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Abstract—Due to the existence of various anomalies such as
non-Gaussian process and measurement noises, gross measure-
ment errors and sudden changes of system status, the robust
forecasting-aided state estimation is pivotal for power system
stability. This paper develops a novel unscented Kalman filter
(UKF) with generalized Correntropy loss (GCL) (termed as GCL-
UKF) to estimate power system state with forecasting-aid. The
GCL is used to replace the mean square error loss in original
UKF framework. Such an approach, as we shall show the strength
of the GCL developed in robust information theoretic learning for
addressing the non-Gaussian interference while benefiting from
the strength of the UKF in handling strong model nonlinearities.
In addition, we take into account the nontrivial influences of
the bad data for the innovation vector. An enhanced GCL-
UKF (EnGCL-UKF) method is established by introducing an
exponential function of the innovation vector to adjust covariance
matrix so as to improve the GCL-UKF based state estimation
accuracy under the change of gain matrix caused by bad factors.
Numerical simulation results carried out on IEEE 14-bus, 30-
bus and 57-bus test systems validate the efficacy of the proposed
methods for state estimation under various types of measurement.

Index Terms—Generalized Correntropy Loss, unscented
Kalman filter, power system forecasting-aided state estimation,
non-Gaussian measurement noise.

I. INTRODUCTION

Reliable and accurate state estimation techniques are of
great benefits to the safe and stable operation of power
systems [1]-[3]. In view of the real-time changes of the system
load and to maintain the system balance and stability, the
generator continuously adjusts the speed and frequency aiming
to generate desired changes of the injection power and the
branch power flow of the node. The forecasting-aided state
estimation (FASE), which can forecast the state of the system
via making full use of the prior information of the state
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variables and trace the changes of the node state, is becoming
increasingly important for power system real-time modeling
and control in modern energy management center [4]-[6]. The
Kalman filtering (KF) approach is one of the most significant
tools for power system state estimation due to its outstanding
tracking ability. The iterated extended KF (EKF) based on the
generalized maximum likelihood approach was developed to
estimate state when subjected to disturbances [7]. Considering
the difficulty in obtaining the process and measurement noise
models, an adaptive EKF with inflatable noise variances is
proposed for real time state estimation [8]. The traditional
EKF, however, may produce large estimation errors or even
diverge when the system nonlinearity is strong. Consequently,
the unscented KF (UKF) algorithm with means of unscented
transformation (UT) has been widely used in engineering,
such as state of charge estimation [9] and power system state
estimation [10]-[13]. In existing studies, the UKF was used
to estimate the current system bus voltage magnitudes and
phase angles under typical measurement condition [10]. An
effective state estimation method was developed by using
UT to calculate the mean and covariance of the nonlinear
functions of state transition and observation models [11].
A constrained iterated UKF was proposed to estimate the
state variables and unknown parameters [12]. In short, UKF
with enhanced numerical stability was developed for state
estimation of the multi-machine power system [13]. The UKF
has been a promising approach for the state estimation due to
its simple calculation process and the superior performance in
highly nonlinear systems.

The performance of an estimator heavily depends on the ac-
curacy of the measurements and the assumed estimation model
[14]-[15]. A power system may suffer from unexpected noises
in system sensing which may not necessarily follow Gaussian
distribution [16]-[17]. However, the UKF with mean square
error (MSE) loss can achieve accurate state estimation results
only when the process and observation noises obey a Gaussian
distribution; its good performance no longer holds when the
Gaussianity assumption of the noises is violated, especially for
impulsive noise. The state estimate vector obtained from the
UKF hence may be significantly degraded due to the lack of
statistical robustness of the filter to non-Gaussian noise[18].
To mitigate the impacts of non-Gaussian noise, Zhao proposed
H-EKF to restrain the influence of system uncertainties [17]. A
novel robust generalized maximum likelihood (GM)-estimator
[6] and GM-UKF [18] were developed to enable suppressing
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observation and innovation outliers for FASE and dynamic
state estimation. In recent years, Correntropy as a novel
similarity function has been proposed in information theoretic
learning methodology [19], and Correntropy based KFs have
been developed in [20]-[21] which can obtain higher-order
moments of error and improve the performance of the original
KFs under non-Gaussian noise. However, it cannot change the
shape of Correntropy freely due to the limit of dealing with
only one particular type of noise with Gaussian function. The
Gaussian kernel is, therefore, not always the best choice [22]-
[23]. Consequently, the generalized Correntropy was defined
by Chen [22], and it utilizes the generalized Gaussian density
function instead of the traditional Gaussian function as a kernel
function in Correntropy methodology. Thanks to its better
more flexibility, the generalized Correntropy loss (GCL) has
been used as the cost function to design robust adaptive filter
through minimizing the GCL for different applications [24]-
[25].

To enrich the methodology of robust power system state
estimation and enhance the estimation accuracy, this paper
mainly focuses on developing novel robust state estimation
approaches along with the following contributions.

(i) A novel robust UKF with GCL (denoted as GCL-UKF) is
established in this work. The GCL with a suitable kernel
width achieves a robust performance under non-Gaussian
noise interference.Thus it can improve the robustness of
the UKF, which in turn ensures satisfactory performance
of FASE under the non-Gaussian environments.

(ii) Considering the serious influence of the bad data for
the innovation vector, an exponential function of the
innovation vector is introduced into the GCL-UKF to
adjust covariance matrix. Thus, the influence of bad data
on gain matrix is suppressed, and further the robustness
of the GCL-UKF method is enhanced.

(iii) The GCL-UKF and its enhancement version are used for
power system forecasting-aided state estimation under
non-Gaussian noise cases. Experiments and comparison
analysis under various conditions validate the efficacy of
the proposed methods in complex environment.

Rest of the paper is organized as follows. Section II de-
scribes the system model and the generalized Correntropy
loss. Section III develops the UKF with GCL method and its
enhanced version for robust power system estimation. Section
IV shows and analyzes the simulation results under various
conditions. Finally Section V concludes with a summary of
the main findings of this paper.

II. SYSTEM MODEL AND GENERALIZED
CORRENTROPY LOSS

A. Power System Dynamic Model

For FASE, it should establish a physical and mathematical
model of the time-varying characteristics of the system be-
tween the state variables and the observation time first. Here,
a power system model is given by a nonlinear discrete-time
states and measurements equations as:

xi = f(xi−1) +wi (1)

yi = h(xi) + vi (2)

where xi ∈ Rn denotes the state vector consisting of magni-
tudes and angles of nodal voltage. The measurement vector
yi ∈ Rm comprises of voltage magnitude measurements,
real power injection measurements, reactive power injection
measurements, real power flow measurements, and reactive
power flow measurements. wi and vi are system process and
measurement noises with covariance matrices Qi ∈ Rn×n and
Ri ∈ Rm×m, respectively. The noises wi and vi are usually
assumed to be Gaussian noise and independent of each other.
However, the system may suffer from the interference of the
noise with non-Gaussian distribution in practice.

We mainly focus on the development of novel robust SE
method for power system. f(·) and h(·) represent the state-
transition function and measurement function, where f(·) can
be obtained by the Holt’s two-parameter linear exponential
smoothing technique [26] as

xi−1 = ai−1 + bi−1 (3)

ai−1 = αi−1xi−1 + (1− αi−1)x
′

i−1 (4)

bi−1 = βi−1(ai−1 − ai−2) + (1− βi−1)bi−2 (5)

where αi−1 and βi−1 are parameters at (i− 1)th instant lying
in the range from 0 to 1, and x

′

i−1 denotes the predicted state
vector at (i − 1)th instant. To execute the state prediction
step (time update) of the KF approach, the state forecasting
function (3) is used in (1) to predict the state vector in advance
when the state prediction step (time update) of the KF based
approach is executed. To define the measurement function h(·)
for power system, the standard real and reactive power balance
and line flow equations are used, which are given by

Ps =
N∑
j=1

|Vs||Vj |(Gsj cos θsj +Bsj sin θsj) (6)

Qs =
N∑
j=1

|Vs||Vj |(Gsj sin θsj −Bsj cos θsj) (7)

Psj = V2
s(Ggs+Gsj)−|Vs||Vj |(Gsj cos θsj +Bsj sin θsj)

(8)
Qsj = −V2

s(Bgs+Bsj)−|Vs||Vj |(Gsj sin θsj−Bsj cos θsj)
(9)

where |Vs| is the voltage magnitude at bus s, θsj is the voltage
angle between buses s and j, Ps and Qs are the real power
injection and reactive power injection at bus s, Psj and Qsj

are the real power flow and reactive power flow between buses
s and j, Gsj and Bsj are the conductance and susceptance
of the line between buses s and j, Ggs and Bgs are the
conductance and susceptance of the shunt at bus s.

B. Generalized Correntropy Loss

Considering two random variables X and Y, the Corren-
tropy is defined by

V(X,Y) = E[κσ(X,Y)] =

∫
κσ(x,y)dFX,Y(x,y) (10)
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where E denotes the expectation operator, κσ(·, ·) stands for
a kernel function with kernel width σ > 0, and FX,Y(x,y)
denotes the joint distribution function of (X,Y).

The well-known generalized Gaussian density function with
zero-mean is defined by

Gα,β(X,Y) =
α

2βΓ( 1
α )

exp{−(
|X−Y|

β
)α}

= τα,β exp{−γ|X−Y|α} (11)

where Γ(·) is the gamma function, α > 0 represents the shape
parameter, β > 0 is the scale parameter, γ = 1

βα is the kernel
parameter, and τα,β = α

2βΓ( 1
α )

is the normalization constant.
Then, the generalized Correntropy (GC) can be defined as [22]

Vα,β(X,Y) = E
[
Gα,β(X,Y)

]
(12)

In practice, the data distribution is usually unknown and only a
finite number of samples are available. Then the sample mean
estimator of the GC is

V̂α,β(X,Y) =
1

N

N∑
i=1

Gα,β(xi,yi) (13)

Further, an estimator of the GC-loss (GCL) can be defined by

ĴGCL(X,Y) = Gα,β(0, 0)− V̂α,β(X,Y)

= τα,β − 1

N

N∑
i=1

Gα,β(xi,yi) (14)

Similar to the Correntropy, the generalized Correntropy
involves more higher-order absolute moments of data than
those of MSE. The GCL function behaves like different norms
(from lα to l0) of the data in different regions, and it is robust
to outliers with a suitable kernel parameter. Generally, the non-
Gaussian noise may occur when the power system is confront-
ed with the loss of communications links, inaccurate phasor
synchronization in measurements, or large biases caused by
the saturation of metering current transformers [18].Therefore,
a novel robust estimator based on GCL will be proposed in
this work to mitigate the impacts of non-Gaussian noise with
outliers.

III. GENERALIZED CORRENTROPY LOSS BASED
UKF FOR ROBUST STATE ESTIMATION

Here, through the use of the GCL in UKF, the derivation
process of the UKF with GCL is first presented based on the
state-space equation of a nonlinear system represented in (1)
and (2) which follows the structure of standard UKF.

A. UKF with generalized Correntropy loss (GCL-UKF)
1) Time update: According to the UT transform, a set of

2n + 1 sigma points should be generated by (15) from the
estimated sate xi−1|i−1 and estimate error covariance matrix
Pi−1|i−1 at time i− 1.

χs
i−1|i−1=



x̂i−1|i−1 s = 0

x̂i−1|i−1+

(√
(n+ λ)Pi−1|i−1

)
s

s = 1, · · · ,n

x̂i−1|i−1+

(√
(n+ λ)Pi−1|i−1

)
s−n

s =n+1,· · · ,2n

(15)

where
(√

(n+ λ)Pi−1|i−1

)
s

represents the sth column of√
(n+ λ)Pi−1|i−1, λ = δ2(n + κ) − n is a composite

scaling factor, where the parameter 0 ≤ δ ≤ 1 determines
the spread of the sigma points around, κ is set to 3 − n
when the state variable is multivariable, which can be used to
reduce the higher order errors of the mean and the covariance
approximations.

Setting an initial state variable x0, then the initial state mean
x̂0|0 = E[x0], and the initial state estimate error covariance
matrix P0|0 can be represented as

P0|0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(16)

Then, the prior state mean x̂i−1|i−1 and covariance of the one
step predicted state Pi|i−1 are obtained by

x̂i|i−1 =
2n∑
s=0

wi
ηf(χ

s
i−1|i−1) (17)

Pi|i−1=
2n∑
s=0

wi
c[f(χ

s
i−1|i−1)−x̂i|i−1][f(χ

s
i−1|i−1)−x̂i|i−1]

T+Qi−1

(18)
wi

η, wi
c are the weights of the sigma point mean, w0

η = λ
n+λ ,

w0
c = λ

n+λ + 1− δ2 + ζ2 and

wi
η = wi

c =
1

2(n+ λ)
, i = 1, 2, · · · , 2n (19)

where the parameter ζ ≥ 0 is related to the distribution of
the state variable, and it is optimal when ζ = 2 for Gaussian
distribution.

2) Measurement update: During measurement update pro-
cedure, 2n + 1 sigma points from x̂i|i−1 and Pi|i−1 should
be first computed by

χs
i|i−1=



x̂i|i−1 s = 0

x̂i|i−1+

(√
(n+ λ)Pi|i−1

)
s

s = 1, · · · ,n

x̂i|i−1+

(√
(n+ λ)Pi|i−1

)
s−n

s =n+1,· · · ,2n

(20)
Then the prior mean ŷi|i−1 and the predicted measurement
cross-covariance matrix Pxy,i can be computed by

ŷi|i−1 =
2n∑
s=0

wi
ηh(χ

s
i|i−1) (21)

Pxy,i =
2n∑
s=0

wi
c[χ

s
i|i−1 − x̂i|i−1][h(χ

s
i|i−1)−ŷi|i−1]

T (22)

To further finish the measurement update, a statistical linear
regression model based on the GCL is employed in this
procedure which is similar to the approach proposed in [27].
Specifically, a prior state estimation error is defined as

η(xi) = xi − x̂i|i−1 (23)

Further, one can define a measurement slope matrix as

H̄i = (P−1
i|i−1Pxy,i)

T (24)
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Then, the measurement equation (2) can be approximated by

yi ≈ ŷi|i−1 + H̄i(xi − x̂i|i−1) + vi (25)

Combining equations (1), (23) and (25) yields[
x̂i|i−1

yi − ŷi|i−1 + H̄ix̂i|i−1

]
=

[
I
H̄i

]
xi + ξi (26)

where ξi =

[
−η(xi)

vi

]
with

E[ξiξ
T
i ] =

[
Sp,i|i−1S

T
p,i|i−1 0

0 Sr,iS
T
r,i

]
= SiS

T
i (27)

where Si represents the Cholesky decomposition factor of the
matrix E[ξiξ

T
i ]. Multiplying both sides of (26) by S−1

i , we
have

Di = Wixi + ei (28)

where

Di = S−1
i

[
x̂i|i−1

yi − ŷi|i−1 + H̄ix̂i|i−1

]
(29)

Wi = S−1
i

[
I
H̄i

]
(30)

ei = S−1
i ξi (31)

with Di = [d1,i, · · · ,dL,i]
T , Wi = [w1,i, · · · ,wL,i]

T , ei =
[e1,i, · · · , eL,i]

T and L = m+n. According to (27) and (31),
we know that E[eieTi ] = I, where I is unity matrix.

For getting the optimal values of the state variables, GCL
is employed as

ĴGCL(xi) = τα,β
[
1− 1

L

L∑
k=1

exp{−γ|ek,i|α}
]

(32)

where ek,i is the kth element of ei given by

ek,i = dk,i −wk,ixi (33)

The optimal estimate of xi then can be obtained by minimizing
(32) as

x̂i = argmin
xi

τα,β
[
1− 1

L

L∑
k=1

exp{−γ|ek,i|α}
]

(34)

Setting the gradient of the (32) regarding xi to be zero yields

∂ĴGCL(xi)

∂xi

= −τα,β
L

L∑
k=1

exp{−γ|ek,i|α}|ek,i|α−1sign(ek,i)wk,i

= −τα,βγ
L

L∑
k=1

exp{−γ|ek,i|α}|ek,i|α−2(dk,i −wk,ixi)wk,i

= 0 (35)

From (35), one can easily get

xi =
( L∑
k=1

exp{−γ|ek,i|α}|ek,i|α−2wT
k,iwk,i

)−1

×
( L∑
k=1

exp{−γ|ek,i|α}|ek,i|α−2wT
k,idk,i

)−1
(36)

Equation (36) is actually a fixed-point equation with respect
to xi, and it can be expressed as

xi = g(xi) (37)

Now, we obtain a fixed-point iterative equation from (37)
as

x̂i,t+1 = g(x̂i,t) (38)

where x̂i,t is the estimated state x̂i at the tth fixed-point
iteration. Here, (36) is further expressed in a matrix form as

xi =
(
WT

i CiWi

)−1(
WT

i CiDi

)
(39)

where
Ci =

[
Cµ1,i 0
0 Cµ2,i

]
(40)

Cµ1,i = diag{gC(e1,i), · · · ,gC(en,i)}
Cµ2,i = diag{gC(en+1,i), · · · ,gC(en+m,i)} (41)

with gC(ek,i) = exp{−γ|ek,i|α}|ek,i|α−2.
In addition, using the results (27) and (30), we have

Wi =

[
S−1
p,i|i−1 0

0 S−1
r,i

] [
I
H̄i

]
=

[
S−1
p,i|i−1

S−1
r,i H̄i

]
(42)

Combining (40) and (42), we get(
WT

i CiWi

)−1
=
(
(S−1

p )TCµ1S
−1
p +H̄i

T
(S−1

r )TCµ2S
−1
r H̄i

)−1

(43)
where Sp, Sr, Cµ1 and Cµ2 respectively represent Sp,i|i−1,
Sr,i, Cµ1,i and Cµ2,i for simplicity. The variables substitution
thus can be conducted as

(S−1
p )TCµ1S

−1
p ,A, H̄i

T ,B,

(S−1
r )TCµ2S

−1
r ,C, H̄i,D (44)

Using the matrix inversion lemma, we yield

(WT
i CiWi)

−1=(A+BDC)−1=SpC
−1
µ1

ST
p−SpC

−1
µ1

ST
p H̄

T

× (H̄S−1
r SpC

−1
µ1

ST
p H̄

T + SrC
−1
µ2

ST
r )

−1H̄SpC
−1
µ1

ST
p

(45)

According to the definition of S−1
i , we further have

Di = S−1
i

[
x̂i|i−1

yi − h(x̂i|i−1) + H̄ix̂i|i−1

]
=

[
S−1
p,i|i−1x̂i|i−1

S−1
r

(
yi − h(x̂i|i−1) + H̄ix̂i|i−1

)] (46)

Using (40), (44) and (46), it can be derived that

WT
i CiDi = (S−1

p )TCµ1S
−1
p x̂i|i−1

+ H̄T (S−1
r )TCµ2S

−1
r

(
yi − h(x̂i|i−1) + H̄ix̂i|i−1

)
(47)

Combining (39) and (47), we have

xi = x̂i|i−1 + K̃i(yi − ŷi|i−1) (48)

where

K̃i = P̃i|i−1H̄
T
i

(
H̄iP̃i|i−1H̄

T
i + R̃i

)−1 (49)

P̃i|i−1 = Sp,i|i−1C
−1
µ1,i

(Sp,i|i−1)
T (50)
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R̃i|i−1 = Sr,iC
−1
µ2,i

(Sr,i)
T (51)

Meanwhile, the corresponding covariance matrix is updated
by

Pi|i = (I− K̃iH̄i)Pi|i−1(I− K̃iH̄i)
T + K̃iRiK̃

T
i (52)

Remark 1: The gross errors caused by the outlier in the
measurements may significantly affect the performance of
the state estimation techniques [28], such as the traditional
UKF with MSE loss, especially while under large disturbances
caused by the impulsive noises in the measurements. The GCL
is on the other hand local similarity function determined by the
free parameter kernel width, that is the main reason why the
proposed GCL-UKF appears to be insensitive to the outliers.

B. Enhanced GCL-UKF

In power systems, noises in measurements may affect the
innovation vector in (48) while is the predicted state vector at
time instants i. To avoid such performance degradation, it is
important to restrain the change of innovation vector caused by
the noise (especially for non-Gaussian noise). Inspired by the
idea in [28], an exponential function of the innovation vector is
introduced into the GCL-UKF to update the covariance matrix
by adjusting innovation vector, which can be expressed as

R̂i = R̃i exp{−|ψi|} (53)

R̃i = R̂−1
i (54)

From (53) and (54), one can see that once any raw measure-
ments encounter a significant outlier that results in an increase
of absolute residual vector, the inversion of the absolute of
residual vector can help suppress the influence such that the
estimation performance can be improved. In addition, when the
residual vector is considerably small, the exponential output
shall at most approach the value of one. And the suppression
function can be added to the system model without too much
change, so it is very simple and applicable. In addition, the
modified GCL-UKF by adding all previous effect in absolute
exponential form can reduce the effect of gain because the
covariance matrix is included in the gain matrix (49). Then an
enhanced GCL-UKF (EnGCL-UKF) method can be obtained
when (53) and (54) are used in GCL-UKF to update the in
(51). In addition, the enhanced versions of EKF and UKF can
also be obtained when the covariance matrices of measurement
noise is updated by (53) and (54), which are termed as EnEKF
and EnUKF in this work, respectively.

C. Power System State Estimation Based On EnGCL-UKF

For the m-bus power system, 2m-1 states are required to
be estimated that include m voltage amplitude and m-1 phase
angle states. To estimate the 2m-1 states of the power system
using EnGCL-UKF, it needs to assume the initial state vector
and the corresponding covariance matrix . According to (15),
a set of 2n+1 sigma points can be calculated. Now, we give
the detailed procedure of the proposed EnGCL-UKF algorithm
for state estimation as follows.

Step 1.Set proper free parameters, and choose a small
positive ε; set an initial estimate x̂0|0 = E[x0] and
the corresponding covariance matrix P0; let i = 1;

Step 2.Use Eqs (15)-(18) to obtain the prior estimate x̂i|i−1

and Pi|i−1, and calculate Sp,i|i−1 by Cholesky de-
composition;

Step 3.Use Eqs (20)-(22) to compute the prior measurement
ŷi|i−1 and use Eqs (18) and (22) to acquire the mea-
surement slope matrix H̄i; construct the statistical
linear regression model (26);

Step 4.Transform (25) into Eq (28), let t = 1 and set the
initial value xi|i,t at time instant t = 0 as xi|i,0;

Step 5.Use the following equation (55) to compute x̂i|i;

x̂i|i,t = x̂i|i−1 + K̃i(yi − ŷi|i−1) (55)

where K̃i can be obtained by (49)-(51). The only
difference for the realization of the proposed methods
and the derived procedure is the residual error in
(41), which is now given by

ek,i = dk,i −wk,ixi|i,t−1 (56)

In addition, R̃i is updated by (53) and (54) to further
improve the performance of the proposed approach;

Step 6.Compare the estimation at the current step and the
estimation at the last step. If ∥x̂i|i,t−x̂i|i,t−1∥

∥x̂i|i,t−1∥
≤ ε

holds, set x̂i|i,k and continue to step (7); otherwise,
t+ 1 → t, and go back to step 5;

Step 7.Update the posterior covariance matrix by Eq (52),
i+ 1 → i and go back to step (2).

The estimation of state vector (consisting of magnitudes and
angles of nodal voltage) could be conducted with the preset
initials of and . The inclusion of a prediction stage for
estimators permits a better filtering of measurement noises so
that the estimation results can be improved [28].

IV. NUMERICAL RESULTS

The performance of the proposed GCL-UKF and EnGCL-
UKF methods is evaluated in the case study on the IEEE
14-bus, 30-bus and 57-bus test systems, respectively. To
investigate the effectiveness and the robustness of the pro-
posed methods, the three test scenarios including non-Gaussian
noise with outliers in measurements, abnormal situation of
measurement gross error, and sudden load change condition
are mainly considered in the following simulations. Without
mentioned otherwise, the process noises are all assumed to
be of the Gaussian distribution with zero-mean and variance
0.01.In the following experiments, 50 time-sample intervals
are set to simulate the dynamic changes of power systems. The
EKF, UKF, EnEKF and EnUKF are included for comparisons.
Test results are presented in terms of the performance index
J(in p.u) of the overall measurement, and the mean absolute
error (MAE) of the phase angle and amplitude of each node
voltage [28]. All the results are obtained by averaging over
200 independent Monte Carlo runs to achieve more reliable
simulation results and higher statistical significance. All the
tests are executed with MATLAB 2016b running on i7-4510U
and 2.60 GHZ CPU.



6

A. Case 1: non-Gaussian noise with outliers in measurements

First, we consider the case with mixed-Gaussian noises in
measurements generated by

(1− θ)N(µ1, v
2
1) + θN(µ2, v

2
2) (57)

where N(µi, v
2
i ) (i = 1, 2) denotes the Gaussian distributions

with mean values µi (i = 1, 2) and variances σ2
i (i = 1, 2),

and θ is the mixture coefficient. The Gaussian distribution with
a larger variance can model stronger impulsive noises (outlier-
s). In this simulation, the parameters value (µ1, µ2, v

2
1 , v

2
2 , θ)

of the mixed Gaussian distribution is set at (0, 0, 1, 80, 0.15)
to model the measurement noises. The initial state error
covariance matrix P0 is set to 10−4I. The free parameter α
is set as 1.6, and the kernel width parameter γ = 0.0019. The
overall performance indexes for the different test systems at
each time instant i are given in Fig.1 (a)-(c). It is observed
that 1) the proposed GCL-UKF performs better than EKF
and UKF because of due to the enhancement by GCL; 2)
the performance of the proposed EnGCL-UKF algorithm has
significant advantages over other methods in any test system.
Such results illustrate that the EnGCL-UKF can achieve high-
er filtering capacities and more robust performance during
slow dynamic changes under the Non-Gaussian measurement
noises, because the absolute exponential form can restrain the
change of innovation vector.

Since PMU measurement errors of real and reactive power
flows calculated from voltage and phasors may follow Laplace
distribution with outliers, the real and reactive power mea-
surement noises generated by mixed Gaussian and Laplace
distributions represented by (59) are considered in this case to
further verify the feasibility of the proposed methods. We let
the noises be presented as

0.95N(0, 100) + 0.15L(0, 1) (58)

where L(0, 1) denotes the noise drawn from the Laplace
distribution with zero mean and scale 1. The average value
of the overall performance index under different test systems
are shown in Fig. 2. It is observed from the figure that the
EnGCL-UKF performs better than other methods under this
case in all test systems. Fig. 3 and Fig. 4 present the absolute
error results of voltage amplitude and phase angle at the bus 3
in IEEE 14-bus test system. It is clear that results obtained by
the proposed EnGCL-UKF are superior to those obtained by
the other methods. In addition, the MAE and maximum value
of absolute voltage amplitude and phase angle errors (denoted
as MAEθ, MaxEθ, MaxEv and MAEv) at bus 3 in IEEE
30-test system are given in Table I. From this result, one can
obtain the same conclusion above.

TABLE I
THE MAE AND MAXIMUM RESULTS OF VOLTAGE AMPLITUDE

AND PHASE ANGLE

index EKF UKF EnEKF EnUKF GCL-
UKF

EnGCL-
UKF

MAEθ 0.0103 0.0092 0.0064 0.0058 0.0044 0.0039
MaxEθ 0.0131 0.0115 0.0083 0.0073 0.0056 0.0049
MAEv 0.0057 0.0041 0.0036 0.0032 0.0029 0.0023
MaxEv 0.0071 0.0049 0.0044 0.0043 0.0037 0.0027
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Fig. 1. Performance index J(in p.u) under mixed-Gaussian measurement
noise.

B. Case 2: Bad data Condition

The robustness of the proposed new estimator is further test-
ed in the scenario where bad data are included in measurement.
In this case, the real and the reactive power measurements are
interrupted by some outliers which are modeled by expanding
20 at time index i =25. This test is only conducted in the IEEE
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Fig. 2. The overall performance of EKF, UKF, GCL-UKF and EnGCL-UKF.
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Fig. 3. Comparison error results of estimating the voltage amplitude at bus
3 in IEEE-14 bus system.
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Fig. 4. Comparison error results of estimating voltage phase angle at bus 3
in IEEE-14 bus system.

30-bus system. Fig.5 presents the overall performance index
for all time samples considered. From such results, we see
that the proposed GCL-UKF and EnGCL-UKF perform better

than EKF and UKF thanks to the robust performance of the
GCL. Another observation we can make from these results is
that the EnGCL-UKF still achieves best performance in com-
parison to GCL-UKF, EnEKF, and EnUKF. It demonstrates
that the enhanced insensitivity of the proposed EnGCL-UKF
partly coms from the GCL, and more significantly from the
exponential updating mechanism in (53).
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Fig. 5. The overall performance in IEEE 30-bus with large outliers at i =
25.

C. Case 3: Sudden load change condition

In this case, a sudden load changes scenario is simulated
to investigate the robustness of the proposed algorithms. The
estimation of stats at bus 3 in IEEE 30-bus test system at
the 30th time sample is taken as an example, where the
power of load at bus 3 has a 20 load drop at that time.
The measurement noises are still generated by mixed-Gaussian
model. The absolute voltage angle and amplitude error results
at bus 3 are presented in Fig. 6 and Fig. 7. One can observe that
the EKF, UKF, EnEKF, and EnUKF show obvious fluctuations
at the time sample when the sudden load change occurs.
The acceptable performance of the proposed EnGCL-UKF
algorithm is easy to understand as it restrains the effects of
load sudden change by the exponential updating mechanism.
The estimation accuracy thus can be effectively improved.

V. CONCLUSION

To tackle the uncertainties caused by the non-Gaussian nois-
es in power systems, this paper proposed a novel forecasting-
aided state estimation method using GCL-UKF to estimate
the state of the power system in realtime. To benefit from the
high robustness of the generalized Correntropy loss (GCL),
the GCL-UKF was derived by using the GCL to substitute the
original cost function in the UKF framework, which manage
to correctly estimate the state using the measurement results in
the presence of non-Gaussian noises with outliers. To further
improve the estimation performance of the proposed GCL-
UKF, an exponential adjusting method is introduced to update
the covariance matrix via adding all previous effect of the
innovation vector in an absolute exponential form, which helps
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Fig. 6. The absolute voltage angle error at bus 3 in IEEE 30-bus test system.
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Fig. 7. The absolute voltage amplitude error at bus 3 in IEEE 30-bus test
system.

reduce the effect of gain. Numerical simulations have been
conducted for a variety of scenarios on IEEE 14-bus, 30-bus
and 57-bus test systems, and the satisfactory efficiency and
robustness of the proposed methods have been verified.

To further improve the estimation performance of the pro-
posed methods, there are still some works to do, such as
the optimization for the kernel width and the free parameter
. Moreover, the proposed methods may be studied in the
following aspects: 1) adopting the adaptive update method
of the prediction error covariance [8-9]; 2) considering the
unknown measurement noise statistics [17]. In addition, taking
advantage of the particle filter (PF) approach for state estima-
tion[29], a novel robust PF with GCL shall be developed in
the future work.
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