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Abstract: The convergence of a new closed-form solution for the discrete time optimal control is presented. First, a new time
optimal control law with simple structure is constructed in the form of the state feedback for a discrete-time double-integral system
by using the state backstepping approach. The control signal sequence in this approach is determined by the linearized criterion
according to the position of the initial state point on the phase plane. This closed-form non-linear state feedback control law clearly
shows that time optimal control in discrete time is not necessarily the bang-bang control. Second, the convergence of the time
optimal control law is proved by demonstrating the convergence path of the state point sequence driven by the corresponding
control signal sequence. Finally, numerical simulation results demonstrate the effectiveness of this new discrete time optimal
control law.

1 Introduction

Time optimal control (TOC) originated from servo control design
problems in the 1950s [1][2][3], and has drawn significant interests
in different fields [4][5][6][7]. In particular, the time optimal control
for the double-integral system has received considerable attention
[8][9]. For the double-integral system defined as{

ẋ1 = x2,
ẋ2 = u, |u| ≤ r (1)

where x(t) = [x1(t), x2(t)]T ∈ R2, the resulting feedback control
law that drives the state from any initial point to the origin in the
shortest time is [10][11]

u(x1, x2, r) = −rsign(x1 +
x2|x2|

2r
) (2)

and the switching curve function is

Γ(x1, x2) = x1 +
x2|x2|

2r
. (3)

There are many advantages of this time optimal control law over
linear controllers [12][13]: 1) any initial state can be driven back
to the steady state in the shortest and finite time; 2) it is immunized
from disturbance and has maximum accuracy in command following
and minimal disturbance recovery time.

However, from an engineering perspective, the applications of
time optimal control (TOC) prove to be challenging [14][15]. A nag-
ging issue is the chattering problem in the control signal, that is,
the instant switching between extreme values in the control signals
required by TOC. It is often neither feasible, because of the phys-
ical limits on how fast a control signal can change, nor desirable,
because of the stress it puts on the control actuators [16][17]. A num-
ber of modifications of the control law in (2) have been proposed
to ease the implementation [18][19][20], including adding a linear
zone to reduce the chattering of control signals around the origin,
replacing the sign function in (2) with the saturation function and so
forth. These modifications, however, can only make the solution to
be suboptimal because the chattering problem still exists.

Further, with the great developments of computer control tech-
nology, most control algorithms are implemented in discrete time
domain today. Direct digitization of continuous TOC solution proves
to be problematic in practice because of the high frequency chatter-
ing of the control signals [21][22]. It was demonstrated that TOC for
discrete systems is not a bang-bang control in [23][24], but digitized
bang-bang control has been used as an approximation for the discrete
time optimal control (DTOC) problems. In [25][26][27], minimum-
time feedback control laws for different applications are proposed
and algorithms are given to obtain facial descriptions of admissible
set. In [23][24], a closed-form solution of DTOC for a discrete-time
double-integral system is attained by comparing the position of the
initial state with isochronic region obtained by non-linear boundary
transformation. However, the structure of the synthetic control func-
tion is complex with non-linear calculations including square roots
calculation, which makes the synthetic control function difficult to
be applied into engineering applications. Further, the convergence
of DTOC law was never attained. Facing with the problems above,
we present a new DTOC law with simple structure and prove its
convergence. The main contributions in this paper are as follows

i: The mathematical derivation of a new closed-form discrete opti-
mal control law for the discrete form of system (1) is presented. This
control law avoids the overshoot and the high frequency chattering
of the control signals that exist in digitized bang-bang control. Com-
pared with the synthetic control function proposed in [23][24], the
discrete optimal control law is determined by the linearized crite-
rion according to the position of the initial state point on the phase
plane, which equips the control law with a simpler structure, making
it much easier to be applied in the practical engineering.

ii: The convergence of the discrete time optimal control law is
proved by showing the convergence path of the state point sequence
driven by the derived control law.

The paper is organized as follows: the discrete time optimal con-
trol (DTOC) law is constructed in Section 2. In Section 3, the
convergence of DTOC law is proved. Comparison experiments are
conducted to illustrate the effectiveness of the proposed DTOC law
in Section 4, followed by concluding remarks in Section 5.
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2 Discrete Time Optimal Control Law

Consider a discrete time double-integral system

x(k + 1) = Ax(k) +Bu(k), |u(k)| ≤ r (4)

where A =

[
1 h
0 1

]
, B =

[
0
h

]
and x(k) = [x1(k), x2(k)]T .

The objective here is to derive a time optimal control law directly in
discrete time domain. The problem is defined as follows:

DTOC Law: Given the system (4) and its initial state x(0), deter-
mines the control signal sequence, u(0), u(1), ..., u(k), such that the
state x(k) is driven back to the origin in a minimum and finite num-
ber of steps, subject to the constraint of |u(k)| ≤ r. That is, finding
u(k∗), |u(k)| ≤ r, such that k∗ = min {k|x(k + 1) = 0}.

For driving the initial state back to the origin in the continuous
system in (1), the control signal switches between its two extreme
values around the switching curve Γ(x1, x2) in (3). That is, when
the initial state is located over the switching curve, the control sig-
nal takes on the extreme values, i.e., u = −r; otherwise the control
signal takes on u = +r. The control signal switches the sign after
reaching the switching curve. For a continuous system, the control
signal can switch instantaneously. For a discrete time system, how-
ever, the process of sign switching of the control signal will take
place within the sampling period h. During the process, correspond-
ing state sequences would locate in a certain region (denoted as Ω)
near the switching curve. The control signals for the state sequences
in the region Ω are determined by the linearized criterion. The con-
trol signal varies from a certain positive (negative) value to a negative
(positive) value when the control signal u passes from one side of
the region Ω to the other. All initial state sequences located out-
side the region Ω when the control signal takes on extreme value,
i.e., u = +r or u = −r, would locate at certain curves, referred as
boundary curves ΓA and ΓB . The region Ω is surrounded by these
boundary curves.

The basic idea in deriving the DTOC law is to find the control
signal sequence for any initial state point x(0) ∈ Ω or x(0) 6∈ Ω.
The whole task is divided into two parts:

i: Determine the boundary curves of the region Ω based on state
backstepping approach, i.e., the representation of the initial condi-
tion x(0) = [x1(0), x2(0)]T in term of h and r, from which the state
can be driven back to the origin in (k + 1) steps.

ii: For any given initial condition x(0) ∈ Ω or x(0) 6∈ Ω, find the
corresponding control signal sequence as a function of x(0).

2.1 Determination of Boundary Curves

For any initial state sequence, there is at least one admissible con-
trol sequence, u(0), u(1), ..., u(k) that can make the solution of (4)
satisfy x(k + 1) = 0. The solution of (4) with the initial condition
x(0) is

x(k + 1) = Ak+1x(0) +

k∑
i=0

Ak−iBu(i) (5)

where x(0) = [x1(0), x2(0)]T and i = 0, 1, 2, ..., k. It manifests
that x(k + 1) = 0. Therefore, the initial condition satisfies

x(0) =

k∑
i=0

[
(i+ 1)h2

−h

]
u(i). (6)

Based on the state backstepping approach above, we determine the
two boundary curves denoted as ΓA and ΓB in the followings.

We first determine the boundary curve ΓA. Suppose that {a+k},
{a−k} are the sets of any x(0) that can be driven back to the ori-
gin with the control signal sequence u(i) = +r and u(i) = −r,
i = 0, 1, 2, ..., k, respectively. Denote that all initial states in the set
{a+k} consist of Γ+

A and all initial states in the set {a−k} consist
of Γ−A .

Fig. 1: Illustration of the region Ω, the two boundary curves ΓA,
ΓB , the switching curve Γ and two intersection points A, B that
intersected by an auxiliary line and ΓA, ΓB .

For the set {a+k}, the following result can be obtained when the
control signal sequence takes on u(i) = +r according to (6)

x(0) = r

k∑
i=0

[
(i+ 1)h2

−h

]
. (7)

Then there exist x1(0) = rh2(k
2

2 + 3k
2 + 1) and x2(0) = −rh(k +

1) < 0. Simplifying x(0) into x and eliminating the variable k,
the boundary curve Γ+

A is x1 =
x2
2

2r −
1
2hx2, where x2 < 0. Simi-

larly, we can get the boundary curve Γ−A: x1 = −x
2
2

2r −
1
2hx2, where

x2 > 0. Therefore, the whole boundary curve ΓA is

ΓA : x1 +
x2|x2|

2r
+

1

2
hx2 = 0. (8)

We then determine the boundary curve ΓB . Suppose that {b+k},
{b−k}(k > 2) are the sets of any initial state x(0) that can be driven
back to the origin when the control signal takes on u(0) = −r
or u(0) = +r in the first step, and from the second step on, the
control sequence takes on u(i) = +r or u(i) = −r, i = 1, 2, ..., k.
Similarly, the boundary curve ΓB consists of Γ+

B and Γ−B .
For the set {b+k}, according to the rule of choosing the control

signal sequence above, we can obtain x1 = rh2(k
2

2 + 3k
2 − 1) and

x2 = −rh(k − 1) < 0. After eliminating the variable k, the bound-
ary curve Γ+

B is x1 =
x2
2

2r −
5
2hx2 + h2r and there exists x1 +

hx2 = 1
2rh

2k(k + 1) > 0. Similarly, we can obtain the boundary

curve Γ−B : x1 = −x
2
2

2r −
5
2hx2 − h

2r, x1 + hx2 < 0. Therefore,
the whole boundary curve ΓB is

ΓB : x1 − s̃
x22
2r

+
5

2
hx2 − s̃h2r = 0 (9)

where s̃ = sign(x1 + hx2). The above two boundary curves of the
region Ω are determined with the state backstepping method, and
they are shown on the phase plane in Figure 1.

Remark 1. The whole phase plane is divided into two regions, the
region Ω surrounded by the two boundary curves ΓA and ΓB , and
the rest part R2 − Ω.

2.2 Construction of the Discrete TOC Law

In this subsection, the DTOC law is obtained constructively based
on the boundary curves and regions proposed above. As shown in
Figure 1, we assume that for any initial stateM(x1, x2) in the fourth
quadrant (x1 > 0, x2 < 0), there is an auxiliary line x2 = x2(M)
that intersects with the boundary curves at points A and B (in the
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Fig. 2: Illustration of the region Ω2.

direction of x1). Their x-axis value xA and xB are{
xA =

x2
2

2r + 1
2h|x2|

xB =
x2
2

2r + 5
2h|x2|+ h2r

(10)

For any initial state M(x1, x2) satisfying x1 < xA or x1 > xB ,
the control signal is taken on u = +r or u = −r. For any initial
state M(x1, x2) satisfying x1 ∈ [xA, xB ], the control signal can be
taken on as follows:

u = −rεsign(x2) (11)

where ε =
xB+xA−2|x1|

xB−xA
.

When the initial state M(x1, x2) is in the second quadrant, the
control signal sequence can be constructed similarly.

However, when the initial state M(x1, x2) (located outside the
region Ω) is in the first or third quadrant, there are two different cases
for choosing the control signal. When M(x1, x2) cannot be driven
back to the origin within two steps, that is, the initial state does
not satisfy the condition x21 + x22 = 0, let u = −rsign(x1 + hx2).
When M(x1, x2) can be driven back to the origin within two steps,
the initial state x(0) and the corresponding control signal sequence
satisfy (6), i.e., 

x1(1) = x1(0) + hx2(0)
x2(1) = x2(0) + hu(0)
x1(2) = x1(1) + hx2(1)
x2(2) = x2(1) + hu(1).

Furthermore, when M(x1, x2) can be driven back to the origin
within two steps, the corresponding control signals can be derived as
follows: {

u(0) = −x1(0)+2hx2(0)
h2

u(1) =
x1(0)+hx2(0)

h2 .
(12)

The condition u(1) ≤ r is a necessary condition for driving the ini-
tial state back to the origin within two steps. If it is not satisfied, the
initial state cannot be driven back to the origin within two steps. If
it is satisfied, the control signal can take on u(0) and u(1) in (11) to
drive the initial state back to the origin.

The region in which any x(0) can be driven back to the origin
within two steps, denotes as Ω2, is surrounded by two pairs of par-
allel lines x1 + hx2 = ±h2r and x1 + 2hx2 = ±h2r. As shown
in Figure 2, Ω2 is a parallelogram defined by the four points of
(−h2r, 0), (−3h2r, 2hr), (h2r, 0) and (3h2r,−2hr).

Now, any initial state M(x1, x2) on the x1 − x2 plane can be
driven back to the origin in a minimum and finite number of steps
according to the control signal sequence above. The complete DTOC
law is described as follows:

Step 1: Setting z1 = x1 + λhx2, z2 = z1 + hx2, where λ ∈
(0, 1] is a tuning parameter to determine the different characteristic

points xA, xB . If |z1| > h2r or |z2| > h2r, thenM(x1, x2) cannot
be driven back to the origin within two steps, i.e., M(x1, x2) 6∈ Ω2,
and go to next step; otherwise, go to step 5;

Step 2: If the initial state M(x1, x2) satisfies x1x2 ≥ 0
and M(x1, x2) 6∈ Ω2 ∪ Ω, then the control signal takes on u =
−rsign(x1 + hx2);

Step 3: Determine the boundary of the region Ω, i.e., xA =
x2
2

2r +
1
2h|x2| and xB =

x2
2

2r + 5
2h|x2|+ h2r;

Step 4: If |x1| ≥ xB , then the control signal takes on u =
−rsign(x1); if |x1| ≤ xA, then the control signal takes on u =
rsign(x1); otherwise, the control signal takes on u = −rεsign(x2)

where ε =
xB+xA−2|x1|

xB−xA
;

Step 5: If the initial state M(x1, x2) ∈ Ω2, then the control
signal takes on u = −x1+2hx2

h2 ;
Step 6: The algorithm ends.
From the deduction above, the mathematical derivation of

a closed-form discrete time optimal control law ( DTOC
Law) as a function of x1, x2, r and h, denoted as u(k) =
Ftd(x1(k), x2(k), r, h), is obtained.

Remark 2. The DTOC law presented above demonstrates that the
control signal u in discrete time does not always take on the extreme
value, which is different from its continuous time counterpart. The
characteristics of no chattering problem in the control signal makes
the new control law advantageous in engineering applications.

Remark 3. The essence of DTOC law proposed in [23] [24] is a
non-linear boundary transformation, which includes complex non-
linear calculations. The control signal of the proposed DTOC law
is determined by piecewise linear function according to the relative
positions of the initial state and the corresponding x-axis value of the
intersection points A and B, which allows the DTOC law to have a
simple structure.

Remark 4. For the Step 1 of the algorithm in Subsection 2.2, the dif-
ferent λ can lead to different points xA, xB . Different points xA, xB
will result in different control signal according to (11) when the ini-
tial state M(x1, x2) is located inside the region Ω. However, the
whole algorithm does not need to change.

3 Convergence proof of time optimal control law

The main result in this section is stated as the following Theorem.

Theorem 1. Given the system (4) and any initial state x(0), the state
x(k) can converge to the origin in the minimum and finite number
of steps with the discrete time optimal control signal sequence u(0),
u(1), ..., u(k) determined by u(k) = Ftd(x1(k), x2(k), r, h), sub-
ject to the constraint of |u(k)| ≤ r. That is, x1(k)→ 0 and
x2(k)→ 0 with u(k∗), where |u(k)| ≤ r and k∗ = min[k|x(k +
1) = 0].

Proof: Here we will split the proof into two steps according to the
position of the initial state on the phase plane.

Step A: Any initial state x(0) located outside the region Ω can
converge to the region Ω when the control signal sequence takes on
the extreme value.

Consider the following control system when the initial state is
located outside the region Ω:

 x1(k + 1) = x1(k) + hx2(k)
x2(k + 1) = x2(k) + hu(k)
u(k) = −rsign(s(k))

(13)

where s(k) is the boundary curve ΓA : x1 +
x2|x2|
2r + 1

2hx2 = 0.
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When the initial state M(x1, x2) is located above the ΓA, there
exists s(k) > 0. The following Lyapunov function is constructed

4s(k) = s(k + 1)− s(k)

=hx2(k)− 1

2
h2r − h(x2(k)− 1

2
hr)sign(x2(k))

=h(x2(k)− |x2(k)|)− 1

2
h2r(1− sign(x2(k))) ≤ 0

(14)

There are two cases for the value of4s(k).
(1) If x2(k) > 0, then4s(k) = 0.
According to (13), the initial state x2(k) will keep decreasing

until it arrives at ΓA. There exists x2(k + 1) = x2(k)− hr, that
is, x2(k) = x2(0)− khr. Hence there exists a positive constant
k0 =

x2(0)
hr that can make x2(k) < 0 when k > k0. Therefore, any

initial state located above ΓA on upper phase plane can be driven to
lower phase plane, i.e., x2(k) < 0.

(2) If x2(k) < 0, then 4s(k) = −2h|x2(k)| − h2r < −h2r <
0.

When s(k) > 0, there exists s(k + 1)− s(k) < −h2r, that is,
s(k) < s(0)− kh2r and clearly there is a positive constant k1 =
s(0)
h2r

that can guarantee s(k) < 0 when k > k1.
The above statement manifests that the initial state x(0) located

outside the region Ω can approach the boundary curve ΓA and con-
verge to the region Ω when the control signal sequence takes on the
extreme value described in (13). Similar conclusion can be obtained
when the initial state M(x1, x2) is located below ΓA.

Step B: The state sequence located inside the region Ω can be
driven into the region Ω2 with the control signal in (11) in a limited
number of steps.

In this step, we only need to prove the convergence of the state
sequence on the fourth quadrant because the region Ω is symmet-
ric in the second and fourth quadrant. For simplicity, we may still
adopt parametric expressions by introducing the parameters α and
β (α > 0, β > 0), where any state point on the phase plane can be
expressed as x1 = αh2r, x2 = −βhr. Further, for convenience, we
may as well adopt dimensionless expression by introducing another
parameter θ to ignore the value of h and r.

Based on the above, the boundary curves ΓA and ΓB on the fourth
quadrant in parametric form are{

Γ+
A : α = β

2 (β + 1)

Γ+
B : α = β

2 (β + 1) + (2β + 1).
(15)

Any initial state point M(x1, x2) located inside the region Ω in
dimensionless form can be{

α = β
2 (β + 1) + (2β + 1)θ

β = β
(16)

where 0 ≤ θ ≤ 1. Its corresponding control signal sequence accord-
ing to step 4 in Section 2.2 is

u = −r xB + xA − 2|x1|
xB − xA

sign(x2)

= r(1− 2θ)

(17)

where xA =
β(β+1)

2 h2r and xB = [
β(β+5)

2 + 1]h2r.
The state variables at steps k and (k + 1) in dimensionless form

can be 
x1(k) = α(k)h2r
x2(k) = −β(k)hr

x1(k + 1) = α(k + 1)h2r
x2(k + 1) = −β(k + 1)hr

Because of (4), there exists{
α(k + 1) = α(k)− β(k)
β(k + 1) = β(k)− 1 + 2θ(k)

Fig. 3: Illustration of the region Ω2, Ωθ>0.5 and Ωθ≤0.5.

According to (16), we can derive α(k + 1) =
β(k+1)[β(k+1)+1]

2 +
[2β(k + 1) + 1]θ(k + 1). Therefore, the expressions of α(k + 1),
β(k + 1) and θ(k + 1) can be derived as follows:


α(k + 1) =

β(k+1)[β(k+1)+1]
2 + [2β(k + 1) + 1]θ(k + 1)

β(k + 1) = β(k) + 2θ(k)− 1

θ(k + 1) =
2θ(k)[1−θ(k)]
2β(k)−1+4θ(k)

.

(18)
According to (17), there exists a curve (denoted as ΓC ) between

the boundary curves ΓA and ΓB . It can be determined by choosing
θ = 0.5 as follows.

Suppose that {c+k} and {c−k} (k > 2) are the sets of any initial
state x(0) that can be driven back to the origin when the con-
trol signal takes on u(0) = 0 beginning in the first step, then the
control sequence takes on u(i) = +r or u(i) = −r, i = 1, 2, ..., k.
Similarly, the boundary curve ΓC consists of Γ+

C and Γ−C .
For set {c+k}, there exists x1 = 1

2rh
2(k2 + 3k + 2) and x2 =

−rhk < 0 according to the rule for choosing the control signal
sequence, as shown above. By eliminating the variable k, we have
that the control characteristic curve Γ+

C is x1 =
x2
2

2r −
3
2hx2 +

1
2h

2r. Similarly we can obtain the control characteristic curve Γ−C :

x1 = −x
2
2

2r −
3
2hx2 + 1

2h
2r. Therefore, the entire control charac-

teristic curve ΓC is x1 +
x2|x2|
2r + 3

2hx2 −
1
2h

2r = 0.
We assume that the curve ΓC and the region Ω2 intersect at point

C, which can be determined by their simultaneous equations:

{
x1 −

x2
2

2r + 3
2hx2 −

1
2h

2r = 0

x1 + hx2 = h2r
(19)

Solving the above equation, we can get the intersection point
(
√
5+1
2 h2r,−

√
5−1
2 hr).

The region Ω is divided into two regions (denoted as Ωθ>0.5 and
Ωθ≤0.5) by the curve ΓC . The definitions of these two regions are
given as follows and shown in Figure 3.

Definition 3.1. Ωθ>0.5 = {M(α, β)|M ∈ Ω,M 6∈ Ω2, θ > 0.5}.

Definition 3.2. Ωθ≤0.5 = {M(α, β)|M ∈ Ω,M 6∈ Ω2, θ ≤ 0.5}.

From the definitions above, the region Ω− Ω2 is divided into
two different regions. What we should prove is that any initial state
M(α, β) ∈ Ω− Ω2 can be driven into the region Ω2 with the con-
trol signal sequence described in (17). The whole proof can be split
into two steps.

Step 1: When the initial state satisfies M(x1, x2) ∈ Ωθ>0.5 as
shown in Figure 4, there exists β(0) ≥ 0, θ > 0.5.
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Fig. 4: Convergence path for any initial stateM located in the region
Ωθ>0.5.

Fig. 5: Convergence path for any initial stateM located in the region
Ωθ≤0.5.

Suppose that θ(0) = 0.5 + δ where 0 < δ < 0.5. According to
(18) we can derive

0 ≤ θ(1) =
2θ(0)[1− θ(0)]

2β(0) + 4θ(0)− 1

=
1
2

2β(0) + 4δ + 1
≤ 1

2
· 1

2β(0) + 1
≤ 1

2
.

(20)

However, this contradicts with the condition that the initial state
satisfies θ > 0.5. Therefore we can derive the conclusion that any
initial state can be driven into the region Ω2 or the region Ωθ≤0.5
with the control signal in one step, and the control signal is u(1) =
r(1− 2θ(1)) ≥ 0.5r according to (16).

Step 2: When the initial state satisfies M(x1, x2) ∈ Ωθ≤0.5
shown in Figure 5, there exists x2(k) = −β(k)hr < −

√
5−1
2 hr,

i.e., β(0) >
√
5−1
2 .

If the initial state cannot be driven out of the region Ωθ≤0.5 with
the corresponding control signal in one step, according to (18), there
exists

θ(0) =
2θ(0)[1− θ(0)]

2β(0) + 4θ(0)− 1

=
2θ(0)[1− θ(0)]

2β(1) + 1
<

1

2
· 1

2β(1) + 1
<

1

2
√

5
.

(21)

From (16) and (20), u(1) = r(1− 2θ(1)) > (1− 1√
5

)r can be
obtained.

According to Step 1 and Step 2 above, where the initial state is
in the region Ωθ>0.5 or Ωθ≤0.5, the control signal satisfies u > 1

2r.

From (5), we can obtain that

x2(k + 1) = x2(0) + h

k∑
i=0

u(i) > x2(0) + (1− 1√
5

)(k − 2)hr − 1

2
hr.

(22)
Further, we have

β(k + 1) < β(0)− (1− 1√
5

)(k − 2)− 1

2
. (23)

From (23), we know β(k + 1) is a monotonic function. However,
for any initial state located in the region Ωθ≤0.5, the condition β > 0
holds. Therefore, the state must be driven out of the region Ωθ≤0.5
with the corresponding control signal in a limited number of steps.

Suppose that the state M(α(k), β(k)) located in the region
Ωθ≤0.5 becomesM(α(k + 1), β(k + 1)) located outside the region
Ωθ≤0.5 by adding the control signal in one step, we need to prove
that the state M(α(k + 1), β(k + 1)) is in the region Ω.

From (18), we can obtain{
α(k + 1) =

β2(k)
2 − β(k)

2 + 2θ(k)β(k) + θ(k)
β(k + 1) = β(k) + 2θ(k)− 1.

(24)

Further, since β(k) >
√
5−1
2 and 0 ≤ θ ≤ 1, the following equa-

tions can be obtained{
−2θ2(k)− β(k) + 1

2 < 0

−2θ2(k) + 2θ(k) ≥ 0.
(25)

According to (25), the state M(α(k + 1), β(k + 1)) satisfies the
condition that β(k + 1) is in the region surrounded by Γ+

A and ΓC ;
meanwhile, the state is not in the region Ωθ≤0.5. Thus it can be
concluded that the state must locate in the region Ω2.

However, we prove that the state sequence located inside of the
region Ω can be driven into the region Ω2 with the corresponding
control signal sequence in a minimum and finite number of steps.
Once the initial state enters the region Ω2, it can be driven back
to the origin according to (12). Combining Step A and Step B, we
prove the convergence of the time optimal control law described in
Theorem 1.

4 Numerical Simulations

We may as well denote the DTOC law derived in this paper as
u(k) = Ftd(x1(k), x2(k), r, h), where r is the quickness factor
and h is the sampling period. In this section, numerical simula-
tions will be conducted to compare the performance of the proposed
DTOC law with the law (denoted by Fhan) proposed by Han
[23][24].

Firstly, we illustrate the state trajectory under two different algo-
rithms, Fhan and Ftd. From Figure 6, we can see that the state
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Fig. 6: Illustration of state trajectory under two different algorithms.

Fig. 7: Comparison of tracking errors between Fhan and Ftd
algorithms.

Fig. 8: Differentiation of signal errors compared between Fhan and
Ftd algorithms.

trajectory for Ftd is in accordance with the optimal trajectory while
the state trajectory for Fast lags the optimal trajectory.

Based on the discrete time optimal feedback control, i.e., u(k) =
Ftd(x1(k), x2(k), r, h), we can easily construct the following time
optimal system-based tracking differentiator by replacing x1 in (4)
with x1 − v. u(k) = Ftd(x1(k)− v(k), x2(k), r, c0h)

x1(k + 1) = x1(k) + hx2(k)
x2(k + 1) = x2(k) + hu(k), k = 0, 1, 2, ...

(26)

where r is the quickness factor, c0 is the filtering factor, and h is
the sampling period. We then demonstrate the errors of tracking and
differentiation of signals between the algorithm Fhan and Ftd by
using the input signal sequence V (t) = sin(2πt). In the simulations,
the parameters, such as, the sampling step h = 0.01, the quickness
factor r0 = 100, and the filtering factor c0 = 1.5 are chosen by
means of a trial-and-error approach to make the algorithm Fhan
track input signal quickly and derive excellent derivative signal as
much as possible. We use the same parameters for the proposed
algorithm Ftd.

The simulation results are plotted in Figures 6 and 7. The
algorithm Ftd quickly track an input signal without overshooting

and chattering, while also obtaining an excellent differentiation of
the input signal. This algorithm is more accurate in its tracking and
differentiation compared with the other algorithm.

5 Conclusion

In this paper, the convergence of the discrete time optimal control
law has been proved. A new discrete time optimal control law is
determined by linearized criterion for a discrete-time double-integral
system, which equips the discrete time optimal control law with
simple structure. This closed-form non-linear state feedback con-
trol law avoids the problem associated with the time optimal control
of instant switching between extreme values in the control signal.
The control law proposed in this paper is ready for implementation
in digital control systems, much more practical than the bang-bang
control law. The numerical simulation results show that the pro-
posed DTOC law Ftd is effective and noise tolerance. Some issues
remain for future work, and they include accuracy analysis and con-
vergence proof of the discrete time-optimal system-based tracking
differentiator.
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