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Abstract
The connection adaption strategy (CAS) has been proposed for the synchronization of networked
mobile chaotic agents, which is considered to be a simpler scheme compared to commonly used
coupling adaption strategies. However, this strategy only provides a limited range of feasible
coupling strength allowing a success control. In this paper, we develop the CAS by introducing a
jump process to resolve this problem. We show that the proposed approach systematically
outperforms the original CAS in the whole range of the mobility and the range of feasible coupling
strength is extensively expanded. In addition, we show that motion of the agents could be classified
into three different regimes. The dynamical features of these motion regimes are analyzed and
relevant measures are provided to characterize the controllability of the network in each regime.

1. Introduction

Synchronization is one of the most important cooperative dynamics that is widely observed in different
disciplines [1–4]. In many circumstances, synchronization is a useful behavior that may bring valuable
outcomes to the systems, such as power grid network [5], moving robots networks [6, 7], and physiological
networks in biological systems [8–10]. Vast amount of efforts have been devoted to induce the dynamics of
elements in systems toward the desired common states. Along with the developments of studies on complex
networks, various control strategies have been proposed for synchronization of network systems [11–14],
making it a central topic of network theory.

Traditional studies on complex networks are typically under the limiting assumptions of quenched and
annealed networks [15, 16], where the time scale of network structure evolution is either much slower or
much faster than that of the nodal dynamical process. Recently, increasing attentions have been focusing on
more general situations where the two time scales are comparable [17–20]. The studies on synchronization
control have also been following this direction and many results have been obtained under the framework
of temporal networks [21–28].

For existing studies about synchronization in temporal networks, a common approach is to consider the
systems where mobile agents carry oscillatory dynamics and perform random walk in a certain space
[29–31]. A majority of investigations of synchronization control on temporal networks are based on this
framework or similar variations [30–32]. With limited knowledge of randomly varying structure, adaptive
control strategies become a favorable choice for this kind of networks [33–37]. However, these strategies are
mainly performed under the theme of adaptively adjusting the coupling strength between agents, here
referred as coupling adaption strategy.

Recently, a strategy, referred as connection adaption strategy (CAS), has been proposed where agents
only need to activate or deactivate the connection with their neighbors [38]. An important advantage of the
CAS is that it may be simpler to be implemented than coupling adaption strategies do, since treating
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coupling in an on–off manner will certainly be more convenient than in an continuous manner, making the
CAS be a promising scheme for synchronization control. This on–off simplicity endows the CAS great
application potential, as many empirical networks contain the on–off feature in their time-varying structure
[39, 40]. However, it has also been shown that in CAS an agent sometimes cannot find a proper neighbor to
establish a connection which may damage the effectiveness of the strategy. Though few remedies have been
proposed to relief this situation [38, 41], limitation in the effect of the strategy is still imposed, reflected by
a relative small range of feasible coupling strength for a successful control. Therefore, an approach that may
release this restriction is still in demand.

In this work, we consider an alternative approach to tackle this problem. We introduce a jump process
for agents to find proper neighbors in the case when there is no suitable neighbor around. This jump
process could be taken as a simplified approximation of a long distance walk in a short time [28], which has
been observed in some social systems [42] biological systems [43] and robotic systems [44]. We show that
this proposed approach systematically outperforms the original CAS [38]. In addition, we systematically
investigate the effect of the approach on the whole speed range, finding that the whole range could be
divided into three regimes. For each regime a proper measure is introduced to predict the controllability of
the network, which is well matched with simulation results.

2. Model

We consider a unit planar space Γ with length L, where an ensemble of N mobile agents move freely in it
with periodic boundary conditions. The velocity of an arbitrary agent i is vi(t) = (v cos θi, v sin θi), where
the speed v is the same for all the agents and the direction θi is randomly drawn from the interval [−π,π)
with uniform probability (at each time step). Therefore, the position of agent i, yi(t), updates as
yi(t +Δt) = yi(t) + vi(t)Δt, where Δt is the length of a time step.

All agents carry an identical chaotic dynamics described by ẋi(t) = F(xi) with xi ∈ Rm, i = 1, 2, . . . , N,
dot denotes temporal derivative, and F : Rm → Rm. All agents have identical contact radius r, and when any
pairs of them are within the radius of each other, a temporal connection may be built depended on states
and position information of them. The temporal interacting structure could be described by a Laplacian
matrix G(t) where an un-weighted element gij(t) = −1 indicates that agent i forms a directed connection
with agent j and gij(t) = 0 otherwise. The diagonal elements gii(t) = −

∑
j�=i gij(t) warrant the zero-row-sum

property of G(t). With the interaction with other agents, the dynamics of each agent i is governed by

ẋi(t) = F(xi) − σ

N∑
j=1

gij(t)H(xj), (1)

where σ is the coupling strength and H : Rm → Rm is a coupling function defining how a connected
neighbor impacts.

In this work, our purpose is to control the agents toward a desired solution x1 = x2 = · · · = xN = xS.
To this aim, one or several units that carry the target solution xS is necessary to be deployed in the network
for other agents to follow, i.e. pinning synchronization control. We follow the spirit of connection adaption
strategy (CAS) where agents may adaptively rewire connections with their neighbors under a prescribed
rule. The key procedure of CAS is as follows. First placing a unit which carries the target solution at an
arbitrary position of the space Γ. This unit is fixed on the position and this position is known to all the
agents. It could be regarded as a virtual agent and we refer to it as the guide agent (GA). Then, the agents
will adaptively establish connections with neighbors by the rules that, at each time step, an agent i attempts
to choose one of its neighbors, say agent j, to form up a direct connection (so that gij(t) = −1). However,
this agent j should satisfy two conditions: (i) it is the one nearest (among all neighbors of agent i within a
disk of radius r) to the GA (if the GA is a neighbor of agent i, GA itself will be chosen); (ii) the distance
between the connected agent and the GA is smaller than that between agent i and the GA. If all the agents
successfully find suitable neighbors for connection, an acyclic structure will be formed with directed
connections uniformly pointing from the periphery to the GA, giving a lower triangular Laplacian matrix
G(t) as follows

G(t) =

⎛
⎜⎜⎜⎝

0
1 0

. . .

0 or − 1 1

⎞
⎟⎟⎟⎠ , (2)

with proper relabeling of the agents’ indexes (GA is indexed 1 all the time), where gii = 0, gii = 1(i �= 1),
gij(i<j) = 0, and gij(i>j) = 0 or −1. The spectrum of G(t) is λ1 = 0 (corresponding to the synchronization

2



New J. Phys. 22 (2020) 073032 J Zhou et al

manifold xS) and λ2 = · · · = λN+1 = 1 (corresponding to the transverse modes). Since the eigenvalues of
the transverse modes are all the same, giving λ2/λN+1 = 1, the resulting structure is an optimal one
favoring a stable synchronization [14, 45]. Specifically, the condition λ2 = · · · = λN+1 = 1 gives an
identical variational equation for all the N transversal modes as follows

ζ̇ = [DF + σDH]ζ, (3)

where DF and DH are the Jacobian functions of F and H, respectively. The maximum transversal Lyapunov
exponent could then be obtained from equation (3) as a function of coupling σ, and we refer to this
exponent function as master stability function (MSF) Φ(σ). According to the MSF theory [46], the
necessary condition of obtaining a stable synchronization of the network is Φ(σ) < 0.

However, when the density of the agents is not high enough, it is likely that some agents may not be able
to find suitable ones to follow. When such an event happens, in CAS an agent may temporarily expand its
contact radius until a qualified agent is reached. This remedy may, however, cause a strong restriction that
for those agents whose topological distance (number of hops) is larger than a critical distance they cannot
be synchronized. As indicated in figure 1(b), for systems with agents having large topological distance the
feasible coupling strength for a successful control may be squeezed in a narrow range, unfavorable for
control. Here, we address this issue by proposing an alternative scheme that when such event happens on an
agent, this agent will perform a random jump in the space Γ for searching other suitable agents. The jump
process continuous until a proper agent is found; after that the agent will resume to the normal state with a
speed v. To distinct from the CAS, we refer to this jump-based CAS as JCAS.

For the sake of illustration, we endow the agents with chaotic Rössler oscillator. The dynamics of each
unit is described by ẋi

1 = −(xi
2 + xi

3), ẋi
2 = ẋi

1 + aẋi
2, ẋi

3 = b + xi
3(xi

1 − c), where xi = (xi
1, xi

2, xi
3)T and

a = b = 0.2, c = 5.7. H(x) = (x1, 0, 0) realizes a linear coupling on the x1 variable of the units. The
dynamics is integrated with a fixed integration time step Δt = 0.001. The master stability function Φ(σ)
could thus be calculated by inputting these conditions into equation (3). In the simulation, without loss of
generality the network size is set N = 100 and the contact radius r = 0.1 unless specified otherwise. The
error function δi = 1/3(|xi

1 − x1
1|+ |xi

2 − x1
2|+ |xi

3 − x1
3|) is monitored to evaluate the control performance

on unit i. δ(t) = 1/N
∑N+1

i=2 δi(t) (the average error of all the units) and 〈δ〉 (the time-averaged value of δ(t)
over the last 106 integration time steps) are evaluated after a suitable transient time, to characterize the
global control performance. We note that since in this case all the agents share an identical Rössler
dynamics, the evaluation that whether the network is fully synchronized could be implemented by checking
whether 〈δ〉 → 0. However, for more complicated cases that oscillators may have parameter/frequency
mismatch where a full synchronization is hard to reach, a pre-processing technique, e.g. utilizing a bandpass
filter [47], may be used to the output signals of the oscillators so as to characterize different extent of the
synchronization of the network. In this paper, all the simulation results are performed under 100 different
realizations and error-bars in the figures stand for standard deviation.

3. Results

3.1. The case of v= 0
Let us start from the simple case of v = 0. In this case, all the agents are fixed on their respective locations
in the space Γ. Thus, for randomly distributed initial positions, some agents may not have proper neighbors
to establish connections following the rule of CAS. For this case, these agents will perform random jump as
suggested by JCAS (as contrast to the strategy of expanding their contact radius in CAS) until suitable
candidates are found. When all the agents have found proper ones for connection, they will stay on their
new locations from then on and the resulting structure will be a static tree with directed edges pointing
from peripheral to the GA. We compare the performance of JCAS and CAS for the case of v = 0 in
figure 1(a). We can see in both schemes, the network can be controlled (〈δ〉 → 0) in the range about
0.2 < σ < 2.8, indicating similar effects in this specific case.

As pointed, when v = 0 the resulting structures of both schemes are directed trees uniformly pointing
from periphery to the GA. This kind of tree structures could be regarded as a group of uni-directional
chains ending at the GA [see the example in the bottom in figure 1(b)] and overlapped at some sections. It
can be found that the spectrum of such an uni-directional chain is λ1 = 0 and λi�2 = 1. For Rössler system,
Φ(σ) < 0 when σ ∈ (σ1,σ2) with σ1 � 0.13 and σ2 � 4.25 [see figure 1(c)], defining an optimal range of
the coupling strength σ allowing a successful control. On the other hand, the actual range of σ ∈ (0.2, 2.8)
shown in figure 1(a) allowing a successful control is apparently smaller than the optimal range (σ1,σ2),
which suggests the existence of other factors playing a crucial role to the performance of the approach. For a
structure as simple as an uni-directional chain, the only factor related to the structure is the length of the
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Figure 1. The performances of JCAS (black curves) and CAS (red curves) for the case of v = 0 are presented with the behaviors
of 〈δ〉 > 0 with N = 100 and r = 0.1. The black and red curves almost collapse on each other. (b) Relation between the coupling
strength σ and the maximum length of an uni-directional chain mth permitting synchronization. The blue line indicates the
range of σ allowing synchronization where the mth equals 11. The vertical dashed line between (a) and (b) denote the accordance
of the range of allowable σ. The chain at the bottom of (b) is an example of uni-directional chain, where the black circle
represents the GA and gray circles represent the agents on the chain for synchronization. (c) The master stability function of
Rössler system Φ(σ). The range of σ for Φ(σ) < 0 confines the possible range of σ for synchronization. The vertical dashed lines
connect panels (b) and (c) indicate the accordance between the boundaries of Φ(σ) and positive mth where a synchronization is
possible.

chain. This speculation is verified in figure 1(b), where every given coupling strength σ corresponds to an
upper bound of the length of the chain mth, allowing a stable synchronization. This result also tells that a
longer uni-directional chain is more difficult to be synchronized. Since the synchronization of the whole
network needs to have all the chains to be synchronized, the controllability is therefore determined by the
longest chain in the network. Defining the topological distance (TD) between an agent and the GA as the
distance between them on an uni-directional chain, the controllability of the network is thus determined by
the largest TD. The blue line in figure 1(b) indicates mth � 11 when σ = 2.8, and this distance is well
matched with the length of the longest chains obtained from JCAS and CAS, confirming the key role of the
length of the uni-directional chain for a synchronization control.

3.2. The case of v �= 0
When v �= 0, the agents will move freely on the square and a tree structure could be broken and reformed
intermittently. Thus, the longest TD defined in the static case may be no longer valid to indicate the
controllability of network, which demands new measures to evaluate this more complicated situation. We
first examine the performance of the JCAS and CAS for different speed values v as shown in
figures 2(a)–(c). For v = 1, the performance of JCAS is slightly improved as reflected by a small increment
in the right boundary of feasible coupling strength σ, which is denoted as σth. For v = 10, the performance
of JCAS is evidently improved and σth is close to the optimal boundary σ2 � 4.25 in the static case. For
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Figure 2. Performances of JCAS (black curves) and CAS (red curves) for (a) v = 1, (b) v = 10, and (c) v = 100. When
〈δ〉→ 0 (〈δ〉 > 0), all the agents in the network are (are not) synchronized. (d) The right boundary of coupling strength
allowable for synchronization, σth, as functions of speed v for JCAS and CAS. A larger value of σth indicates a wider range of
feasible coupling strength for synchronization. For JCAS (black curve), the range of speed v is separated into three regimes as
indicated by two vertical dashed lines. The dashed line separating regimes I and II happens at σth = σ2 � 4.25, and the dashed
line separating regimes II and III happens at vth � r/Δt = 100. Other parameters are the same as those in figure 1.

v = 100, the feasible range of JCAS is remarkably expanded where σth � 5.4 is even beyond the boundary
σ2. On the other hand, in all these cases, the performances of JCAS evidently outperforms CAS with a much
wider range of feasible coupling strength. Figure 2(d) shows the behavior of σth both for JCAS and CAS on
the full range of speed v. As a larger σth corresponds to a larger allowable range of coupling strength for
synchronization control, it is clear that the performance of JCAS is systematically superior to that of CAS in
the whole motion range.

Furthermore, the results in figure 2(d) suggests that the motion speed v could be separated into three
characteristic regimes, which are: regime I (1 � v � 15) where σth grows fast and saturate at around
σ2 � 4.25; regime II (15 < v < 100) where σth grows from 4.25 to about 5.4; and regime III (v > 100)
where σth stables at about 5.4. In the following, we will analyze the behaviors of σth in the three regimes,
respectively, to understand the mechanism of JCAS under different speed motions.

Regime I. In this regime, the speed v is relative small. Thus, when an agent i follows another agent, say j,
with a direct connection, this connection may be kept for a relative long time since agent i may linger
around j for quite a while. On the other hand, though agent i move slowly, it will eventually move far
enough from j and then the connection breaks. When such event happens and meanwhile there is no other
valid neighbor for connection, agent i will perform a random jump to search for new candidate for
connection under the rule of JCAS. In fact, this process is equivalent to break an uni-directional chain and
then form a new one. As a result, the largest TD (one of the key factors for synchronization for a static
structure) between agents and the GA will be reduced, since it is very unlikely that an agent is always the
furthest one when a chain is reshuffled. To quantitatively measure this effect, we introduce a quantity
named effective distance of agent i as mi to characterize the temporal TD between i and the GA. Specifically,
suppose in a long enough period of time in which there are M time steps that agent i could reach the GA
through a pathway (while in the rest time steps agent i fails to reach the GA), and the TD of the M steps are
mi(1), mi(2), . . . , mi(M), respectively. Then, mi is defined as the average of these TDs, i.e. mi = 1/M

∑M
k=1

mi(k). Furthermore, we denote mmax = max{mi; ∀i} as the largest effective distance among all the agents.
Obviously, in the case of v = 0, mmax equals the largest TD, while when v increases, mmax is expected to
decrease. The behavior of mmax shown in figure 3(a) validates this expectation. Combining the v–σth

relation in figure 2(d) and v–mmax relation in figure 3(a) interprets the σth –mmax relation. The relations
σth –mmax and σ–mth are presented together in figure 3(b), and the overlapping of the two curves indicates
that the mmax is a proper factor to determine the controllability of JCAS in regime I as mth does in the static
case.
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Figure 3. (a) The behavior of the largest effective distance mmax as a function of speed v for r = 0.1. (b) Comparison between
the σ–mth relation of uni-directional chain and the σth –mmax relation derived from the v–mmax and the v–σth relations for the
case of v �= 0.

Figure 4. Behaviors of (a) f, indicating the possibility that an agent fail to find suitable neighbors for connection in a time step,
saturates around fth when v > 100, and (b) average survival time of temporal connections th, as a function of v.

We remark that in a certain time step an agent may have a possibility that it fails to find a suitable
neighbor to follow. This possibility is equivalent to the fraction of such agents in a time step averaged over a
long period of time. For convenience, we denote such agent as freely evolving agent and the corresponding
possibility of such event to happen as f. It can be understood that in regime I, so that the motion is slow, f
could be very small [see figure 4(a)] which means an agent i may have valid TDs in most time steps, thus
the introduced mi could be a relevant parameter to reflect the topological relation between it and GA.
However, when the speed v further grows into regimes II and III, the possibility f shall also increase, and a
connection is more likely to be broken which may lead the indicator mmax to be deviated from and invalid
to describe the actual situation.

Regime III. Now, we turn to the case of regime III, where the speed v > 100 is fast. With the setting
r = 0.1, Δt = 10−3 and defining vth = r/Δt = 100, in this regime, an agent will almost certainly separate
from the followed agent in one time step because of v > vth. Thus, in this regime almost all the connections
are broken and new connections are formed consistently. This occasion actually makes the network act as a
fast-varying network. For a fast-varying network, it has been proved that the condition to maintain a stable
synchronization is equivalent to that of a static network which structure is the aggregation of the varying
structures of the original temporal networks [48]. Therefore, to evaluate the stability of a synchronization in
regime III could be transformed to the problem of evaluation on its corresponding aggregated network.

The structure of the aggregated network can be calculated with the following facts. First, as defined in
the JCAS, when an agent is in the disk of radius r centered at the GA, it will definitely follow the GA.
Therefore, in each time step an agent has a possibility of b = πr2/L2 to follow the GA directly. Secondly,
since an agent has a possibility f to freely evolve (failed to find a proper neighbor to connect) in a time step,
the possibility of it following the rest N − 1 agents (except for itself and GA) equals 1 − f − b. As these
N − 1 agents are equal footing, the possibility for each of them to be followed by the agent then equals
(1 − f − b)/(N − 1). These facts draw us to the Laplacian matrix G of the aggregation network as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

−b 1 − f −1 − f − b

N − 1
· · · −1 − f − b

N − 1
... −1 − f − b

N − 1
1 − f

. . .
...

...
...

. . .
. . . −1 − f − b

N − 1

−b −1 − f − b

N − 1
· · · −1 − f − b

N − 1
1 − f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N+1)×(N+1)

, (4)
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Figure 5. Comparisons for the v–σth relation between the simulation results (black curves) and different measurements for the
three regimes, respectively.

where G11 = 0 (GA is always indexed as 1), G1i = 0 (I � 2), Gi1 = −b (i � 2), Gii = 1 − f (i � 2),
Gi�=j = − 1−f−b

N−1 (i � 2, j � 2). Solving the spectrum of G, one gets λ1 = 0 and λ2 = · · · = λN+1 = 1 − f.
For this specific case, where connections are consistently broken and agents apply the jump process almost
all the time, we denote the possibility that an agent is freely evolving in a time step as fth. The value of fth

could be well estimated (details are provided in the appendix A), and in the setting of N = 100 and r = 0.1,
we have fth ≈ 0.22 which is validated by the results in figure 4(a). Now, since the eigenvalue of the
transversal modes of the aggregated network is 1 − fth and the condition for a stable synchronization is
Φ(σλ) < 0, the boundary of the coupling strength σth should satisfy σth(1 − f ) = σ2. Inputting σ2 � 4.25
and fth ≈ 0.22, we get σth ≈ 5.45. This analytical estimation exhibits good accordance with the simulation
results as shown in figure 5, verifying the fast-varying feature of the network in this regime.

Regime II. Now, we come to the case of regime II. As shown in figure 2(d), in this regime, σth grows
gradually with the increasing of v. To better understand this behavior, we take detail observations on the
structural property of temporal networks. First, we measure the average survival time of temporal directed
connections between agents, which is denoted as th. The behavior of th as a function of v is presented in
figure 4(b). We can see that it decreases rapidly as the increasing of v in regime I (th →∞ when v = 0). In
the regimes of II and III, i.e. when v > 15, we observe th < 1.25, which manifests that a connection is not
likely to persist in two consecutive time steps in these regimes. This observation strongly suggests that in
regime II the temporal network is also fast-varying.

However, the v–f relation shown in figure 4(a) tells that in the regime II the fraction f is smaller than
that in the region III. This is due to the fact that an agent with a smaller v may follow its neighbor with
more consecutive time steps as it may take a longer time to move far enough to break the connection. On
the other hand, if an agent is not following anyone else, the possibility of it finding a proper agent for
connection through the jump process is independent of the motion speed. Combining these two effects
results in a lower possibility f with a smaller v. Thus, the above observations clearly illustrate that networks
in the regime II should still be fast-varying but with a smaller possibility f than that in regime III. Hence,
the relation σth = σ2/(1 − f ) is still valid in this regime. By imposing the value of f for different v in regime
II collected from figure 4(a), we obtain the estimated value of σth in the regime II as illustrated in figure 5.
We can see that this prediction well matches the simulation results.

3.3. The impact of radius r
Finally, we examine the effect of JCAS on different contact radius r. We first present the v–mmax relation of
r = 0.04, 0.06, 0.08, and 0.1 for slow motion regime (regime I) in figure 6(a). One can see that all these
curves converge to about 2.7, but the curve for a smaller r converges faster. In fact, for a smaller r, a
connection is easier to break since a follower is easier to leave the r-disk of the followed agent. Actually, the
rate to leave the disk is proportional to v/r, and therefore inversely proportional to the characteristic time
that a connection could preserve. This argument is validated by the rescaled plot in the inset of figure 6(a)
where the rescaled behaviors overlap. Then, for fast motion regime (regimes II and III), we show the v–f
relation for the same set of r values in figure 6(b). We observe that the behavior of these curves share similar
tendency. Moreover, as to the v–f relation, besides the rescaling v → v/r, the possibility f is also influenced
by r which is encoded in the relation between r and fth (see appendix A). By imposing the rescaling of
v → v/r and f → fth, the rescaled behaviors of v–f relation are shown in the inset of figure 6(b). We can see
that these curves largely conform, revealing the impact of r on f to the performance in these regimes.
Further, we present the behaviors of σth as functions of v for the same set of r values in figure 6(c). As
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Figure 6. Behaviors of (a) v–mmax, (b) v–f, and (c) v–σth relations for the case of r = 0.10 (black), r = 0.08 (red), r = 0.06
(blue), and r = 0.04 (magenta), respectively. The inset of panel (a) is a rescaled plot of (a) with v → v/r. The inset of panel (b) is
a rescaled plot of (b) with v → v/r and f → f/fth. (d) A rescaled plot of (c) with v → v/r and σth → σth (slow motion) or
σth → σth(1 − f ) (fast motion). The dashed line separates the two speed motions where σth reaches σ2 � 4.25.

suggested by the scaling properties in figures 6(a) and (b), the v–σth relation should also satisfy similar
scaling features. To show this, for each radius r, we separate the speed into slow motion and fast motion
with the condition of σth = σ2 separating the regimes I and II and the condition of vth = r/Δt separating
the regimes II and III. Then, we rescale the slow motion with v → v/r and fast motion with v → v/r and
σth → σth(1 − f ). Resulting behaviors are presented in figure 6(d). Clearly, the overlapping of these rescaled
behaviors under different radius r proves the above conditions classifying the regimes and the effectiveness
of related measures.

4. Conclusion

In summary, we have developed the connection adaption strategy (CAS) by introducing a jump process for
the purpose of synchronization control of networks with mobile chaotic agents. The jump process is exerted
when an agent cannot find a proper neighbor to apply the CAS. Our results have shown that the effect of
jump-based CAS (JCAS) completely outperforms the original CAS. In addition, we have found three
different dynamical regimes in JCAS. In the regime where agents move slowly, the network in each time step
could be characterized by a group of uni-directional chains pointing to the guide agent (GA) which carries
the target synchronization solution. A measure, referred as the largest topological distance, is introduced to
describe the temporal distance between agents and the GA, which is shown to be a good estimator to
predict the controllability of the system in this regime. In the other limit, where agents move very fast, the
relations between each pair of agents may change in almost every time step, and the structures between two
consecutive time steps are largely independent. By analytically calculating the fraction of freely evolving
agents, which temporally fail to find proper neighbors for connection, the range of coupling strength
permitting successful control is well predicted. For the medium regime of motion speed, we have found that
the network could also be regarded as fast-varying networks. However, in this regime the fraction of freely
evolving agents varies with the motion speed. We have shown that this fraction grows gradually with the
increasing of the speed, and the range of feasible coupling strength expands from low speed regime to high
speed regime.

For the topic of controlling dynamical systems where individual units could move freely in a space, CAS
may have advantage for easier implementation than traditional coupling adaptive strategies. The
jump-based method proposed in this paper could effectively enhance the effectiveness of the CAS. The
primary role of our work is to emphasize the potential of the CAS scheme. In the current setting, the jump
process can be regarded as a high speed movement. However, this process may be generalized by dealing
with the speed of freely evolving agents in a delicate manner applied to more realistic scenarios. As new
network perspectives of dynamical systems with varying structures are continuously emerging in theoretical
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Figure A1. Diagram for the evaluation of possibility fth. The GA is located at the center of the plane O. Agent i is located at Oi

which is at a distance R to the O. The two circles (the big one centered at O with radius R and the small one centered at Oi with
radius r) intersects at A and B, and overlap in the shaded area. β1 and β2 represent the radians of angle ∠AOOi and ∠AOiO,
respectively.

and empirical context [49, 50], further exploitation of the CAS applying to these systems is of future
research interest.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant
11835003, in part by the Ministry of Education, Singapore, under Contract MOE2016-T2-1-119, and in
part by NSF Grant PHY-1505000 and by DTRA Grant HDTRA1-14-1-0017.

Appendix A. Evaluation of fth

In this appendix, we derive the possibility fth that in a time step an agent has no suitable neighbor for
connection when agents continuously jump.

Suppose an agent i located at Oi is at a distance R to the GA located at the center of the plane O (see
figure A1). As defined in the JCAS, if agent i has no suitable neighbor for connection, it means that in the
sub-area, which is the overlap between the r-disk centered at Oi and R-disk centered at O (shaded region in
figure A1), there is no agent inside it (otherwise a feasible connection is available to agent i). To calculate
the possibility that an agent has no neighbor for connection, we first calculate the area of this shaded
region, denoted as S.

It can be seen that the size of the area S satisfies S = S
̂AOB + S

̂AOiB
− 2SΔAOOi , where S

̂AOB and S
̂AOiB

are

the areas of sectors ÂOB and ̂AOiB, respectively, and SΔAOOi is the area of the triangle ΔAOOi. We assume
the radian of the angles ∠AOOi and ∠AOiO are β1 and β2, respectively, then we have S

̂AOB = 2β1/2π · πR2

and S
̂AOiB

= 2β2/2π · πr2. The SΔAOOi could be calculated with Heron’s formula which gives

SΔAOOi = 1/4
√

(2R + r)(2R − r)(R + r − R)(R + r − R)

= r/4
√

4R2 − r2. (A.1)

Further with the cosine law cosβ1 = 1 − R2/2r2 and cosβ2 = R/2r, one gets the expression of S as follows

S =

[
R2 arccos

(
1 − r2

2R2

)
+ r2 arccos

( r

2R

)]
− r

2

√
4R2 − r2. (A.2)

As S/L2 denotes the possibility that a specific agent is in this shaded region, the possibility that none of the
N − 1 agents is in this area equals (1 − S)N−1. Further considering the distance between agent i and the GA,
we arrive the possibility fth as follows

fth =

∫ rU

rL

(
1 − S

L2

)N−1

· 2πR

L2
dR. (A.3)
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The lower limit of the integration rL = r since if GA is in the r-disk of agent i, the agent i will directly
connects the GA, and hence a connection is formed. To evaluate the upper limit rU, we approximate the
square plane Γ as a circle area with the same area L2, then rU is estimated as the radius of the circle area
which gives πr2

U = L2, i.e. rU = L/
√
π. This approximation has a high accuracy when L � r. Applying the

parameter values N = 100, r = 0.1, and L = 1 into equation (7), we obtain fth ≈ 0.22.
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