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Abstract—The minimum dominating set (MDS) of network
is a node subset of smallest size that every node in the net-
work is either in this subset or is adjacent to one or more
nodes of this subset. MDS has found wide applications, ranging
from network monitoring, routing, to epidemic control and text
processing. However, the majority of existing studies on MDS
problem are confined to single networks. In real world, more
and more complex systems consist of a set of elements linked
up by different types of connections, which are best modeled
as multiplex networks with interacting network layers. Though
vastly important, the MDS of multiplex networks has not yet been
formally defined and its application and identification remain
open issues. In this paper, we present the definition of the MDS of
multiplex network and show some of its possible applications. For
solving the MDS problem of multiplex network, we built a spin
glass model and solve it through the belief-propagation equations
under the replica symmetry mean field theory. As a consequence,
we can predict the relative size of the MDS of multiplex network
theoretically and we can propose a belief-propagation-guided
decimation algorithm to construct an approximate optimal dom-
inating set in practice. Then the algorithm is improved in both
accuracy and efficiency by embedding a novel multiplex network-
oriented leaf-removal strategy. The effectiveness of the proposed
algorithms is finally verified by comparing with other methods
on a number of multiplex network examples.

Index Terms—Minimum dominating set, multiplex network,
complex network, message passing.

I. Introduction

ADominating set of network is a subset of nodes that every
node in the network is either in this subset or adjacent

to at least one node of this subset. A dominating set with the
minimum number of nodes is called a minimum dominating
set (MDS) [1].

The MDS has widespread applications in many fields. For
example, it has been widely applied in monitoring large-

D. Zhao, L. Wang and L. Xu are with the Shandong Provincial Key Labo-
ratory of Computer Networks, Shandong Computer Science Center (National
Supercomputer Center in Jinan), Qilu University of Technology (Shandong
Academy of Sciences), Jinan 250014, China. E-mail: zhaodw@sdas.org

G. Xiao is with the School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singapore 639798. E-mail: egxxi-
ao@ntu.edu.sg

Z. Wang is with the Center for Optical Imagery Analysis and Learning (OP-
TIMAL) and School of Mechanical Engineering, Northwestern Polytechnical
University, Xi’an 710072, China. E-mail: zhenwang0@gmail.com

L. Xu is also with the School of Computer Science and Technology, Harbin
Institute of Technology, Weihai 264209, China.

Manuscript received X X, X; revised X X, X. This work was supported
in part by the National Natural Science Foundation of China (61702309,
U1803263), Shandong Provincial Key Research and Development Program
(2019JZZY020127, 2019JZZY020129), National Training Program of Innova-
tion and Entrepreneurship for Undergraduates (201910059044). (Correspond-
ing authors: Dawei Zhao, Zhen Wang)

scale traffic networks and power grids and other transporta-
tion systems, controlling epidemic (virus/fake news/disease)
propagation and some other network dynamical processes, etc.
For wireless networks, the MDS has been utilized to address
the topology control, sensor deployment, network routing and
power management [2]–[4]. In addition, the MDS can also be
used to identify topic sentences for document summarization
through the construction of sentence graph [5], [6]. [7]–[9].

While it is easy to state the MDS problem of identifying
a MDS for a given network, solving it is notoriously hard
since it is a classical hard combinatorial problem [1]. In past
decades, much effort has been made to solve such problem and
a large number of innovative algorithms have been proposed,
including exact (exponential-time) algorithms, greedy algo-
rithms and heuristic algorithms like ant colony optimization,
genetic algorithms, simulated annealing, etc [10]–[21].

However, the majority of the achievements published so far
are mainly confined to the MDS problem of single networks,
which may seem inconsistent with the widely acknowledged
fact that multiple types of relationships simultaneously exist
among the elements in almost of the social, natural and
engineering systems. A great advance in network science that
has recently been achieved is the introduction of multiplex
networks, formed by several single network layers, each of
which contains the same set of nodes yet different intra-layer
links and thus represents one type of relationship between
the nodes [22]. A lot of real-world networks like biological
networks, social networks, transportation networks and engi-
neering networks have been modeled and studied as multiplex
networks. The topological structure of multiplex networks and
dynamical behavior and process (such as epidemic spreading,
evolutionary game, diffusion, percolation and synchronization)
on top of them have attracted considerable attention in both
empirical and theoretical studies [23]–[46].

Considering the developments in studies on multiplex net-
works and the MDS problem, some interesting questions
naturally pose themselves, which we aim to solve in this paper.
Namely, 1) What is a reasonable definition of the MDS of
multiplex network? 2) What are the practical applications of
the MDS of multiplex network? 3) How to efficiently find
the MDS for a given multiplex network? To the best of our
knowledge, there are no results on the MDS of multiplex
network, and the existing achievements on the MDS of single
networks can hardly be directly applied to that in multiplex
network.

In present work, we focus on the above three questions. Our
main contributions can be summarized as follows:
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1) We present a reasonable definition of the MDS of
multiplex network. To the best of our knowledge, this is
the first study on the MDS of multiplex network.

2) Three practical applications of the MDS of multiplex
network are given, including monitoring epidemic in
multiplex network, early detection and controlling of
epidemic spreading in multiplex network and construct-
ing extractive text summarization respectively.

3) To tackle the MDS problem of multiplex networks,
we built a spin glass model and solve it through the
belief-propagation equations under the replica symmetry
mean field theory. As a consequence, we can predict
the relative size of the MDS of the multiplex network
theoretically and we also propose a belief-propagation-
guided decimation (BPD) algorithm to construct approx-
imate optimal dominating set in practice.

4) We propose the multiplex network-oriented leaf-removal
strategy. To the best of our knowledge, this is the first
study on the leaf-removal strategy in multiplex network.
When embedding the LR into the BPD, the BPD shows
the best performance on MDS problem in both accuracy
and efficiency compared with other algorithms on a
number of multiplex network examples.

The remainder of this paper is organized as follows. In
Section II, we briefly review the MDS problem and multiplex
networks respectively. Section III presents the definition of
the MDS problem of multiplex network and demonstrates
three practical applications of the MDS of multiplex network.
The spin glass model and message passing theory for MDS
problem of multiplex network is given and the BPD algorithm
and the leaf-removal algorithm are presented in Section IV.
Section V verifies the effectiveness of the BPD on a variety
of multiplex networks. Final, conclusions are drawn in Section
VI.

II. Related work

A. Minimum dominating set problem of single network

Let G̃ = (Ṽ , Ẽ) be a simple undirected and unweighted
network where Ṽ is the node set and Ẽ the edge set. The
subset D̃ ⊆ Ṽ is called a dominating set if every node i ∈ Ṽ\D̃
is adjacent to one or more nodes of D̃. A node i is said to
be occupied if i ∈ D̃; otherwise it is known as empty. A node
is said to be observed if it is either occupied or empty but
adjacent to at least one occupied node. The MDS problem aims
at identifying in the network the smallest dominating set. The
size of the MDS of network G̃ is defined as the domination
number of the network and denoted by γ(G̃).

The exact (exponential-time) algorithms have been exten-
sively studied for solving the MDS problem. Until 2004,
the trivial O(2n) algorithm was still the fastest algorithm on
the MDS problem which just simply searches through all of
the possible state combinations of Ṽ . Then three indepen-
dent works break the barrier of the O(2n) algorithm. Fomin,
Kratsch and Woeginger first proposed algorithm running in
time O(1.9379n) [10]. By using the matching techniques to
restrict the search space, Randerath and Schiermeyer gave an
O(1.8999n) algorithm [11]. Grandoni then reduced the running

time to O(1.8019n) [12]. To our knowledge, the best exact
algorithm for MDS problem at present runs in O(1.4864n)
time and polynomial space which is designed through the
measure and conquer technique [14]. Obviously, the exact
algorithm with exponential running time is only available for
relatively small scale networks which thus significantly limits
its practical applications.

As an alternative, a large variety of algorithms have been de-
veloped in order to gain near optimal solutions for MDS prob-
lem, such as greedy algorithms and heuristic algorithms. The
straightforward greedy strategy consists of successively select-
ing nodes which could cover the largest number of unobserved
neighbors. Sanchis studied several variations on this greedy
strategy, including GreedyRev, GreedyRan, GreedyVote and
GreedyVoteGr, which concern more sophisticated procedure
for choosing nodes [15]. For example, GreedyRev algorithm
iterates through removing nodes from D̃ whose initial state
contains every node of the graph. The iteration is stopped
when the removal of any node would result in D̃ no longer
being a dominating set.

For networks without core, Zhao et al. proved that the
MDS problem can be solved exactly through the generalized
leaf-removal strategy [16]. They also proposed a message-
passing algorithm to construct the near optimal dominating
sets for network with any degree distribution by using the
replica-symmetric mean field theory. The simulated annealing
algorithm has been proved to relatively easily give a solution
of dominating set with size γ > γ(G̃). However, when γ gets
close to γ(G̃), the search complexity increases dramatically
such that no efficient solution can be obtained within finite
computational time [17]. Hedar and Ismail propose genetic
algorithm that uses a 0-1 variable representation of solutions
in searching for the MDS [18], [19]. Besides, the ant colony
optimization is also one of the most effective meta-heuristics
for MDS problem and has attracted much attentions [20], [21].

B. Multiplex network

Multi-type links or interactions among units widely appear
in real-world systems [22]. For example, in social systems,
individuals can communicate with each other through many
different channels, such as physical interaction of face-to-
face and virtual connections including phone calls, WeChat,
Facebook, e-mail and so on. In public transportation systems,
cities are connected with others through buses, subways and
airlines. In biological systems the proteins can have genetic,
co-localization, physical or several other kinds of interactions.
Obviously, the simple model or abstraction of these systems
into a single network of nodes and links of the same type
is not sufficient which may lead to inaccurate knowledge of
the structure and function of the systems. In this sense, the
framework of multiplex networks is proposed to provide a
reasonable model for capturing high level complexity of the
real-world systems. It is defined as a multiplex network of
interacting network layers where each layer contains the same
set of nodes yet different type of links [23], [28]–[33].

It is obvious and well recognized that the multiplex net-
works has significantly distinct structural and dynamical prop-
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erties from that in single networks [22]. Refs. [34], [35] stud-
ied the extension of centrality measures of single network to
multiplex networks, such as the degree centrality, betweenness
centrality, PageRank centrality, eigenvector-like centrality and
the closeness centrality, etc. Ref. [36] established the concepts
of walk, path and length of multiplex networks. Refs. [37],
[38] provided the framework for the study of mesoscopic
structures known as communities and motifs of the multiplex
networks. Refs. [33], [39] considered the correlations between
the roles of the nodes in different layers and between statistical
properties of the single layers. Refs. [40], [41] discussed
the generative models for multiplex networks, most of which
can be classified into two main categories, growing multiplex
networks models and multiplex network ensembles.

Zhao et al. proved that the epidemic could spread to a
massive scale in the multiplex network even if all the network
layers are well below their respective epidemic thresholds.
Moreover, the correlations between different network layers
will also significantly influence the outbreak of epidemic
and its propagation speed and scale [33]. Solé-Ribalta et al.
found that the topology of multiplex networks could introduce
congestion for network flows while which will be decongested
when the individual layers were not interconnected [42].
Gómez-Gardeñes et al. showed that the resilience of coop-
erative behaviors for extremely large values of the temptation
to defect is enhanced by the multiplex structure [43]. Min et
al. found that the negatively correlated multiplex networks are
vulnerable to random failure, but they can be robust against
targeted attack [39]. Jalan and Singh demonstrated that the
interactions between nodes in one layer could influence the
cluster synchronizability in other layers [44]. Other studies on
dynamical process upon multiplex networks can be found in
[27], [45]–[48].

III. Definition and application
Considering a multiplex network formed by M different

layers, i.e. G = (G1, ...,GM), where every layer Gα = (V, Eα)
has a same set V of N nodes and a distinct set of edges
Eα = V × V , in this section, we define the MDS problem of
multiplex network and show its possible applications in three
areas.

Definition III.1. A subset of nodes D ⊆ V is called a
dominating set of G if it is the dominating set of each network
layer simultaneously. That is, every node of V\D needs to be
adjacent to one or more nodes of D in each network layer.
Identifying a dominating set with the minimum number of
nodes for a multiplex network is defined as the MDS problem
of multiplex network.

We adopt the same terms as that in single network to define
the state of nodes of multiplex network. A node i of multiplex
network is said to be occupied if i ∈ D; otherwise it is in
empty state. A node is said to be observed if it is either
occupied or empty but adjacent to at least one occupied node in
every layer. If an empty node is adjacent to occupied nodes in
particular layers, we say the node is observed in those layers.
Otherwise, if an empty node has no occupied neighboring
nodes in particular layers, the node is called unobserved in
those layers.

Figure 1 presents a simple example of the dominating set
of multiplex network. In what follows, we will show three
practical applications which prompt us to introduce such a
definition of the MDS of multiplex networks.
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Fig. 1. Illustration of dominating set of multiplex network coupled by two
layers, i.e. G = (G1,G2). The dark green node is occupied, while the light
green node is empty but observed. (a) The set {2,3} is not a dominating set
of G since node 4 is not observed in layer G2. (b) The set {2,3,4} is an MDS
of G.

A. Application: Monitoring epidemic in multiplex network

Epidemic spreadings can be found in various areas of human
society, like the virus propagation in computer networks,
rumor and information spreading in social networks, disease
spreading in physical contact networks and failure propagation
in engineering networks [47], [49]–[54]. In this context, a
challenging problem is to efficiently place observer/sensors
to monitor the epidemic status of every node throughout the
network, which has broad implications for practical applica-
tions including detecting harmful epidemics, recording data for
epidemiological studies and reconstructing spreading network
etc. Particularly, if the observer nodes can only monitor their
neighboring nodes, the MDS-based observer placement which
chooses the nodes belonging to the MDS of the network as
observer nodes becomes one of the best strategies: every node
shall be monitored by placing the smallest number of observer
nodes.

Recently, the study of epidemic dynamics on multiplex
networks has received increasing interest. In comparison with
the spreading in single networks, a noticeable distinct charac-
teristic of that in multiplex networks is the epidemic could
spread between multiple layers, called cross-layers cascade
[55], [56]. For example, in multiplex social networks, when
a user receives new information via a social medium, like
WeChat, the user may spread it again through WeChat or do
it over another online media such as Twitter, or both (see Fig.
2). In this sense, in order to efficiently monitor the epidemic in
multiplex networks, every node should be monitored in every
layer since the states of the same node in different layers may
be different. That is, every node should be connected with at
least one observer node in each layer. Letting the nodes in the
MDS of the multiplex network be observer nodes, we shall
then be able to monitor every node in each layer using the
smallest number of observers.
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Fig. 2. An example of cross-layers cascade in multiplex social network G =
(G1,G2). When node i posts a message on G1, its neighboring nodes may
repost it through G1 (like node k) or do it over G2 (like node h) or repost it
in both two layers (like node j).

B. Application: Early detecting and controlling epidemic in
multiplex network

To control epidemic spreading on networks, a novel method
of competing spreading through multiplex networks has drawn
wide attention recently [57], [58]. An archetypical scenario is
that the disease spreading on a network of persistent real con-
tacts will naturally introduce the diffusion of crisis awareness
information on a network of virtual social contacts between
the same individuals. The diffusion of awareness information,
in turn should further restrain the disease spreading, thus
forming the competing spreading processes of disease and
awareness information on the multiplex network with two lay-
ers. [59], [60]. A similar scenario is the competing spreading
of virus and patch where patch dissemination depresses the
virus propagation while they spread through different channels
[54]. However, in such a framework it may be an unrealistic
assumption that all nodes have the willingness and ability to
identify the infection and send the awareness or patch.

Takaguchi et al. presented an epidemic control mechanism
which takes advantage of both traditional network immuniza-
tion and competing spreading. They considered the deploy-
ment of observer nodes on networks and assumed that the ob-
server could immediately recognize its infected neighbors and
then immunize its other uninfected neighbors. Though such an
approach could monitor all the network nodes and efficiently
recognize the infection, it cannot immediately immunize all
the network nodes when infection spreading is confirmed. In
addition, the immunization may not be easy to be implemented
in the same network through which the infection spreads out.

In this sense, based on the definition of the MDS of multi-
plex network, we propose a network model as shown in Fig.
3 which consists of a two-layer network and a central node.
The upper layer corresponds to the immunization distribution
network layer (IL). The lower layer represents the epidemic
spreading network layer (EL). The central node connects
with all the nodes of the MDS of the multiplex network.
Under the network model, we have the following approach
which could recognize the infection immediately upon its
happening as well as immediately immunize all the network
nodes by using the smallest number of observer nodes: the
nodes belonging to the MDS of the multiplex network are
selected to be observer nodes. When one neighbor is infected
in EL, the observer could immediately recognize the infection

and send the information to the central node. The central node
would then distribute the crisis information or patches to all
the observers and the observers then spread them to their
neighbors in IL. Since every node connects with at least one
observer in both IL and EL, the infection could be detected
and stopped immediately, while the number of observers is
minimized.

IL

EL

Central node

Fig. 3. Network model of early detection and control of infection spreading
based on MDS of multiplex network. It consists of a multiplex network
coupled by IL and EL and a central node. The set of dark green nodes is
the MDS of the two-layers network. The central node only connects with the
nodes of MDS.

C. Application: Constructing extractive text summarization

Extractive text summarization is one of the most important
branches of natural language processing which constructs a
summary by selecting a subset of sentences from the original
text [61]–[64]. The summary consists of the most representa-
tive sentences of the text and can be used to facilitate readers
to quickly understand the main topic of the text.

Recently, graph-based summarization has attracted increas-
ing attention from researchers [6], [65], [66]. Specifically,
the graph-based method represents the text as a graph where
sentence of the text is regarded as the vertex of the graph
and edge between two vertices represents how similar of
two sentences are. A commonly used technique to link two
sentences is to measure their similarity and if the similarity
is larger than a default threshold then the two sentences are
linked. Shen and Li introduced the MDS of network for
solving the summarization problem, which is a typical graph-
based summarization method [65]. They claimed that the MDS
of the sentence graph can directly act as the summary: it is
representative since each sentence is either in the MDS or
connected to at least one sentence of this set; and it is with the
minimal redundancy since this set has the minimum number
of elements.

Many different similarity indexes have been applied to
construct the sentence graph, such as cosine similarity, Jac-
card similarity, Tanimoto coefficient, dependency tree kernels
similarity and semantics-based similarity etc. [6], [65], [66].
However, most of the graph-based methods only use one
similarity measurement to construct the sentence graph; their
performances may change when the similarity measurement
varies. With the definition of MDS of multiplex network,
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we may propose a novel graph-based summarization method
which could simultaneously consider multiple similarity mea-
sures and thus may produce more robust summary.
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Fig. 4. Applications of MDS of network on text summarization. Each network
layer corresponds to a sentence graph constructed based on one similarity
measure. The set of dark green nodes is the MDS of the network and is used
to represent the summary.

Taking a subset of documents included in DUC 2004, also
completely shown in [66], for example, when using the cosine
similarity which defines the similarity of two sentences

−→
S i =

(S i1 , S i2 , . . . , S in ) and
−→
S j = (S j1 , S j2 , . . . , S jn ) as

cosine(
−→
S i,
−→
S j) =

∑
k S ik S jk√∑

k S 2
ik

√∑
k S 2

jk

(1)

and setting the threshold at 0.17, we have the sentence graph
as Fig. 4(a). The MDS-based summary is the sentence set
{1, 3, 4, 7, 8}. When we use the Tanimoto coefficient-based
similarity index which is given by

Tanimoto(
−→
S i,
−→
S j) =

∑
k S ik S jk√∑

k S 2
ik
+
√∑

k S 2
jk
−∑k S ik S jk

(2)

and set the threshold be 0.7, we have the sentence graph
as shown in Fig. 4(b) which has the same number of edges
as that in the Fig.4(a). The corresponding MDS summary is
{0, 3, 4, 5, 8}.

We can see that the MDS method produces different sum-
maries when different similarity measures are considered. To
overcome this limitation, we can construct multiplex network
where each layer corresponds to a sentence graph constructed
based on a similarity measure (see Fig. 4(c)). By such a way,
we can obtain a more robust summary based on the MDS
of multiplex network since it considers multiple similarity
measures simultaneously.

IV. Identification

Statistical physics theory has been successfully used for
solving several combinatorial optimization problems [67]. The
replica method and the cavity method of spin glass mean
field theory has been successfully used to solve the travelling
salesman problem, the K-satisfiability problem, the feedback
vertex set problem and the vertex cover problem, etc. [16],
[68]–[70].

In Ref. [16], Zhao et al. proposed a message passing
algorithm and leaf removal strategy which are very efficient
for solving the MDS problem of single network. However, it
cannot be directly applied to the MDS problem of multiplex
network since 1) the nodes of multiplex network have different
neighbors in different layers which should be considered
simultaneously; 2) the nodes of multiplex network should be
either occupied or observed in every layers rather than just
in one layer; 3) the nodes of multiplex network may have
different states in different network layers. In this paper, we
extend the spin glass and message passing theory to multiplex
network for solving the MDS problem of multiplex network.
A novel spin glass model of the MDS problem of multi-
plex network is built and solved through the derived belief-
propagation (BP) equation based on the replica symmetry
mean field theory. As a consequence, we can predict the
relative size of the MDS of multiplex network theoretically
and we also propose a message passing algorithm and a leaf
removal strategy to construct approximate optimal dominating
set in practice.

A. Spin glass model and message passing theory for MDS
problem of multiplex network

In the construction of dominating set, each node i ∈ V
should be either occupied (i.e., i ∈ D, denoted by ci=1) or
empty (i ∈ V\D, ci=0). Therefore, the total number of the
possible occupation configurations is 2N . Therefore, we can
built a spin glass model for the MDS problem of multiplex
network following the partition function

Z =
∑

c

∏
i∈V

{
e−xci
∏
α

[
1 − (1 − ci)

∏
j∈∂αi

(1 − c j)
]}

(3)

where x > 0 is the re-weighting parameter which emphasizes
the dominating sets of smaller cardinality; c = {c1, c2, ..., cN}
denotes an occupation configuration, ∂αi indicates the set of
neighboring nodes of i in layer Gα. 1 − ci = 0 or

∏
j∈∂αi

(1 −
c j) = 0 means node i is occupied or observed in layer Gα.
Therefore, the term

∏
α

[
1 − (1 − ci)

∏
j∈∂αi

(1 − c j)
]

being equals

to 1 means node i is observed in every layer; otherwise it
equals 0. In this sense, only the dominating set of the multiplex
network contributes to Z. Particularly in the limit of x →
∞, the partition function will be exclusively contributed by
configurations of the MDS.

The spin glass model Eq. (3) can be solved using the replica-
symmetric mean field theory, which can be derived from the
expansions of the partition function or understood from the
perspective of Bethe-Peierls approximation [67]. Therefore,
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the marginal probability qci
i that node i is in the state ci ∼

(0, 1) can be expressed as

qci
i =

q̃ci
i

zi
(4)

where

q̃1
i = e−x

∏
j∈∂i

∑
c j

q(c j,1)
j→i , (5)

q̃0
i =
∑
c∂i

∏
j∈∂i

q(c j,0)
j→i

∏
α

H(
∑
j∈∂αi

c j − 1), (6)

and

zi =
∑

ci

q̃ci
i . (7)

∂i is the union of all neighbor sets of node i in every layer,
i.e., ∂i =

∪
α
∂αi. c∂i indicates an occupation configuration of

all neighbors of node i. H(a) is the Heaviside step function
such that H(a) = 1 if a ≥ 0, and H(a) = 0 if a < 0.

∑
j∈∂αi

c j

denotes the number of neighbors in occupied state of node i in
layer Gα. Therefore, the term

∏
α

H(
∑

j∈∂αi
c j−1) being equals to 1

means node i has at least one occupied neighbor in every layer,
that is, i is observed in every layer; otherwise it equals 0. q(c j,ci)

j→i
is the joint probability of i being in ci state and its neighbor j
being c j state under the assumption that the constraint of node
i is not considered. One simple way of explaining Eq. (4) is
that if node i is occupied, i.e., ci=1, it is observed in every
layer thus its neighboring nodes in each layer could be in any
state (see Eq. (5)); however if i is empty, i.e., ci=0, it should
be observed by its occupied neighboring nodes in each layer
thus it should have at least one neighboring node being state
occupied in each layer (see Eq. (6)).

Similarly, under the Bethe-Peierls approximation, we
present the expression of q(c j,ci)

j→i which is also called the belief
propagation equation of the spin glass model

q(c j,ci)
j→i =

q̃(c j,ci)
j→i

z j→i
(8)

where

q̃(1,0)
j→i = e−x

∏
k∈∂ j\i

∑
ck

q(ck ,1)
k→ j , (9)

q̃(1,1)
j→i = q̃(1,0)

j→i , (10)

q̃(0,1)
j→i =

∑
c∂ j\i

∏
k∈∂ j\i

q(ck ,0)
k→ j

∏
α: j<∂αi

H(
∑

k∈∂α j

ck − 1), (11)

q̃(0,0)
j→i =

∑
c∂ j\i

∏
k∈∂ j\i

q(ck ,0)
k→ j

∏
α

H(
∑

k∈∂α j

ck − 1) (12)

and

z j→i =
∑

(c j,ci)

q̃(c j,ci)
j→i (13)

where ∂ j \ i is the set of all neighbors of node j except node
i. The BP equation can be explained as qci

i but it is defined on
the cavity graph where node i is absent.

For a given multiplex network, the BP equation can be
calculated by iterating the equation starting from random
initial values until convergence. After the BP equation is
solved, some thermal dynamical quantities of the spin glass
model can be obtained. First, the energy density ϵ of the spin
glass model is given by

ϵ =
1
N

∑
i

q1
i . (14)

In addition, the total free energy related to the partition
function can be expressed as

F =
∑

i

fi −
∑
(i, j)

fi j, (15)

where fi and fi j are the contributions of the free energy of
node i and edge (i, j) respectively,

fi = −
1
x

lnzi (16)

fi j = −
1
x

ln
∑
ci,c j

q(ci,c j)
i→ j q(c j,ci)

j→i . (17)

Then we can compute the free energy density through

f =
F
N
. (18)

At last, the entropy density of the system is evaluated as

s = x(ϵ − f ). (19)

In Fig. 5, we display the energy density ϵ, free energy
density f and entropy density s of the corresponding spin
glass system for a given MDS problem of multiplex network.
One sees that s decreases as x grows. In addition, as shown in
panel (a) with the growth of x, the energy density ϵ decreases,
that is the partition function Eq. (3) will be dominated more
by the dominating sets of smaller cardinality. Therefore, since
the entropy density of real system can’t be negative, we can
obtain the lower bound of the theoretical size of the MDS,
denoted by ϵc, at the x = x∗ where s(x∗) = 0 (see panel (a)
and (c)). In Table 1, we present the theoretical size of the MDS
of many multiplex network instances. It should be noted that
the BP iteration may be unable to converge to a fixed point
or jump between several possible optimal solutions in some
cases. A possible way is to select the optimal solution from
several computations using different x. Some other discussions
on the convergence of the solution of the spin glass model and
auxiliary methods can be found in [16], [67], [71]–[73].

B. Belief-propagation-guided decimation algorithm

Under the spin glass model and message passing theory, we
can also propose heuristic algorithm to construct approximate
optimal dominating set in practice.

From Eq. (4), we can derive the probability q1
i that node i

is occupied which naturally prompts us to develop a belief-
propagation-guided decimation (BPD) algorithm to construct
the MDS for a given multiplex network. Since such BPD
algorithm will be improved by embedding a leaf-removal
strategy in the next section, we here call this BPD algorithm
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Fig. 5. The energy density ϵ, free energy density f and the entropy density s versus x. The multiplex networks used are the 6th network shown in Table 1.

the pure BPD algorithm. The core idea of the pure BPD is
to iteratively choose the node with the highest occupation
probability to be occupied until a dominating set is obtained.
The procedure of the pure BPD is described as follows.

Step-B0. All nodes of the given multiplex network are
initially set as empty and unobserved in all layers. The joint
probability q(c j,ci)

j→i should be set as arbitrary value, and the re-
weighting parameter x should be a relatively large value.

Step-B1. Repeat calculating the belief propagation equation
Eq. (8) for a fixed round T0 of iterations and then calculate
the occupation probability q1

i of each node i based on Eq. (4).
Step-B2. Occupy r unoccupied nodes which have the largest

occupation probabilities.
Step-B3. Delete the links between the observed nodes which

are in the same layer, and then delete the isolated nodes that
have been observed in all layers.

Step-B4. If the resulting multiplex network still contains
nodes that have not been observed in one or more layers, we
repeat calculating the belief propagation equation Eq. (8) for a
fixed round T1 of iterations, and then calculate the occupation
probability q1

i of each node i based on Eq. (4).
Note: In this step, if node j is not observed in all layers,

q̃{0,1}j→i and q̃{0,0}j→i could be derived from Eqs. (11) and (12)
respectively. While if node j has been observed in one or
more layers, it presents no restriction to the occupation states
of all its neighbors in the corresponding layers. In this sense,
we could simplify the expressions of q̃{0,1}j→i and q̃{0,0}j→i which are
given by

q̃{0,1}j→i =
∑
c∂ j\i

∏
k∈∂ j\i

q(ck ,0)
k→ j

∏
α: j<∂αi, j<Oα

H(
∑

k∈∂α j

ck − 1), (20)

q̃(0,0)
j→i =

∑
c∂ j\i

∏
k∈∂ j\i

q(ck ,0)
k→ j

∏
α: j<Oα

H(
∑

k∈∂α j

ck − 1) (21)

where Oα denotes the set of nodes that have been observed in
layer Gα. Similarly, if node i is empty but observed in one or
more layers, we have

q̃0
i =
∑
c∂i

∏
j∈∂i

q(c j,0)
j→i

∏
α:i<Oα

H(
∑
j∈∂αi

c j − 1). (22)

Step-B5. Repeat operations B2-B4 until all nodes are ob-
served in all layers.

Algorithm 1 also shows the procedure of the pure BPD
algorithm. For the pure BPD, T0, r and T1 are all tunable
parameters. The impacts of their values are discussed in
Section V.

Algorithm 1 The pure BPD algorithm.
Input: A multiplex network G;
Output: A dominating set D of G;

1: Initialize: r, T0, T1;
2: Perform operations B0, B1 in turn;
3: do
4: Perform operations B2, B3, B4 in turn;
5: while (∃ i and α, such that i < Oα);
6: return D;

C. Leaf-removal algorithm of multiplex network

The leaf-removal (LR) algorithm is a well-known strategy
for combinatorial optimization problems which is very fast
and very easy to implement. It has been proved that it can
produce exact solutions for the vertex cover problem and the
MDS problem in single-layer tree networks. Even if the LR
algorithm cannot make all nodes be observed, the LR can also
be used to identify part of the nodes of an exact MDS and
simplify the network by deleting occupied nodes and observed
nodes.

To the best of our knowledge, there has no studies on the
LR for multiplex network. Therefore, we here present the
LR algorithm for multiplex network. The procedure of LR
performed on a given multiplex network G is described as
follows.

Step-L0. If there is an isolated unobserved node i in one
layer, occupy it (Fig. 6(a)) and all its unobserved neighboring
nodes in each layer thus become observed. Then delete i from
G.

Step-L1. If i is an unobserved leaf node linked with j in
one or more layers, we occupy node j if one of the following
conditions is met: 1) i is an isolated observed node in all the
other layers (see Fig. 6(b)); 2) i is also an unobserved leaf
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Fig. 6. Basic operations of LR in multiplex networks. The dark green node is occupied, the light green node is empty but observed.

node and adjacent to the same unique neighbor j in all the
other layers (Fig. 6(c)); 3) i has only a same single unobserved
neighbor j in all the other layers (Fig. 6(d)); 4) i is observed
and has no unobserved neighbors in all the other layers (Fig.
6(e)). If j is occupied, all its unobserved neighboring nodes in
each layer thus become observed. We then delete j from G.

Step-L2. If i is an observed node and has only one un-
observed neighboring node j in one or more layers, we can
1) remove the edge (i, j) from these layers if i is an isolated
observed node in all the other layers (Fig. 6(f)); 2) remove
the edge (i, j) from all layers if i is also an observed node and
has the same single unobserved neighbor j in all the other
layers (Fig. 6(g)); 3) remove the edge (i, j) from all layers if i
is observed and has no unobserved neighbors in all the other

layers (Fig. 6(h)).
Step-L3. If i is an observed node and has no unobserved

neighbors in all layers, we delete i from G.
Step-L4. Repeat operations L0-L3 until no nodes can be

further observed.
We now present our ultimate BPD algorithm for solving the

MDS problem of multiplex network which combines the pure
BPD algorithm and the LR process: before each calculations
of the occupation probabilities of network nodes in pure BPD
algorithm, we first carry out the LR algorithm one time to
identify some of the occupied nodes and simplify the network
as much as possible. The BPD algorithm is also described in
Algorithm 2.

The advantages of the BPD algorithm can be summarized
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as follows, 1) The LR is very fast and very easy to implement;
2) The chosen occupied nodes by the LR process are optimal
(occupying the only neighbor of the leaf node must be an
optimal strategy) for constructing an MDS of multiplex
network; 3) LR simplifies the network and consequently
reduces the running time of the pure BPD process; 4) When
an LR process is finished and some nodes are still unobserved,
the pure BPD could continue to find new nodes to occupy
and then introduce another LR implement; 5) The BPD could
slightly reduce the size of the constructed dominating set
compared with that constructed by the pure BPD.

Algorithm 2 The BPD algorithm.
Input: A multiplex network G;
Output: A dominating set D of G;

1: Initialize: r, T0, T1, step←0;
2: do
3: Perform operations L1, L2, L3, L4 in turn;
4: If (step=0)
5: Perform operations B0, B1, B2, B3 in turn;
6: step++;
7: Else If (step>0)
8: Perform operations B4, B2, B3 in turn;
9: step++;
10: End If
11: while (∃ i and α, such that i < Oα);
12: return D;

V. Analysis

In this section, we discuss the appropriate values of parame-
ters of the BPD algorithm and verify the effectiveness of BPD
by comparing with other algorithms.

A. Parameter evaluation

In the BPD algorithm, intuitively, the smaller the parameter
r is, the smaller the constructed dominating set through the
BPD and consequently the longer the running time of the
algorithm. In present work, we define

r = ρ
∑
α

|Oα|/M, (23)

which is updated in each step of the algorithm according to the
number of unobserved nodes. It get smaller as the number of
unobserved nodes decreases. ρ is a tunable parameter in (0,1).
The smaller the ρ is, the smaller the r. ρN is the maximum
value of the number of occupied nodes in one step of the BPD
algorithm. When

∑
α
|Oα| is greater than 1 and r is smaller than

1, we set r as equal to 1.
By setting ρ = 0.01, in Fig. 7 we shown the impacts of T0

and T1. On can see that a relatively large T0 is necessary for
constructing a small dominating set, while T1 has no obvious
impact on the performance of the BPD. Therefore, we set
T0 = 100 and T1 = 10 for all BPD in present work.

Figures 8 and 9 show the impact of r on the performance of
BPD algorithm. The size refers to the size of the constructed
dominating set. The step indicates the number of iterations of
the BPD algorithm which can be regarded as the time costs

Fig. 7. The size of the constructed dominating set through BPD versus T0,
T1. We set x = 10, ρ = 0.01. The multiplex networks used are the 9th network
shown in Table 1.

we calculate the occupation probabilities of the unoccupied
nodes. From Fig. 8, one sees that the sizes of the constructed
dominating sets via the BPD and pure BPD decrease and
become closer to each other with a decreasing value of ρ (r).
They have the almost same performances on constructing the
dominating sets when a relatively small ρ is used. However,
there is a growing value gap between the steps of the BPD and
the pure BPD with the decrease of ρ as shown in Fig. 9. The
number of steps of the BPD is much smaller than that of the
pure BPD when ρ is small. In this sense, we safely draw the
conclusion that the BPD algorithm has a better performance
in both accuracy and efficiency than the pure BPD. In the
following experiments, we set ρ to be 0.0001 in all BPD
algorithms.

B. Performance comparisons

Though the MDS problem of multiplex network is first pro-
posed in present work and no related solution algorithms have
been developed, some general algorithms for the combinatorial
optimization problem could be easily extended for solving
the MDS problem of multiplex network. The most well-
known ones include the centrality-based algorithm, the greedy
strategy and the simulated annealing algorithm. In this part, we
verify the effectiveness of the BPD algorithm by comparing
it with these general algorithms in various multiplex network
examples.

1) Centrality-based algorithm: Centrality has been widely
used to identify the vital nodes of network which characterizes
the importance of network node according to the network
topology. The most commonly adopted centrality indexes
include degree, betweenness, pagerank, closeness, k-shell,
eigenvector, collective influence etc. In a multiplex network,
the importance of nodes depend on the connectivity patterns
within and across different network layers. In recent years, a
number of centrality indexes of multiplex network have been
developed [34]. Among these measures, here we consider the
degree centrality and use it to construct the dominating set of
a multiplex network.
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Fig. 8. The size of BPD and pure BPD versus the parameter ρ. The multiplex networks used are the 7th, 8th and 9th networks shown in Table 1.
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Fig. 9. The step of BPD and pure BPD versus the parameter ρ. The multiplex networks used are the 7th, 8th and 9th networks shown in Table 1.

In a multiplex network, the degree of node can be defined
in various ways. We consider a simple case that the degree of
a node in multiplex network is the sum of its degrees across
all the layers, that is

di =
∑
α

dαi . (24)

Therefore, for the degree algorithm to the MDS problem
of multiplex network, we select the node with the largest
degree di as an occupied node and then remove it from the
network. We repeatedly select the node with the largest di by
recalculating di for the remaining network at each step, until
a dominating set is constructed.

2) Greedy algorithm: The greedy algorithm is very simple
and widely used for optimization problems. For the greedy
algorithm to the MDS problem of multiplex network, we
repeatedly select node that has the largest number of edges
connecting with unobserved nodes in all layers. That is, at
each time step, the node with the highest scores is selected to
be occupied, and the score for the remaining unoccupied nodes
are then updated. The algorithm continues until the occupied
nodes form a dominating set. Here, the score of node i is

defined as

σi =
∑
α

|Oαi | (25)

where Oαi denotes the set of new observed nodes in layer Gα

introduced due to the occupation of node i. Particularly, node
i also belongs to Oαi if it is unobserved in layer Gα before its
occupation. This score takes into account the influence of the
node’s occupation for each network layer.

3) Simulated annealing algorithm: The simulated anneal-
ing (SA) algorithm has been widely used for solving different
kinds of optimization problems. It aims to find the optimal
configuration under the definition of energy function. We here
present an SA algorithm for solving the MDS problem of
multiplex network. The energy function is defined as

E(c) = µ
∑

i

ci +
∑
α

(N − Oα) (26)

where µ < 1 is a tunable parameter.
∑
i

ci is the number of

occupied nodes and N−Oα the number of unobserved nodes in
layer α. At the beginning of the SA algorithm, we construct a
c which could form a dominating set of the multiplex network
by randomly selecting occupied nodes. Then at each time step
of SA, we perform the following operation:
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TABLE I
Solutions of theMDS problem of multiplex network based on different algorithms.

Number Multiplex network N M Degree Greedy SA pure BPD BPD Theoretical size

1 G1-Dolphins 62 159 40 18 17 17 17 16.48
G2 − SF1 62 181

2 G1-Email 1133 5451 715 326 304 303 302 292.78
G2 − SF2 1133 2266

3 G1-RoadEU 1174 1417 703 460 419 414 412 400.41
G2 − SF3 1174 2343

4 G1-PPI 2361 6646 1793 752 716 711 710 704.26
G2 − SF4 2361 4721

5 G1-Protein 3133 6726 3116 1041 1001 994 992 990.44
G2 − SF5 3133 6261

6 G1-Grid 4941 6594 2938 1842 1722 1676 1674 1664.37
G2 − SF6 4941 9879

7 G1-GrQc 5242 14496 3083 2045 1956 1936 1936 1935.89
G2 − SF7 5242 5242

8 G1-HepTh 9877 25998 9856 2718 2767 2664 2664 2657.57
G2 − SF8 9877 25998

9 G1-PGP 10680 24316 5453 4385 4325 4221 4221 4218.62
G2 − SF9 10680 10696

10 G1-AstroPh 18772 198110 13238 4667 4785 4286 4286 4272.49
G2 − SF10 18772 37550

11 G1 − SF11 58228 58245 58221 26211 28273 24371 24355 24351.02
G2 − ER12 58228 84578

Operation-S0. If the current occupation configuration c
forms a dominating set of the multiplex network, we select an
occupied node randomly and changed its state to unoccupied.

Operation-S1. If the current occupation configuration c
cannot form a dominating set of the multiplex network, we
select an unoccupied node randomly and changed its state to
occupied.

The operation S0 or S1 is accepted with probability e−β∆E;
otherwise, the new occupation should be omitted and the old
one be preserved. ∆E is the energy difference between the
new configuration and the old configuration. β represents the
inverse of the temperature. In this paper, we set µ = 0.6; the
initial value of β is set to be 0.5 and it is increased by 10−6 at
each time step. The SA algorithm terminates when β equals
βmax.

4) Results: We perform experiments on several different
kinds of multiplex networks, each of which is formed by
randomly connecting an scale-free (SF) network [74] with an
Erdős-Rényi (ER) random network [75] or an SF network with
a real-world network (including dolphins network (Dolphins
[76]), e-mail communication network (Email [77]), European
express road network (RoadEU [78]), protein-protein interac-
tion network (PPI [79] and Protein [80]), US power grid (Grid
[81]), collaboration network of high-energy physics authors
(HepTh [82]), interaction network of users of Pretty Good
Privacy (PGP [83]), Arxiv ASTRO-PH collaboration network
(Author [82]).

The experiment results in Table 1 show that the degree
centrality-based algorithm has the weakest performance in all
networks. One major reason is that the degree of node in

multiplex network does not accurately reflect the importance
of the node in different layers. A node with large di may have
a small degree in a particular layer and thus cannot let more
nodes be observed in the layer. The greedy algorithm has high
time complexity and its accuracy is significantly weaker than
that of the BPD algorithms. In addition, the SA algorithm
performs similarly to the BPD algorithm in small networks,
while is worse than BPD in large networks at the same setting
of βmax = 20. In Fig. 10, we test the influence of βmax on SA.
It can be found that large βmax is more capable of finding
smaller dominating set since more occupation configurations
are evaluated. However, large βmax also means high time
complexity which makes the SA algorithm unfeasible in large-
scale networks.

Purely from the the size of the constructed dominating set,
the BPD and pure BPD have the almost same best performance
where the BPD is slightly better than the pure BPD. They
are quite close to the theoretical size of the MDS. However,
the complexity of the pure BPD is much higher than that of
the BPD, as illustrated in the above subsection (see Fig. 9).
Therefore, considering both accuracy and efficiency, the BPD
algorithm is optimal for solving the MDS problem of multiplex
network.

C. Application verification

In Section III, we discussed three applications of the MDS
of multiplex network. The effectiveness of the proposed BPD
algorithm on monitoring epidemic and constructing extractive
text summarization is straightforward. According to the exper-
iments in Table 1, the size of the observer nodes in monitoring
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Fig. 10. The influence of βmax on SA. The multiplex networks used are the
networks shown in Table 1.

epidemic or the summary in extractive text summarization
located based on the BPD is smaller than that obtained through
other methods. Therefore, in this section, we just verify the
effectiveness of the BPD on the early detection and controlling
of epidemic spreading in multiplex network.

We assume an epidemic spreads on physical network lay-
er following the susceptible-infected-recovered (SIR) model.
Each node in SIR can be in three different states: susceptible,
infected, or recovered. At each time step, the susceptible node
could be infected by its infected neighbor with probability λe

and the infected node could become recovered with probability
δe. As discussed in Section III, to suppress the epidemic
spreading, parts of network nodes, called observers, could be
selected to distribute the awareness information or patch to
other nodes through the virtual network layer to immunize
them. When nodes belonging to the MDS of the multiplex
network are selected to be observers, the epidemic could be
detected and stopped immediately. In this sense, according
to Table 1, the number of observers selected based on the
BPD algorithm is the least compared with other algorithms.
In addition, we compare the MDS method with the general
competing spreading (GCS) method where no observers are
specified [54], [59], [60]. In GCS, when a node is infected in
physical network, it will become aware in the virtual network
and spread the awareness information to its neighbors. If the
susceptible nodes acquire the awareness information from their
neighbors, they will become immunized against the epidemic.
We assume the propagation of awareness information in virtual
network also following the SIR model which is the same as
the epidemic spreading on physical network and differs only
in the infection and recovery rates, λa and δa, respectively.

Figure 11 presents the comparisons of the BPD-based MDS
method and the GCS method. T and T ′ are the times that the
epidemic is detected and eliminated respectively. One sees that
BPD could find and stop the epidemic by using only one time
step, since it can distribute the awareness information or patch
to all network nodes as soon as the epidemic appears. Though
the GCS method could immediately detect the epidemic, it

Fig. 11. Comparisons of the BPD-based MDS method and the GCS method
on detection and controlling of epidemic spreading in multiplex network. The
multiplex networks used contain two SF network layers with average degree
4. The dynamical parameters of SIR are λe=δe=λa=δa=1.

requires relatively more time to stop the epidemic. Panel (b)
shows the ratios of infected nodes (I), immunized nodes (Im)
and nodes participating in distributing awareness information
(A). Except the initial infected node, all the other nodes are
immunized, thus no nodes are infected in the BPD algorithm.
However, sine the distribution of the awareness information
requires a certain amount of time, part of the nodes are
infected and not all nodes can be immunized. In addition, the
GCS needs almost all of the network nodes participating in
distributing awareness information, while only the nodes of the
constructed dominating set are needed in the BPD algorithm.

VI. Conclusion

In present work, we proposed the definition of the MDS
of multiplex network and discussed several of its potential
applications on epidemic monitor in multiplex network, early
detection and control of epidemic in multiplex network and
the construction of extractive text summarization. We built a
spin glass model for the MDS problem of multiplex network
which was then solved through the message passing theory.
In addition, we proposed a BPD algorithm and a leaf removal
strategy. Based on the proposed theories and algorithms, we
can either predict the theoretical size of the MDS of multiplex
network or construct approximate optimal MDS in practice.

In the future, we will look for more possible applications
of the MDS of multiplex network, such as clustering or cross-
view retrieval and recognition [84]–[88]. Another goal is to
find better tools or methods to solve the MDS problem of
multiplex network, such as machine learning and neural net-
works [89]–[91]. In addition, we could investigate the variants
of the MDS of multiplex network, including the minimum-
weight dominating set or minimum-connected dominating set
of the multiplex networks. Several other classical optimization
problems in graph can be also extended to multiplex networks,
such as the independent set problem, the vertex cover problem,
the hitting set problem, the graph coloring problem and the
feedback vertex set problem, etc [16], [68]–[70].
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