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We study the impact of susceptible nodes’ awareness on epidemic spreading in social systems, where the

systems are modelled as multiplex networks coupled with an information layer and a contact layer. We develop a

colored heterogeneous mean-field model taking into account the portion of the overlapping neighbors in the two

layers. With theoretical analysis and numerical simulations, we derive the epidemic threshold which determines

whether the epidemic can prevail in the population, and find that the impacts of awareness on threshold value

only depends on epidemic information being available in network nodes’ overlapping neighborhood. When

there is not any link overlap between the two network layers, the awareness cannot help to raise the epidemic

threshold. Such an observation is different from that in a single-layer network, where the existence of awareness

almost always helps.

PACS numbers: 89.75.-k,87.23.Cc

Network epidemiology involves individual contact infor-

mation and behavioral response. It should be meaningful

to study how the epidemic information-based behavioral

response affects the epidemic spreading. We can assume

that an individual promptly obtains relatively accurate in-

formation from the current circumstances and responses

to the epidemics via reducing its susceptibility. Generally

speaking, the information network may not be exactly the

same as the contact network and yet there may exist re-

markable link overlap between the information and con-

tact networks. Hence, a multiplex network framework can

be used to analyze the influence of awareness on the epi-

demic spreading. To solve the theoretical analysis prob-

lem, we develop an edged-colored heterogeneous mean-

field approach, and derive the threshold value of epidemic

outbreak. By doing so, we can analyze the effects of the

link overlap and inter-layer degree correlation between

the information and contact layers. It is found that only

epidemic information being available in network nodes’

neighborhood overlapping in two layers helps change the

epidemic threshold.

I. INTRODUCTION

In recent years, modelling disease spreading in complex

networks as a research problem has attracted wide attentions

from various research communities in mathematical, com-

puter, physical and biological sciences areas. The developed

epidemic spreading theories have found applications in social

networks, transportation systems and computer networks [1],

etc.

Among such researches, an important topic is to understand

the effects of awareness on epidemic spreading, also known as

the effects of risk perception. Specifically, many infectious

diseases (e.g., SARS and flu) exhibit certain visible symp-

toms which can be easily observed by ordinary individuals.

Further, people may know who have been infected, not neces-

sarily by direct observations, but by information propagating

from their friends. With the awareness of the epidemic spread-

ing in their surroundings, healthy individuals may tend to take

certain actions (e.g., wearing protective masks, washing hands

frequently, or staying home etc.), which generally help reduce

their risks of getting infected [2, 3]. Disease-induced aware-

ness therefore plays a critical role in epidemic spreading and

control, and cannot be ignored in any serious modeling efforts

aiming to help improve real-life applications [4].

To incorporate the effects of awareness into the epidemic

spread modeling, a typical approach is to try to reveal the rela-

tion between individual susceptibility (denoted by y) and the

epidemic information it has (denoted by x), which may be

represented by an awareness/response function y = φ(x). It

may be assumed that this function satisfies (i) φ(0) = φ0; (ii)

φ′(x) ≤ 0; and (iii) 0 ≤ φ(x) ≤ 1 [3]. Some researches

have been conducted on developing various awareness func-

tions, in linear [3, 5] or nonlinear forms [6–8]. Besides, the

system spreading dynamics model with a general awareness

function has been investigated for the susceptible-infected-

susceptible (SIS) model [9] and the susceptible-infected-

recovered/removed (SIR) model [10] respectively, adopting

an effective degree (EFD) modeling approach and having

managed to achieve a satisfactory accuracy [11, 12].

An important topic for studying the effects of awareness is

to evaluate how risk perception may affect [3, 5–10] epidemic

threshold, infections with a transmissibility higher than which

may have a good chance to prevail. This is highly relevant

to epidemic control for public health. It is found that epi-

demic threshold may be strongly affected by local behavioral

responses based on individuals’ situation awareness. Since the

epidemic information has many resources, it is of significance

to study which type of the epidemic information spreading and

the corresponding responses may affect epidemic threshold.

In [3], we considered the case where there exists spreading

of two types of information, namely the infection information

in the neighborhood and in the whole network respectively.

The former is called the local information, which is obtained
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by individual observations or communications. The latter is

called the global information, which may be obtained from

the mass media (e.g., television or radio broadcasts regard-

ing the spread of any disease). It is shown that the epidemic

threshold depends on the response to the local (but not global)

information. Yan et al. [5] analyzed the effects of epidemic

information spreading from two different types of information

resources: the mildly infected neighbors and severely infected

neighbors. The former still can infect susceptible nodes and

are called the direct information resources. The latter cannot

infect susceptible nodes and are called the indirect informa-

tion resources. It is revealed that the epidemic threshold can

only be affected by information from direct information re-

sources. In [10], we studied the SIR epidemic model with a

general awareness function and obtained that the infection in-

formation from the infected neighbors can affect the epidemic

threshold, while the recovery information from the recovered

neighbors does not help. For a susceptible node, the informa-

tion about the infected nodes that can potentially transmit the

disease to the susceptible node is referred to as the contact-

based epidemic information. Overall, one can conclude that

only the contact-based epidemic information affects the epi-

demic threshold.

The above studies have all adopted the assumption that epi-

demic information propagation and disease spreading happen

in the same network. An important recent development is in-

troducing multiplex network model, also known as multilayer

network model, into the research on epidemic spreading in

social systems. In a multiplex network, there exist two dif-

ferent layers which may not necessarily be of the same topol-

ogy or having the same set of nodes: awareness spreads on

the information layer (or say subnetwork) and the epidemic

spreads on the contact layer. From a realistic point of view,

people may get epidemic information from their friends via

mobile phones or online platforms. The friendship network

may not be exactly the same as the contact network [13], yet

there may exist remarkable link overlap between the friend-

ship and contact networks. In this sense, the framework of

multiplex/multiplayer networks can be effective in analyz-

ing the dynamical interplay between individual behaviors and

spreading dynamics [14–16].

While extensive studies have been carried out on epidemic

spreading in multiplex networks with a strong sense on ana-

lyzing awareness spreading dynamics (e.g., [16, 17]), studies

focusing on the effects of risk perception in multiplex net-

works models are still relatively limited. Massaro and Bag-

noli [18] were the first to consider a discrete-time model with

risk perception in a multiplex network. They developed an

efficient iteration method to compute the epidemic threshold.

Their results showed that the epidemic threshold can be raised

higher by increasing the structure similarity between the infor-

mation and contact layers. However, this study did not provide

a general dynamical model or derive an explicit expression of

epidemic threshold in multiplex networks with general degree

distribution and link overlap.

There are some important research problems remain largely

open. First, how could a continuous-time dynamical evolution

model be built to predict the epidemic spreading dynamics and

further to derive the explicit expression of epidemic thresh-

old? Secondly, how does the epidemic threshold depend on

the inter-layer degree correlation (i.e., the correlation between

the node degrees in different layers [19–21]) and the portion

of overlapping links in the whole network [22–25]? Thirdly,

what kinds of epidemic information may affect the epidemic

threshold as that in the single network?

To help answer these questions, in this paper we consider

the effect of awareness on epidemic spreading in multiplex

networks with general degree distribution and awareness func-

tion. We shall develop a novel generalized form of heteroge-

neous mean-field (HMF) approach to build a dynamical model

and derive an explicit expression of epidemic threshold. Fur-

ther, we will analyze the influences of link overlap, inter-layer

correlation and behavioral response on the epidemic thresh-

old and epidemic prevalence. These theoretical arguments are

also verified by the continuous-time stochastic simulations.

The remainder of this paper is organized as follows: In Sec-

tion II, we propose the multiplex network modelling frame-

work used in the theoretical analysis; then in Section III, we

build the dynamical model and derive the condition of an epi-

demic outbreak. In Section IV, we present numerical simula-

tions to verify the theoretical results, and to analyze the influ-

ence of link overlap and behavioral response on the epidemic

spreading. Finally, in Section V we conclude the paper.

II. MULTIPLEX NETWORK MODELLING FOR

STUDYING EFFECTS OF SITUATION AWARENESS

A multiplex network is a network with multiple types of

links connecting the same set of nodes on multiple different

layers, composing into a subnetwork on each of these layers.

A general multiplex network model may consist of M layers

and N nodes and each layer can be defined by a subgraph

Gx = (Vx, Ex), where Vx is the vertex set and Ex is the edge

set of layer x. We consider the case whereM = 2, i.e, the du-

plex network with two layers, denoted as a and b respectively.

We define that the layer a denotes the information layer, on

which a node may spread and receive epidemic information,

and the layer b represents the contact layer, on which the epi-

demic spreads. Since the whole network has a finite size, there

exist a maximal degree Ma for layer a and a maximal degree

Mb for layer b, respectively.

Pastor-Satorras and Vespignani developed a heterogenous

mean-field (HMF) approach to analyze the SIS epidemic

spreading in heterogenous networks with a given degree dis-

tribution P (k) [26]. In the HMF modeling framework, net-

work nodes are grouped by their degrees and dynamical states.

Such an approach is very effective in analyzing the multi-state

epidemic model in complex networks [27] and scaling prop-

erties [28]. When considering multiplex/mutlilayer networks,

a natural generalization of the HMF model is to introduce the

vector degree ~k = (ka, kb) to denote a class of nodes with

degree ka in layer a and degree kb in layer b [29]. By using

the generalized HMF approach, Sanz et al. [30] studied the

dynamics of two interacting pathogens in multiplex networks.

In [21], we studied the epidemic spreading of SIS model in
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multiplex networks and the immunization.

The generalized HMF approach however is not effective in

analyzing the coupling effects between information and con-

tact subnetworks, as it does not fully utilize the information

of overlapping degree in the duplex network. Such an ob-

servation will become clearer in the following subsections.

To reflect subnetwork overlap in more details, we here in-

troduce two types of vector degrees: (i) ~k = (ka, kb, ko)
following the joint probability distribution p(ka, kb, ko); and

(ii) ~kr = (kra, k
r
b , ko) following the joint probability distri-

bution q(kra, k
r
b , ko). Here ko denotes the number of overlap-

ping neighbors in two layers, named as the overlapping degree

[22]. kra (krb ) denotes the the number of neighbors in layer

a (b) except for the overlapping neighbors. In other words,

kra = ka − ko and krb = kb − ko. We call them as the remain-

ing degrees in layers a and b, respectively. It is easy to see that

the relation between the two distributions satisfies

q(kra, k
r
b , ko) = p(kra + ko, k

r
a + ko, ko). (1)

As a generalization of the configuration model in a single

network [31], one can generate the random duplex network

with a given joint degree probability p(~k). To be specific,

three degree sequences corresponding to three kinds of de-

grees are firstly generated according to q(kra, k
r
b , ko) obtained

by Eq. (1); then we may construct three randomly connected

subnetworks by using the generating algorithm of the standard

configuration model, avoiding the link overlap across each

layer. Finally, one link between a node and its ko neighbors in

the third subnetwork is copied and changed into an edge be-

tween the same pair of nodes in both the first and the second

subnetworks.

For the joint vector degree distribution p(ka, kb, ko), the re-

spective marginal probability distributions of node degree ~k
read as

p(ka) =
∑

kb,ko

p(ka, kb, ko),

p(kb) =
∑

ka,ko

p(ka, kb, ko),

p(ko) =
∑

ka,kb

p(ka, kb, ko).

Moreover, its n-th order moment can be written as

〈kna 〉 =
∑

ka,kb,ko

knap(ka, kb, ko) =
∑

ka

knap(ka),

〈knb 〉 =
∑

ka,kb,ko

knb p(ka, kb, ko) =
∑

kb

knb p(kb),

and

〈kno 〉p =
∑

ka,kb,ko

kno p(ka, kb, ko) =
∑

ko

kno p(ko).

For the remaining degree distribution, its marginal probabil-

ities (i.e., q(kra), q(k
r
b ), q(ko)) and the n-th order moment of

FIG. 1: An example of the neighborhood structure of a node in a

two-layer network where links in layer a (b) are denoted by solid

(dotted) lines. For this node, ka = 7, kb = 5, ko = 3 and kr

a =
ka − ko = 4, kr

b = kb − ko = 2. Additionally, its infectious degrees

na = 3, nb = 2, no = 1 and its remaining infectious degrees nr

a =
na − no = 2 and nr

b = nb − no = 1.

the joint probability (i.e., 〈knar 〉, 〈k
n
br 〉, 〈k

n
o 〉q can also be ob-

tained similarly.

Let N~k (N ~kr
) denote the number of nodes in class with

degree ~k ( ~kr). Clearly, N~k = Np(ka, kb, ko) and N ~kr
=

Nq(kra, k
r
b , ko).

Denote Nx(i) as the neighborhood of node i at the layer x
for x = a, b. Furthermore, we define the overlapping ratio for

node i as follows

σ(i) =
|Na(i) ∩ Nb(i)|

min{|Na(i)|, |Nb(i)|}
.

Then, the mean overlapping ratio is given by

σ̄ =

∑N
i=1 σ(i)

N
.

Given the joint probability q(kra, k
r
b , ko), we shall then have

σ̄ =

N
∑

i=1

ko(i)

min{ka(i), kb(i)}

=
∑

kra,k
r
b
,ko

koq(k
r
a, k

r
b , ko)

min{kra + ko, krb + ko}
.

Another measure of multiplex network is the clustering co-

efficient. Baxter et al. [32] gave a general formula for com-

puting the clustering coefficient (both global clustering coeffi-

cient in the whole network and partial clustering coefficient in

a given layer or several given layers) in a configuration multi-

plex network defined by joint multi-degree distribution. They

showed that the cluster coefficient is very small for a large

sparse random network. The clustering coefficient or the num-

ber of cycles in a graph is relevant for accurate epidemic mod-

elling [31]. In our model, the mean clustering coefficientC of
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the aggregated network shall be used to characterize the tran-

sitivity of the multiplex network, as will be seen in the next

section.

III. THEORETICAL ANALYSIS

A. Notations and assumptions

In this paper we investigate the effect of situation awareness

using the SIS model, which is widely applicable and may be

adopted for modelling some epidemic diseases such as menin-

gitis and gonorrhea [33]. The standard network SIS spreading

model assumes that a susceptible node is infected at a proba-

bility β∆t by each of it infected neighbors, and each infected

node recovers with a probability µ∆t and moves to the sus-

ceptible state again within a time ∆t.

Individual awareness may reshape the function of infection

rate, which is dependent of the number of the infected neigh-

bors. Denote nx(i) as the number of infected neighbors of

node i at the layer x and no(i) the number of the infected

neighbors in the overlapping region of node i. These values

form a vector ~n = (na, nb, no). Meanwhile, we define nrx(i)
be the number of remaining infected neighbors of node i at the

layer x and nro(i) = no(i). These values also can be written

into a vector ~nr = (nra, n
r
b , no) (see Fig. 1). With these nota-

tions, β is replaced by βψ( ~kr, ~nr), which is referred to as the

awareness function and it must satisfy: (i) ψ( ~kr,~0) = g( ~kr);

(ii) ψ( ~kr, ~nr1) ≤ ψ( ~kr, ~nr2) if ~nr1 ≥ ~nr2; (iii) ψ( ~kr, ~nr) ≥ 0;

and (iv) ~0 ≤ ~nr ≤ ~kr.

Clearly, ψ( ~kr, ~nr) is defined as a generalization of the

function φ(x) and it comprises three kinds of information

sources: (i) Ωa \ Ωb, i.e., the neighborhood on only layer a;

(ii) Ωb \ Ωa, i.e., the neighborhood on only layer b; and (iii)

Ωa ∩ Ωb i.e., the neighborhood on both of two layers a, b.
To evaluate the impact of epidemic-information based aware-

ness on the epidemic spreading, we assume that g( ~kr) ≡ 1

and ψ( ~kr, ~nr) satisfies nrb ≡ 0 since the awareness depends

on the information subnetwork. That is to say, ψ( ~kr, ~nr) =
ψ(kra, 0, ko, n

r
a, 0, no).

In epidemiology, the mathematical model provides a pow-

erful tool to analyze the disease dynamics. Due to the merits

of HMF approach in analyzing recurrence epidemic spreading

[12, 34], we adopt the HMF approach to model the dynamical

evolution. Note that the previous modelling approach based

on vector degree (ka, kb) is not suitable for the present model

because the mean-field rate equations based on this classifi-

cation strategy cannot be closed and be further analyzed. To

tackle the problem, we use the vector degree ~kr to build the

dynamical models.

Specifically, denote ρk̄r (t) (sk̄r (t)) as the fraction of in-

fected (susceptible) nodes of vector degree ~kr. Obviously,

ρk̄r (t) + sk̄r (t) = 1. Let I ~kr (t) represent the number of in-

fected nodes at time t in class with degree ~k ( ~kr). We have

ρk̄r (t) = I ~kr (t)/N ~kr
.

B. A colored HMF approach

The mean-field rate equations depend on the transition

probabilities from susceptible to infected and from infected

to susceptible respectively, i.e., W
~kr
sρ (t) : sk̄r (t) → ρk̄r (t)

and W
~kr
ρs (t) : ρk̄r (t) → sk̄r (t). In an infinitesimal interval

(t, t+∆t], the dynamical equations can be presented as

ρ ~kr (t+∆t) = ρ ~kr (t)
[

1−W
~kr

ρs (t)
]

+
[

1− ρ ~kr (t)
]

W
~kr

sρ (t).

(2)

This mean-field equation does not consider dynamical corre-

lations between two connected nodes [35], meaning that the

states of each node’s neighbors are independent with the state

of that node. Following the definition of the stochastic model,

it is easy to know that W
~kr
ρs (t) = γ∆t. However, it is not

straightforward to compute the value of W
~kr

sρ (t). Using the

law of total probability, we can get that

W
~kr

sρ (t) = P [sk̄r (t) → ρk̄r (t)]

=
∑

nr
a,n

r
b
,no

P [sk̄r (t) → ρk̄r (t)|n
r
a, n

r
b, no]P [nra, n

r
b , no]

=
∑

nr
a,n

r
b
,no

{

1−
[

1− βψ( ~kr, ~nr)∆t
]nb

}

P [nra, n
r
b, no]

where nb = nrb + n0. After substituting this into the equation

(2) and performing a simple transformation, one can obtain

the rate equation that

d

dt
ρ ~kr (t) = −γρ ~kr(t)

+
[

1− ρ ~kr (t)
]

β
∑

nr
a,n

r
b
,no

ψ( ~kr, ~nr)nbP[n
r
a, n

r
b , no].

(3)

Here, the summation computation is employed by taking 0 ≤
nra ≤ kra, 0 ≤ nrb ≤ krb and 0 ≤ no ≤ ko.

We can see that Eq. (3) should be closed by establishing

the expression of the joint probability P [nra, n
r
b , no], which is

actually the conditional probability P

[

nra, n
r
b, no|

~kr
]

. In the

present work, the topological connectivity for each layer is

unclustered, which means that one neighbor’s state is inde-

pendent of another. Moreover, the aggregated network struc-

ture is also required to be unclustered. This holds approxi-

mately for a multiplex network with a small number of cy-

cles of length 3. In that case, the joint probability can be ap-

proximately decomposed into the product of three terms, i.e.,

P

[

nra, n
r
b, no|

~kr
]

= P
[

nra|k̄
r
]

P

[

nrb |
~kr
]

P

[

no| ~kr
]

.

For further analysis, we let θ ~kr ,x(t) be the probability that

a randomly-chosen node among x = kra, k
r
b , ko neighbors of

a susceptible node with vector degree ~kr is infected at time t.
If x = 0, then it is natural to define θ ~kr ,x(t) = 0. In what

follows, we focus on the nonzero case. Generally, θ ~kr ,x(t) is
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related to ~kr class [36, 37] and can be computed by a condi-

tional or joint probability

θ ~kr ,x(t) =

∑

~kr
′ x′P[ ~kr, ~kr

′
]ρ ~kr (t)

∑

~kr
′ x′P[ ~kr, ~kr

′
]

, (4)

Here x′ is a component of ~kr
′

and represents k′a, k
′
b or k′o. By

using these quantities, we can get that

P [nra, n
r
b , no]

= P

[

nra| ~k
r

]

P

[

nrb| ~k
r

]

P

[

no| ~kr
]

= Bkra,n
r
a
(θ ~kr ,kra

(t))Bkr
b
,nr

b
(θ ~kr ,kr

b

(t))Bko,no
(θ ~kr ,ko(t)),

where

Bk,i(x) =

(

k
i

)

xi(1− x)k−i,

denotes the binomial factor [38]. As a result, we can write the

dynamical model as follows

d

dt
ρ ~kr (t) = −γρ ~kr(t) + β

[

1− ρ ~kr (t)
]

∑

nr
a,n

r
b
,no

{ψ( ~kr, ~nr)nb

× Bkra,n
r
a
(θ ~kr ,kra

(t))Bkr
b
,nr

b
(θ ~kr ,kr

b

(t))Bko,no
(θ ~kr ,ko(t))}.

(5)

For mathematical analysis, we assume that the topological

connectivity for each layer is uncorrelated, which indicates

that the degree k′ of a randomly-chosen neighbor of a sus-

ceptible node is uncorrelated to the degree k of the suscep-

tible node; then the probability of a randomly-chosen neigh-

bor of a susceptible node being k′ is proportional to k′p(k′).
Since the uncorrelated assumption is made for every layer,

P[ka, k
′
a] = P[ka]P[k

′
a] and P[kb, k

′
b] = P[kb]P[k

′
b]. This is

however insufficient for modelling the multiple degree corre-

lations in multiplex networks. It is thus further assumed that

P[ ~kr, ~kr
′
] = P[ ~kr]P[ ~kr

′
], which holds approximately when

the link overlap is randomly generated. Under this assump-

tion, θ ~kr ,x(t) is not related to ~kr and obeys

θ ~kr ,x(t) ≃

∑

~kr
′ x′q( ~kr ′)ρ ~kr (t)

∑

~kr
′ x′q( ~kr ′)

:= θx(t). (6)

After substituting (6) into (5), we obtain a simple dynamical

system

d

dt
ρ ~kr (t) = −γρ ~kr(t) + β[1− ρ ~kr (t)]

∑

nr
a,n

r
b
,no

{ψ( ~kr, ~nr)nb

× Bkra,n
r
a
(θkra(t))Bkr

b
,nr

b
(θkr

b
(t))Bko,no

(θko(t))}.

(7)

Remark 1: For each layer of the network, we actually al-

locate two colors to all the edges. That is, every overlapped

edge has color 1 and every remaining edge has color 2. This

framework can be generalized to the SIS epidemic model with

general colored degree in single-layer networks, where l col-

ors are allocated to all the edges and the joint probability is

denoted by q(~k) = q(k1, k2, · · · , kl) with 1 ≤ l ≤ L. Here,

L is the total number of edges in the single-layer network.

In this sense, the proposed HMF model is referred to as the

(edge-)colored heterogenous mean-field (cHMF) model.

Remark 2: In Eq. (7), we cannot simplify the model formu-

lation. However, when we consider a linear form of awareness

function, i.e., ψ( ~kr, ~nr) = 1−αna/ka, the summation of the

system can be computed by making use of the properties of

binomial distribution.

Remark 3: Note that the configuration network has a small

clustering coefficient and is degree-uncorrelated since it is

randomly generated by the vector degree distribution. The

mean-field rate equations (7) thus hold naturally for the con-

figuration multiplex network randomly generated by q( ~kr).

C. Epidemic thresholds

We shall work on determining the condition of epidemic

outbreak, by which we can study the impact of individual

awareness on the epidemic threshold. We firstly perform the

linear stability analysis on Eq. (7). The linear system takes the

form

d

dt
ρ ~kr (t)

= −γρ ~kr (t) + βψ( ~kr, 0, 0, 1)koθo(t) + βkrbθbr (t).

(8)

Thus the Jacobian matrix of the above model at point disease-

free equilibrium (denoted by J) is

J = γI + βH,

where

H ~kr , ~kr
′

=

[

ψ( ~kr, 0, 0, 1)kok
′
o

〈ko〉q
+
krbk

r
b
′

〈krb 〉

]

q( ~kr
′
).

From this, one can observe that the epidemic threshold τc is

inversely proportional to the leading eigenvalue of matrix H ,

i.e.,

τc =
1

λmax(H)
. (9)

This indicates that the impact of epidemic information on

the epidemic threshold is related to the overlapping structure.

Specifically, the structure of network overlapping can be di-

vided into five separate cases: (i) Ea ∩Eb = ∅; (ii) Ea = Eb;
(iii)Ea ⊃ Eb; (iv)Ea ⊂ Eb ; and (v)Ea∩Eb 6= ∅, Ea\Eb 6=
∅, Eb\Ea 6= ∅. It is easy to compute their respective overlap-

ping ratios. For case (i), σ̄ = 0; for cases (ii)(iii)(iv), σ̄ = 1;

and for case (v), 0 < σ̄ < 1.
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FIG. 2: The clustering coefficient as a function of mean overlapping

ratio for a multiplex network overlapped by two same ER graphs

with mean degree z = 5. All results are averaged by 20 independent

network realizations.

By Eq. (9), we can obtain the results of epidemic thresholds

for different cases. These results are summarized in Table I,

where τ1c =
〈krb 〉

〈(kr
b
)2〉 , τ2c =

〈ko〉q

〈ψ( ~kr ,0,0,1)k2o〉
, and τ3c is computed

by Eq. (9).

TABLE I: Linear approximation of the joint probability.

(i) (ii) (iii) (iv) (v)

θar + 0 + 0 +

θbr + 0 0 + +

θor 0 + + + +

σ̄ 0 1 1 1 (0, 1)

τc τ 1

c τ 2

c τ 2

c τ 3

c τ 3

c

In fact, τ3c can also be explicitly given. Note that Eq. (8)

is similar to the formulation of Eq. (1) in ref. [21]. Using

almost the same technique, the explicit expression of epidemic

threshold τ3c can be derived as

τ3c =
2

c2 + c3 +
√

(c2 − c3)2 + 4c1
.

Here,c1 =
〈ψ( ~kr ,0,0,1)k2o〉〈k

r
bko〉

〈ko〉q〈krb 〉
, c2 =

〈ψ( ~kr ,0,0,1)k2o〉
〈ko〉q

, and

c3 =
〈krb

2〉
〈kr

b
〉 . This formula clearly shows that the epidemic

threshold is closely related to the moment of vector degree

distribution q( ~kr). Meanwhile, we also can see that the inter-

layer degree correlation has no direct impact on the epidemic

threshold since kra does not present in this expression except

for the awareness term. This is different from the SIS dynam-

ics on multiplex networks [21], where the inter-layer correla-

tion has a strong impact on the outbreak threshold.

FIG. 3: Comparison between the mean-field models and the stochas-

tic simulations on an ER network with the mean degree z = 5. Re-

sults by the colored mean-field model (i.e., σ̄ = 0.5) are shown by

the solid line and results by the standard HMF model (i.e., σ̄ = 1.0)

are shown by the dashed line. The GA stochastic simulation results

are shown in open square symbols.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we perform continuous-time stochastic sim-

ulations by using the Gillespie algorithm (GA) method, which

is frequently used in the network epidemiology [11, 39]. The

multiplex network is overlapped by two Erdős-Rényi (ER)

random graphs [40] with a size N = 1000, the maximal de-

gree Ma = Mb = M = 10 and a mean degree z = 5
[11]. Unless otherwise specified, the stochastic simulations

start with 10 initially infectious seeds and the recovery rate

γ = 1.0. Additionally, the infection density in the metastable

state ρ is averaged over 100 epidemic dynamics and the error

bars show the standard deviation.

To analyze the effects of overlap on the epidemic spread-

ing [23, 24], we construct a set of multiplex networks by edge

rewiring. Specifically, we firstly generate an ER random graph

as both information layer and virtual layer. Then in the virtual

layer we successively choose one link which lies in both lay-

ers and another link without any common endpoint, and we

swap them with a rate ω by changing their endpoints while

avoiding having new overlapping edges or multi-edge in the

virtual layer. Finally, when no other link can be chosen, the fi-

nal virtual layer is regarded as the contact layer. When ω = 0,

the two ER networks completely overlap and σ̄ = 1. When

ω = 1, there is not any link overlap in the network and σ̄ = 0.

In Fig. 2, we can see how the link overlap affects the clus-

tering of the duplex network. With σ̄ increasing, C linearly

declines. Since the clustering coefficient is very small, our

model can be used to the whole span of parameter σ̄.

We first consider ψ( ~kr, ~nr) ≡ 1 as a reference. In this case,

the spreading process reduces to the SIS epidemic spreading

in a single network and the corresponding epidemic model can



7

be changed to

d

dt
ρkr

b
,ko(t) = −γρkr

b
,ko(t) + β[1 − ρkr

b
,ko(t)]×

[

krb
∑

krbq(k
r
b , ko)ρkrb ,ko(t)

∑

krbq(k
r
b , ko)

+
ko

∑

koq(k
r
b , ko)ρkrb ,ko(t)

∑

koq(krb , ko)

]

.

(10)

Moreover, when σ̄ = 0 or 1, Eq. (10) becomes the standard

HMF model [26]. In Fig. 3, we compare Eq. (10) and the stan-

dard HMF model with the GA simulations for the basic SIS

epidemic model in ER networks with a mean degree z = 5.

The distribution q(krb , ko) is generated by the multiplex net-

work with two overlapping ER networks with the same topol-

ogy. When σ̄ = 0, this corresponds the standard HMF model

prediction. While when σ̄ ≃ 0.5 (see Fig. 2), this is a typical

colored HMF model. From this figure, one can observe that

the results of cHMF model are very close to those HMF model

(both thresholds λc ≃ 1/(z + 1) = 0.1667). Since the cHMF

model (10) does not consider the vector degree correlation, its

prediction is not better than HMF model. Mainly because that

all these mean-field like models have not taken the dynamical

correlation between two connected nodes into consideration,

the resulting theoretical predictions are slightly lower than the

corresponding simulation results [37, 41].

Next, we consider ψ( ~kr, ~nr) = 1 − αna/ka, which is lin-

early dependent on the fraction of infected neighbors in the

information layer. This awareness function reflects that indi-

vidual behavior has a weak effect on the epidemic risk [10]. In

Fig. 4, we compare the GA simulations and the model predic-

tion (7) for two extreme cases: σ̄ = 1 and σ̄ = 0. For the for-

mer case (Fig. 4(a)), one can see that the local awareness has

a remarkable effect on the epidemic threshold when the two

subnetworks completely overlap. It is noticed that this case

corresponds to the disease awareness model in a single net-

work [3]. For the latter case, as shown in Fig. 4(b), we cannot

find any change of epidemic threshold since the overlapping

ratio is zero. Hence, one can see that the link overlap has a

strong impact on the outbreak threshold. This also shows that

only contact-based epidemic information can affect the epi-

demic threshold and other epidemic information (e.g., nra) has

no effect. However, other epidemic information indeed can

decrease the final epidemic size, as can be clearly observed in

Fig. 4(b). We also can see a small shift between the simulation

and model, which is mainly due to the dynamical correlation

between two connected nodes [29, 37, 42]. Compared to the

discrepancy for the standard HMF model in Fig. 3, the results

predicted by the colored HMF model are acceptable.

To further investigate the influence of other epidemic infor-

mation on ρ, we also consider ψ( ~kr, ~nr) = 1 − αnra/ka, i.e.,

the risk perception is only related to the other epidemic infor-

mation. In this case, the epidemic threshold is unchanged for

any α. In Fig. 5, we assume that β = 1.0 and focus on the im-

pact of α on ρ. One can see that other epidemic information

can obviously suppress the epidemic spreading by reducing

the final epidemic size.

FIG. 4: The fraction of infected nodes ρ in the metastable state as a

function of β for two types of duplex networks: (a) 〈op〉 = 1 and

(b) 〈op〉 = 0. In each plane, the model prediction is presented as the

dashed (α = 0.1) and solid (α = 0.9) lines and the GA stochastic

simulation results are represented by open square (α = 0.1) and

circle (α = 0.9).

V. CONCLUSIONS

In conclusion, we analyzed the impact of local awareness

on the epidemic spreading in multiplex networks overlapped

by an information layer and a contact layer. Each susceptible

node may receive risk information from its neighborhood on

the information layer and hence reduces its susceptibility to

the infection along the edges on the contact layer. The infor-

mation layer thus helps prevent epidemic spreading. As such

a model cannot be easily analyzed using the traditional mean-

field approach, we developed a novel mean-field model con-

sidering a colored degree of each node. Given the joint prob-

ability of three colored degrees in duplex networks, we de-

rived the explicit expression of epidemic threshold and found

that the only the risk information from the overlapped neigh-

borhood can affect the epidemic threshold, regardless of the

inter-layer correlation and link overlap. As corroborated by

the previous work [3, 5, 10], the epidemic threshold increases

only with risk perception of contact-based epidemic spread-

ing, suppressing thereby the disease transmission over the en-

tire network.

The theoretical work reported in this paper may be ex-
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FIG. 5: The fraction of infected nodes ρ in the metastable state as a

function of α when β = 1.0. In this figure, the model predictions are

given by the solid (σ̄ = 0.5) and dashed (σ̄ = 0) lines and the GA

stochastic simulation results are represented by open circle (σ̄ = 0.5)

and square (σ̄ = 0) symbols.

tended to analyze spreading dynamics on multi-relation net-

works [43] and multiplayer networks [15, 29, 44], etc. The

observation that only the epidemic information being avail-

able in network nodes overlapping neighborhood helps in-

crease epidemic threshold implicates the importance of pro-

moting epidemic information spreading through those social

connections potentially allowing epidemic spreading as well.

While extensive research efforts have been made to analyzing

epidemic dynamics in complex netowrks using various mean-

field like models [2, 37, 41, 42, 45–47], there is always a need

to keep a good balance between the accuracy and the tractabil-

ity of the analysis [48], which shall be of our future research

interest.
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