing the rate when not
enough renewable energy is available.

In our scheme, the first-stage day-ahead energy genera-
tion scheduling is based on the estimated renewable energy
generation in next day. Normally the real renewable energy
generation might be different from the estimated one. Next, we
investigate the cost sensitivity with respect to this deviation.
The simulation results are depicted in Fig. 6. Specifically,
we conduct the experiment as follows. In the first step, the
day-ahead energy generation scheduling is done based on
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Fig. 6: System cost with respect to the real-time renewable
generation deviation (∆m represents the deviation of real solar
irradiance from the estimated one, and m is the actual data
trace)

the estimated solar irradiance and EVs’ arriving (departing)
patterns. Then, for the real-time charging, we vary the solar
irradiance data based on the real world trace to represent
different estimation error levels. As it is observed in Fig. 6,
system cost is much more sensitive in scheme 1 than that
in our scheme when the deviation varies. The reason is that
by applying our charging strategy, deviations of the solar
power can be distributed to the whole time horizon. However
in scheme 1, the situation that solar power is excessive
during some time periods and insufficient in some other time
becomes more severe. Under such case, solar energy utilization
efficiency fluctuates more extensively when deviation level
increases, and accordingly, system cost varies more violently.
Hence, our charging mechanism can effectively reduce the
financial risks caused by the estimation error of the renewable
energy generation.

Figure 7 illustrates how system cost varies under different
fluctuation levels of solar energy. In this experiment, we add 0-
mean Gaussian noise to the real-time solar irradiance data and
then evaluate its impact on the system cost. Different standard
deviations of the noise reflect different fluctuation levels of
solar energy. It appears that the fluctuation of renewable
energy has less impact on the system cost when adopting
our proposed scheduling scheme. This observation is intuitive
since by properly altering their charging rates, EVs act as an
energy storage which may to a certain extent alleviate the
uncertainty problem. However in scheme 1, the controllable
generators have to compensate the solar power fluctuation
during the entire time horizon. In this case, the system cost will
be affected more extensively when fluctuation level increases.
Note that this experiment also simulates the scenario that
system data is affected by noises. Thus, we claim that the our
proposed EV charging mechanism shows good performances
in dealing with uncertainties of renewable energy and noises
of real-time data.
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level of renewable energy (m represents the actual data trace
and σ represents the standard deviation of noise).

V. EXTENSIONS

A. Tracking a Given Load Profile

The electricity utilized for EV charging can be provided by
a utility company. The objective of the utility company may
be to flatten the total load profile. The utility company may
also need to buy electricity in day-ahead electricity market and
supply the electricity to the charging parking as well as other
energy consumers in real-time. Under such case, the utility
company may want the charging station to properly schedule
the charging of EVs so that the demand can track the electricity
profile it brought in the day-ahead electricity market. Denote
the load profile that the charging park tracks as L(t). Our
charging scheme can be extended to track L(t) by solving the
following constraint optimization problem:

min
Vi(t)

∑
τi∈Γ

wi(t)
(
Vimax − Vi(t)

)2
, (18)

s.t.
∑
τi∈Γ

Vi(t) +
∑

τi∈ΓS

Vimax ≤ L(t), (19)

Vi(t) ≥ Vimin ∀τi ∈ Γ, (20)
Vi(t) ≤ Vimax ∀τi ∈ Γ. (21)

Figure 8 shows the simulation results of tracking given
target load profiles. The intelligent controller is in charge of
managing 3000 EVs in a day on their charging schedules.
These vehicles plug in uniformly distributed between 6 : 00
and 14 : 00, with deadlines uniformly distributed between
10 : 00 and 18 : 00. The amount of energies needed to charge
are evenly distributed between 20 KWh and 50 KWh. Two
testings are conducted to show the load tracking results with
different target profiles. The target profiles are represented
by the blue dot-circled curves. The red dash curves and
green solid curves correspond to the aggregated charging rates
obtained from our EV charging mechanism and scheme 1,
respectively. We observe that the aggregated charging demand
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Fig. 8: Tracking given target load profiles

can closely follow the target load profiles when adopting our
proposed charging scheme. There are only small discrepancies
around 18 : 00 due to the early or late departures of EVs.

Remark: In order to ensure that the electricity demand of
EVs can closely follow the target load profile, load profile L(t)
should not go beyond the variation limits of EVs’ charging
rates, i.e.:

L(t) ≥
∑
τi∈Γ

Vimin +
∑

τi∈ΓS

Vimax (22)

and

L(t) ≤
∑
τi∈Γ

Vimax +
∑

τi∈ΓS

Vimax (23)

B. Discrete Charging Rates

In our proposed charging scheme, we assume that the
charging rate can vary continuously within the EV’s maximum
and minimum allowable rates, determined by the charger.
Similar assumptions can be found in many literature including
[7] [47] and [16]. However in some circumstances, if only
a few discrete charging speeds are allowed, the proposed
EV charging scheme can be easily extended to handle such
case. Let Vi denote the set of allowable charging rates of
vehicle i. To capture the discrete charging rate case, we replace
constraints (9), (10) with the following constraint in real-time
EV charging:

Vi(t) ∈ Vi ∀τi ∈ Γ. (24)

Although the CRC algorithm is only suitable for the continu-
ous charging rate case, simulations show that with discrete
allowable charging rates, the proposed two-stage charging
mechanism still has an acceptable computation-time perfor-
mance. In the simulation, each EV has 4 allowable charging
speeds, i.e., Vi = {0 KW, 20 KW, 40 KW and 62.5 KW},
∀τi ∈ Γ [2]. The number of EVs served in a day is still
3000. The simulation results comparison with the continuous
charging rate case is summarized in the first row of Table III.
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TABLE III: Simulation results under continuous charging rate case and discrete charging rate case (all results are 10 times
average).

charging park size power level type charging cost ($) cost growth
large scale continuous charging rate case 17993.1 -
(3000 EVs) discrete charging rate case 18028.8 0.2%

medium scale continuous charging rate case 497.1 -
(500 EVs) discrete charging rate case 511.2 2.8%
small scale continuous charging rate case 22.2 -
(100 EVs) discrete charging rate case 27.9 25.7%

Note that the simulations under both cases are conducted 10
times and results in Table III are the average.

As it is shown in Table III, two main observations can be
found as follows:

• For the discrete charging rate case, though the simulation
time is much longer for the continuous charging rate case,
our two-stage EV charging mechanism still performs
acceptably for the real-time scheduling since computation
time for updating the charging rates of active vehicles is
about 0.25 s on average. Note that this is the updating
time running on the computer whose configuration is
specified in the previous subsection.

• The system cost increases slightly (about 0.2%) when
only several discrete charging rates are allowed. This
observation is intuitive since with discrete charging rates,
the scheduling flexibility is abated and mechanism perfor-
mance gets worse. In other words, when EVs’ charging
rates can vary continuously, the power demand can follow
the desired power supply more closely and thus utilize the
renewable energy in a more efficient manner. However,
since the number of EVs is large, discrepancy between the
combinations of EVs’ discrete charging rates and desired
energy supply level is not significant. Thus, the cost only
increases slightly.

We further reduce the simulation scale to medium size (e.g.,
500 vehicles) and small size (e.g., 100 vehicles) to investigate
how the size of the charging park impacts the performances
of the proposed scheme. Besides the charging park size,
simulation process and system parameters are exactly the
same to those in the previous subsection. The area of the
solar panels varies proportionally with the charging park size.
We also simulate 10 times and the results data are depicted
in Table III. It appears that for large-, medium- and small-
scale charging parks, system costs in discrete charging rate
case are 0.2%, 2.8% and 25.7% higher than those in the
continuous charging rate case, respectively. In other words,
system cost is more sensitive to the discrete charging rate
condition when the scale of charging park shrinks. The reason
for this phenomenon is that when the number of connected
vehicles gets small and only several discrete charging rates
are allowed, the flexibility of the system deteriorates. There
will be a higher probability that aggregated charging demand
cannot match the available power. For instance, when there
are only 30 KW power available and 2 vehicles are active at a
given time, for the continuous charging rate case, EVs are able
to follow the supply closely. Whereas for the discrete charging

rate case, either 10 KW power is wasted or conventional
units have to generate 10 KW more so that discrete demand
can be matched. Therefore, power utilization becomes less
efficient and conventional generators have to produce more
electricity to ensure that charging tasks can be finished in
time. As we mentioned previously, when the number of EVs is
large, discrepancy between the combinations of EVs’ discrete
charging rates and desired energy supply level becomes less
significant, leading to only marginal increase in cost. The
proposed EV charging scheme favors reasonably for a large
charging park when only discrete charging rates are allowed.

VI. CONCLUSIONS

In this paper, we investigated the cost-effective scheduling
approach of EV charging at a renewable energy aided charg-
ing station. We designed a two-stage EV charging scheme
to determine energy generation and charging rates of EVs.
Specifically, at the first stage, based on the EV pattern and
renewable energy generation estimation, a cost minimization
problem was formulated and solved to obtain a preliminary
energy generation or importation scheduling in a day-ahead
manner. Then at the second stage, a real-time EV charging and
power regulation scheme was proposed. Such a scheme allows
convenient handling of volatile renewable energy and indeter-
minate EV patterns. We also developed an efficient charging
compression algorithm to further lower the complexity of the
problem solving. Simulation results indicate the satisfactory
efficiency of the proposed EV charging mechanism and the
cost benefits obtained from it. Moreover, the impacts of
renewable energy uncertainties have been carefully evaluated.
The results show that the proposed EV charging scheme has
a good performance in enhancing the system fault tolerance
against uncertainties and the noises of real-time data. Such
evaluations, as we believe, reveal that the proposed charging
mechanism is suitable for the case with a large number of
EVs and unstable renewable energy. Furthermore, we extend
the mechanism to track a given load profile and handle the
scenario that EVs only have discrete charging rates. As a
universal methodology, the proposed scheme is not restricted
to any specific data traces and can be easily applied to many
other cases as well.

APPENDIX

A. Proof for Lemma 1

Proof: We prove the lemma by adopting the Karush-
Kuhn-Tucker (KKT) optimality conditions for the solution to
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the given problem. The Lagrangian function for the problem
(7)-(10) is:

L(V, λ, ν)

=
∑
τi∈Γ

wi(Vimax − Vi)
2 + λ0

(∑
τi∈Γ

Vi − Vm

)
(25)

+
∑
τi∈Γ

λi(Vimin − Vi) +
∑
τi∈Γ

νi(Vi − Vimax),

where λ0 ≥ 0, λi ≥ 0 and νi ≥ 0 for τi ∈ Γ are
Lagrangian multipliers associated with constraints (8), (9) and
(10). Through Slater’s condition, strong duality holds for this
problem. In such case, the sufficient and necessary conditions
for the existence of a minimum value at V ∗

i are, for all τi ∈ Γ

∂L

∂V ∗
i

= −2wi(Vimax − V ∗
i ) + λ0 − λi + νi = 0, (26)

λ0

(∑
τi∈Γ

Vi − Vm(t)

)
= 0, (27)∑

τi∈Γ

λi(Vimin − Vi) = 0, (28)∑
τi∈Γ

νi(Vi − Vimax) = 0. (29)

First assume that (8) is inactive, which means that∑
τi∈Γ V

∗
i − Vm(t) < 0 and λ0 = 0. In this case, at least

one constraint in (9) or (10) must be active. Let’s assume
that the kth constraint in (9) is active, i.e., V ∗

k = Vkmin and
λk ≥ 0. Then, the kth constraint in (10) must be inactive, that
is V ∗

k − Vkmax < 0 and νk = 0. From (26), we then obtain

λk = −2wi(Vimax − V ∗
i ) < 0, (30)

which contradicts the assumption that λk ≥ 0. Hence, we have
the conclusion that if any V ∗

k = Vkmin , constraint (8) have to
be active.

Similarly, if at least one constraint in (10) is active while
others are inactive, i.e., V ∗

h = Vhmax (active) and Vlmin <
V ∗
l < Vlmax (inactive), then we can obtain that λh = 0, νh ≥

0, λk = 0 and νk = 0. Based on (26), we obtain the following
two equations:

λ0 = 2wi(Vhmax − V ∗
h ) + λh − νh = −νh ≤ 0, (31)

λ0 = 2wi(Vkmax − V ∗
k ) + λk − νk

= 2wi(Vkmax − V ∗
k ) > 0. (32)

Note that the above equations (31) and (32) cannot be satisfied
simultaneously, which means that all the constraints in (10)
can either be active or inactive. Under such cases, if all the
constraints in (10) are active, we have∑

τi∈Γ

V ∗
i =

∑
τi∈Γ

Vimax > Vm(t), (33)

which contradicts the constraint (8) that the charging task is
schedulable. If all the constraints in (10) are inactive, then from
(29) we have λ0 = 0 from (32), which means that

∑M(t)
i=1 V ∗

i −
Vm(t) = 0 given (27). This again contradicts the assumption
that (8) is inactive. Therefore, we have the conclusion that for
any solution to the optimization problem (7)-(10), constraint

(8) is active, i.e.,
∑

τi∈Γ V
∗
i (t) = Vm(t) and V ∗

i (t) ̸= Vimax ,
for τi ∈ Γ. Hence, Lemma 1 is proved.

B. Proof for Theorem 1

Proof: Consider the KKT optimality condition in (26)-
(29). We have proved in Lemma 1 that any solution, V ∗

i (t) to
the optimization problem must satisfy

∑
τi∈Γ V

∗
i (t) = Vm(t)

and V ∗
i (t) ̸= Vimax , for τi ∈ Γ. Therefore, we only need to

consider the condition that νi = 0, for τi ∈ Γ. Suppose that
the hth constraint in (9) is active, i.e., V ∗

h = Vhmin and

λh = λ0 + ν0 − 2wh(Vhmax − V ∗
h ) (34)

= λ0 − 2wh(Vhmax − Vhmin).

For other constraints that are inactive, we have λk = 0 based
on (28). Based on (26), we have:

λ0

wi
=

λi

wi
+ 2(Vimax

− V ∗
i ). (35)

By summing up the above equation for all i that satisfy V ∗
i ̸=

Vimin
we can get:

λ0

∑
V ∗
i ̸=Vimin

1

wi
= 2

∑
V ∗
i ̸=Vimin

(Vimax − V ∗
i ), (36)

which is equivalent to

λ0

∑
V ∗
i ̸=Vimin

1

wi
(37)

= 2

( ∑
V ∗
i ̸=Vimin

Vimax +
∑

V ∗
i =Vimin

Vimin

−
∑

V ∗
i =Vimin

Vimin −
∑

V ∗
i ̸=Vimin

V ∗
i

)

= 2
(
V̂ (t)− Vm(t)

)
,

and thus:

λ0 =
2
(
V̂ (t)− Vm(t)

)
∑

V ∗
i ̸=Vimin

(1/wi)
(38)

as long as V̂ (t) > Vm(t), λ0 > 0, λi ≥ 0 and constraint (10)
are satisfied. Under such case, the optimal charging rate V ∗

i

either satisfies V ∗
i = Vimin or

V ∗
i = Vimax − λ0

2wi
(39)

= Vimax −
1
wi

(
V̂ (t)− Vm(t)

)
∑

V ∗
i ̸=Vimin

(1/wi)
.

Since Slater condition holds for problem (7)-(10), the KKT
conditions provide necessary and sufficient condition for op-
timality. Theorem 1 is proven.
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