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It is interesting and of significant importance to investigate how network structures co-evolve with

opinions. In this article, we show that, a simple model integrating consensus formation, link rewir-

ing, and opinion change allows complex system dynamics to emerge, driving the system into a

dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion

holders may form into communities yet with no strict community consensus; and rather than being

separated into disconnected communities, different communities are connected by a non-trivial

proportion of inter-community links. More importantly, we show that the complex dynamics may

lead to different numbers of communities at the steady state with a given tolerance between differ-

ent opinion holders. We construct a framework for theoretically analyzing the co-evolution process.

Theoretical analysis and extensive simulation results reveal some useful insights into the complex

co-evolution process, including the formation of dynamic equilibrium, the transition between dif-

ferent steady states with different numbers of communities, and the dynamics between opinion dis-

tribution and network modularity. Published by AIP Publishing. https://doi.org/10.1063/1.4989668

Individuals with different opinions interact with each

other in social systems, leading to complex co-evolution

of social opinions and social network structures. Three

different actions are believed to be playing important

roles in such kind of a co-evolution process. They include

(i) consensus formation, where people holding similar

opinions agree with each other; (ii) rewiring, where peo-

ple holding significantly different opinions may tend to

remove their links in between; and (iii) opinion changes,

while people’s opinion may change due to certain other

reasons. In this manuscript, we propose a model which

integrates all the three factors. It is shown that, with such

an integration of actions, rather complex system dynam-

ics emerges, driving the system to a dynamic equilibrium

with the coexistence of communities holding diversified

opinions. The equilibrium keeps nontrivial connections

between different communities rather than forming into

disconnected social groups, allowing further interactions

and opinion changes to easily happen in the future. More

importantly, it is observed that with a given tolerance

between different opinion holders, the complex dynamics

may lead to different numbers of communities at the

steady state, sometimes in a counterintuitive manner. We

construct a framework for theoretically analyzing the

proposed co-evolution process. There is a good matching

between the analytical and simulation results. Our stud-

ies have also revealed some other interesting insights,

including the detailed process of system evolution into the

dynamic equilibrium, the transition between different

steady states with different numbers of communities, and

the impacts of a few different factors on the network

modularity.

I. INTRODUCTION

Real-life adaptive complex networks co-evolve with the

opinions, strategies, and actions of the individuals in the net-

work. For example, upon the outbreak of a dangerous infec-

tious disease, people tend to avoid contact with those who

are infected, which changes the contact network topology

and consequently changes the dynamics of epidemic spread-

ing.1–6 In social networks, generally speaking, people tend to

make friends with those who share similar opinions and such

friendship may in turn help strengthen their common

beliefs.1,7 Other examples include the co-evolution of lan-

guages and social structures,8–11 and the co-evolution of

modern cities and urban transportation systems.12,13

Extensive studies have been carried out to investigate

the co-evolution of network structure and opinions;1,7,14–20

the earliest of which may be the one by Holme and

Newman.7 Based on the well-known voter model where a

randomly chosen node could persuade a random neighbor to

adopt the same opinion,14,15 they further took into account

the evolution of network topology by introducing a simple

rewiring mechanism, where nodes have a certain chance to

rewire their links with dissenters to similar opinion holders

(when the difference between two nodes’ opinions is larger

than a certain tolerance level, these two nodes are said to be

dissenters to each other). It is found that there exists a phase

transition in the change of rewiring rate: the final state of the

system varies from reaching global consensus to breakinga)Electronic mail: egxxiao@ntu.edu.sg
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into separated communities, each of which reaching its own

community consensus. Follow-up studies include deriving

analytical solutions for the phase transition,16,17 extending

the model to directed networks,18 and introducing opinion

noises19 and different interaction mechanisms such as con-

necting nodes with different opinions20 and self-interac-

tion,21 etc.

Another popular model for studying the interactions and

dynamics between different opinions is the Deffuant

model,22–25 where there is a continuous distribution of differ-

ent opinions and a randomly chosen node may make consen-

sus with a randomly selected neighbor holding similar

opinion; their opinions hence come closer to each other or

become the same. Similar to what happened to the voter

model, rewiring was later introduced into the Deffuant

model.1 It is shown that the existence of rewiring makes it

harder for an adaptive network to reach global consensus;

network may finally evolve into a few big opinion communi-

ties, each of which holding its community consensus.

Opinion change was introduced in Refs. 26–28, termed

as “noises” in these references. It is shown that in the

Deffuant model with a continuous opinion distribution and a

fixed network topology, different speeds of random opinion

change may drive the system either to an ordered state with a

set of well-defined opinion groups, or a disordered state

where the opinion distribution tends to be uniform.

It can be observed that most of these existing models

lead to similar final steady states where the network either

reaches a global consensus or breaks into disconnected com-

munities, each of which reaches its own consensus. Such

observations however do not reflect common reality: (i) real-

world opinions are typically widely diversified with no

global consensus;29,30 “mainstream opinions” may exist, but

they do not become global consensus eliminating other opin-

ions; and mainstream opinions themselves evolve, some-

times rather quickly; and (ii) though people as individuals

may cut off links with dissenters, similar opinion holders as

a whole seldom get cut off from communities of different

opinion holders; some people may keep connections with

dissenters for various reasons. While it is understood that

many details have to be omitted to allow mathematical

modeling focus on the most important factors, the fact that

many existing models lead to the steady state essentially dif-

ferent from real-life observations nevertheless calls for

closer examination of these models. The questions include

what factors are essential for leading to relatively realistic

opinion distribution in social systems as discussed above,

and how these factors contribute to defining the steady state

of the systems, etc.

In this article, we study on a model integrating three dif-

ferent factors, namely (i) consensus formation, where

directly connected network nodes may try to reach consensus

if their opinions are similar to each other; (ii) link rewiring,

where network nodes may rewire some of their links with

dissenters to similar opinion holders; and (iii) mutation,

where network nodes may change their opinions for various

reasons other than consensus making. Examples of opinion

mutation include change of mind due to an unexpected criti-

cal event, religion conversion,31–33 change in opinion due to

abruptly changed environment (e.g., immigration34), etc. In

such cases, an individual’s opinion may change quickly and

significantly, while still keeping a significant part of his/her

original connections.35 These individuals thus may share a

similar opinion with one community while being connected

to another community. They hence may become the

“bridges” between different communities with significantly

different opinions. Note that we define an opinion commu-

nity as a group of opinion holders holding either the same

opinion (when there is no mutation) or similar opinions with

a bell-curve shape distribution (when mutation exists) and

with relatively denser connections in between.

As we will discuss in detail in later parts of this article,

with all the three factors being integrated into the same

model, complex system dynamics emerge. Specifically,

instead of being broken into separate communities each

holding its own community consensus, similar opinions

would form into communities interconnected by a non-trivial

number of inter-community links. In each community, dif-

ferent opinions coexist, typically following a stable, bell-

curve-style distribution. As discussed earlier, such a model

may arguably better resemble what we may observe in real

life, and it allows complex system dynamics to quickly

emerge when intruders (e.g., new ideas) come in or when

certain internal/external driving forces are applied to the

underlying social networks. Interestingly, it is found that the

integration of the three factors may also lead to different

numbers of communities in the steady-state network with a

given tolerance level: the existence of opinion mutation

tends to increase the number of opinion communities.

We develop a theoretical framework to describe the co-

evolution process. Theoretical analysis and extensive simula-

tion results help reveal some useful insights into the system’s

evolution process, including the formation of dynamic equi-

librium, the transition between steady states with different

number of communities, and the dynamics between opinion

distribution and network modularity.

II. ADAPTIVE MODEL

In this article, we adopt the continuous opinion model

where initial opinions are generated following a continuous

distribution over the region [0, 1]. As discussed earlier, there

are three key components integrated into this model, namely

consensus formation, link rewiring, and opinion mutation,

respectively. Specifically, each node in the network is initial-

ized with a uniformly distributed random opinion value

between 0 and 1. At each time step t, a node A is randomly

selected together with its random neighbor B. Denote the

opinion of a node X at time t as o(t, X). If joðt;AÞ
�oðt;BÞj > d, where d is the tolerance threshold, with a

probability w, node A would rewire the link to a randomly

selected node C sharing similar opinion with node A, i.e.,

joðt;AÞ � oðt;CÞj � d; if joðt;AÞ � oðt;BÞj � d, then with a

probability 1 – w, the two nodes would perform consensus

making by updating their opinions as follows:

oðtþ 1;AÞ ¼ oðt;AÞ � l oðt;AÞ � oðt;BÞ½ �; (1)

oðtþ 1;BÞ ¼ oðt;BÞ þ l oðt;AÞ � oðt;BÞ½ �; (2)
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where l 2 (0, 1/2]. Following most of the existing litera-

ture,22–28 for simplicity we let l¼ 1/2 in the rest of the

paper. Furthermore, with a probability p, a node may change

its opinion to another random value in [0, 1]. We term such

kind of opinion change as mutation and p as the mutation
rate.

III. RESULTS

In this section, we show that with the proposed co-

evolution model, a network evolves into a dynamic equilib-

rium with network nodes forming into several communities

connected by a non-trivial proportion of inter-community

links; and the nodes in each community hold a certain range

of opinions with a bell-curve-style distribution. We also

show the dynamic process of the co-evolution between the

opinions and network topology and explain the formation of

the dynamic equilibrium.

Note that our extensive simulation results show that, as

long as there exists a positive mutation rate, the initial state

of the opinion distribution in the network has virtually no

effects on its final steady state, though a lower mutation rate

typically leads to a much slower convergence to the final

state. While detailed discussions on the effects of the initial

state are lengthy and thus have to be left out to another

report, in this paper, unless otherwise specified, we assume

that the initial state of the system has a uniform opinion

distribution.

To start with some relatively simple examples, Fig. 1

shows the snapshots of some networks and their opinion dis-

tributions at the steady state. Different values of mutation

rate p and tolerance threshold d are adopted. The network

starts as an (Erd}os–R�enyi) random network36 with a size of

N¼ 103, an average nodal degree of hki ¼ 10, and a uniform

distribution of different opinions. The simulation lasts for

2� 106 steps, where at each step a single node is randomly

selected, and with a probability 1 – w, this node may make

consensus with one of its neighbors or with a probability w,

to rewire one of its links. After that, a node may randomly

mutate its own opinion at a probability p. Our simulations

confirm that the number of time steps is large enough for the

system to reach the steady state.

Figures 1(a) to 1(d) show the network topologies of 4

different cases with different values of d, w, and p, where

nodes form several communities connected by a non-trivial

proportion of inter-community links. Figures 1(e) to 1(h)

show the corresponding distributions of nodes’ opinions in

these 4 cases, respectively. We see that in all the 4 cases,

several bell-curve-style peaks with approximately equal

peak values are formed, and a higher mutation rate leads to

denser inter-community connections [comparing Figs. 1(a),

1(b) and 1(c)] and more diversified opinion distributions

[comparing Figs. 1(e), 1(f) and 1(g)]. Notice that the system

finally reaches a dynamic equilibrium: nodes will keep mak-

ing consensus, changing their opinions, and constantly

rewire their links. Nevertheless, the basic statistical proper-

ties such as opinion distribution and the proportion of inter-

community links remain stable.

To further examine how nodes with different opinions

distribute in different communities, we paint nodes with

opinions in different ranges with different colors.

Specifically, for a network finally forming into M communi-

ties, nodes holding opinions within the interval Ii (we define

I1 as [0, 1/M] and Ii as [(i – 1)/M, i/M] for i¼ 2,…, M respec-

tively] are painted in the same color. For example, for net-

works in Figs. 1(a) to 1(c), where two communities are

formed, nodes holding opinions within [0, 0.5] and (0.5, 1]

are painted in yellow and red, respectively. Examining Figs.

1(a) to 1(d), we find that nodes with the same color mostly

stay in the same community in the final state. This means

that nodes in the same community mostly share similar (but

not necessarily the same) opinions. More specifically, the

opinions of the nodes in the same community typically have

a bell curve distribution with a peak value approximately at

the center as the “mainstream opinion.” A theoretical frame-

work and detailed analysis will be presented in Sec. IV A.

Note that the existence of opinion mutation plays a criti-

cal role in defining the final state: existing studies1,7,14–21

have shown that the integration of consensus formation and

FIG. 1. Network structures at the steady state where (a) d¼ 0.25, p¼ 0.1, and w¼ 0.5; (b) d¼ 0.25, p¼ 0.01, and w¼ 0.5; (c) d¼ 0.25, p¼ 0.001, and w¼ 0.5;

and (d) d¼ 0.1, p¼ 0.001, and w¼ 0.5 and their corresponding opinion distribution where (e) d¼ 0.25, p¼ 0.1, and w¼ 0.5; (f) d¼ 0.25, p¼ 0.01, and

w¼ 0.5; (g) d¼ 0.25, p¼ 0.001, and w¼ 0.5; and (h) d¼ 0.1, p¼ 0.001, and w¼ 0.5. The network starts as an ER random network with a size of N¼ 103 and

an average nodal degree of hki ¼ 10. For Figs. (a), (b), and (c), the nodes in yellow and red, respectively, hold opinions within the range of [0, 1/2] and (1/2,

1]. For Fig. (d), the nodes in yellow, red, blue, green, and pink, respectively, hold opinions within the range of [0, 1/5], (1/5, 2/5], (2/5, 3/5], (3/5, 4/5], and

(4/5, 1].
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link rewiring leads to a steady state with a few disconnected

communities, each holding its single-value community con-

sensus. We now examine the process of the co-evolution of

opinion and network topology which finally leads to the for-

mation of the dynamic equilibrium. We examine the case

where d¼ 0.1, p¼ 0.001, and w¼ 0.5, which shall finally

leads to the formation of 5 different communities. Figures

2(a), 2(b), and 2(c) show the respective opinion distributions

at early, middle and final stages of the co-evolution process;

while Figs. 2(d) and 2(e) show the corresponding network

topologies at the middle and final stages, respectively. We

number the 5 communities from 1 to 5 in an increasing order

of their respective peak opinion values and paint their nodes

in yellow, red, light blue, green, and pink colors, respec-

tively. The whole evolution process can be viewed as an

instability propagating from the boundaries towards the cen-

ter [Figs. 2(a), 2(b) and 2(c)]. Specifically, at the early stage

of the evolution, the two peaks of the opinion distribution

close to the boundaries (i.e., 0 and 1) form up [Fig. 2(a)] and

quickly grow into bell-curve-style peaks [Fig. 2(b)]. Looking

at Fig. 2(d), we can see that at this moment, communities 1

and 5, which correspond to these two opinion peaks, have

already grown mature and become largely separated from

the rest of the network, while the rest part remains as a giant

component mainly holding opinions ranging from 1/5 to 4/5

[indicated by the red circles in Figs. 2(b) and 2(d)]. In the

middle stage, communities 2 and 4 emerge from this giant

component and then largely separate themselves from the

other nodes. This process continues until the dynamic equi-

librium is finally reached. A similar process has been

observed for all the different values of d: formation of com-

munities starts from the two communities holding opinions

closest to the boundaries and then propagates inbound

towards the central opinion value.

Existing studies show that when a system does not reach

a single global consensus but evolves to have multiple com-

munities instead, the number of communities M and the tol-

erance d roughly follow a relationship of M � 1/2d.1,23

While such observations reveal the relationship between M

and d, to the best of our knowledge, none of them has inves-

tigated the relation between M and mutation rate p. We show

that, with other parameters given and fixed, different values

of p may lead to different numbers of communities at the

steady state.

To start, we first illustrate the relationship between

w and M. In Fig. 3, we show the results in an ER random net-

work with N ¼ 105; hki ¼ 20, d¼ 0.1, and p¼ 0.01. We can

see that when there is no rewiring operation, i.e., w¼ 0, 4

communities will be formed up in the steady-state network;

when w¼ 0.9, however, 5 communities will be formed up in

the steady-state network. In fact, it is a common conclusion

applying to all the cases we have tested that a higher rewir-

ing probability tends to lead to having more communities in

the steady-state network.

Such an observation can be understood. To illustrate the

dynamic process leading to the equilibrium, we show in Fig.

3 the opinion distribution in the two networks when the num-

bers of consensus formation operations (denoted as NCF in

the figure) are 104, 8� 104 and 1.5� 105 respectively, and at

the final steady state, respectively. As discussed earlier, in

both networks, there is an instability propagating inbound

starting from the boundary. Specifically, two peaks form up

close to the boundaries and gradually shift inbound. The

inbound shifting however may be interrupted by rewiring

operations since such operations, if fast enough, may make

the two communities holding the outmost opinions quickly

get largely separated from the rest part of the network. The

opinion distribution of two communities shall then get

largely stabilized, leaving a relatively larger opinion range in

between, and consequently may allow more communities to

be formed up in the further system evolution.

An example can be observed in Fig. 3. In Fig. 3(a),

peaks 1 and 5 shift inbound until they reach 0.130 and 0.870,

respectively, when NCF roughly equals 1.5� 105. In Fig.

3(b), the inbound propagation is interrupted: the two commu-

nities holding the outmost opinions are largely stabilized

when NCF roughly equals 8� 104, with respective opinion

peaks at 0.110 and 0.890. Such interruptions change the

FIG. 2. Opinion distribution at differ-

ent time steps of the evolution process:

(a) t¼ 500, (b) t¼ 3000, and (c)

t¼ 2� 106; and the network topology

at (d) t¼ 3000 and (e) t¼ 2� 106.

d¼ 0.1, p¼ 0.001, and w¼ 0.5. The

network starts as an ER random net-

work with a size of N¼ 103 and an

average nodal degree of hki ¼ 10. In

each time step, a single pair of nodes is

chosen.
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further co-evolution of opinion and network topology: the

peaks of communities 2 and 3, after their emergence, propa-

gate inbound and stop approximately at opinions o¼ 0.375

and o¼ 0.625, respectively, in Fig. 3(a), which does not

leave enough space for any further community to grow

mature. For the network in Fig. 3(b), however, peaks 2 and 4

shift inbound and stop approximately at o¼ 0.305 and

o¼ 0.695, respectively. Enough space is left for the central

peak 3 to grow to the full size. Note that such phenomena

can be more easily observed for small values of d. For exam-

ple, when d¼ 0.05, by increasing w, we may observe two

transitions in community number: first from 8 communities

to 9 communities, and then from 9 to 10.

With the understanding that a large value of w may lead

to a larger number of opinion communities in the final-state

networks, it would be interesting to study on the threshold

value of w, denoted as wc hereafter, leading to the transition

in the number of communities in different networks. Figure

4(a) illustrates the threshold values in ER random networks

with different average nodal degrees hki. For each hki value,

10 random networks are generated and in each network, the

threshold value wc is the average of 10 rounds of indepen-

dent simulations. In each round of simulation, a trial-and-

error approach is adopted to decide the value of wc with a

step length of 0.01. The figure shows the average in all the

10 networks with 95% confidence range. It can be observed

that in all these networks, a higher value of w averagely leads

to a steady state with more communities in the network; and

the threshold value of the transition in the community num-

ber increases with the average nodal degree. This can be

understood since a higher average nodal degree slows down

the separation between different communities during the

inbound instability propagation. Consequently it requests a

higher rewiring rate to cause an increase in the number of

communities at the steady state.

Figure 4(b) shows the relationship between the mutation

probability p and threshold value wc. Again, 10 random net-

works are generated for each p value, and in each network,

the threshold value wc is the average of 10 rounds of inde-

pendent simulations. The results show that a small value of p

(a)

(b)

FIG. 3. Evolution of opinions in the ER network with different rewiring

probabilities at (a) w¼ 0 and (b) w¼ 0.9. Let N ¼ 105; hki ¼ 20, d¼ 0.1,

and p¼ 0.01. The results show the average in 100 independent networks.

(a)

(b)

FIG. 4. Threshold value wc vs. (a) average degree hki, for d¼ 0.1 and

p¼ 0.01; (b) mutation probability p, for d¼ 0.1 and hki ¼ 20 in the ER ran-

dom network. When w>wc, 5 communities shall coexist in the steady-state

network; while for w<wc, only 4 communities would coexist. The 95%

confidence intervals are given for the average in 10 independent networks.
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(e.g., when p increases from 0 to 1.0� 10�3) may not make

any significant difference to the value of wc. When the value

of p is large enough, however, a larger p basically leads to a

larger wc. Such an observation is understandable: for a too

small value of p, mutation influences on the network evolu-

tion are trivial compared to those of consensus formation

and rewiring, and thus make hardly any visible changes to

wc; while for a large enough value of p, random mutations

essentially compromise the effects of rewiring in separating

different communities, and hence increase the threshold

value wc. Equivalently we may draw the conclusion that for

a given value of w, a larger value of p tends to decrease the

number of communities M in the steady state. It is interest-

ing, and somewhat counterintuitive, that a higher mutation

rate, which we may expect to observe in a more tolerant or

less stable society, actually decreases the number of opinion

communities at the steady state.

Note that the above observations are valid only when p
is large but not too large. A further increased p value may

further change the opinion distribution in the steady-state

network, as we shall discuss in detail in Sec. IV A.

IV. THEORETICAL ANALYSIS

In this section, we present theoretical analysis on the co-

evolution of opinion and network structures. Specifically, a

theoretical framework for describing the co-evolution pro-

cess is proposed in Sec. IV A, which matches well with the

simulation results. In Sec. IV B, we study in further details

the impacts of a few factors on the modularity of the steady-

state network.

A. Analysis of the co-evolution process

The co-evolution process and the final steady state can

be mathematically described by mean-field analysis. The

basic idea is to reveal the correlation between opinions on

two end nodes of a randomly selected link. Due to consensus

formation and rewiring operations, the two end nodes of

each link tend to have similar opinions. Assume that time is

continuous and nodes are selected at a rate � to make deci-

sions. Denote the probability density that a randomly

selected node has an opinion x1 and its random neighbor has

an opinion x2 at time t as P(t, x1, x2). We have P(t, x1, x2)

¼P(t, x2, x1). Further define a conditional probability density

function c(t, x1, x2), which denotes that at time t, given that a

node has an opinion x1, the probability that its random neigh-

bor holds an opinion x2. We have c(t, x1, x2) ¼P(t, x1, x2)/

q(t, x1), where q(t, x1) is the probability density of opinion x1

at time t, i.e., qðt; x1Þ ¼
Ð 1

0
Pðt; x1; xÞdx ¼

Ð 1

0
Pðt; x; x1Þdx.

Assume that at each time step, a randomly selected node

may mutate to another opinion x with a probability density

b(x). For the simple random uniform mutation being consid-

ered in this article, b(x)¼ 1 for any x 2 [0, 1]. The whole

process can be described by the simple mean field analysis

as follows.

Considering how mutation may help increase P(t, x1, x2),

we have

Pþmutationðt; x1; x2Þ

¼ hki�p
ð1

0

qðt; xÞcðt; x; x2Þbðx1Þdx

þhki�p
ð1

0

qðt; xÞcðt; x; x1Þbðx2Þdx

¼ hki�p
ð1

0

Pðt; x; x2Þbðx1Þdxþ hki�p
ð1

0

Pðt; x; x1Þbðx2Þdx

¼ hki�p � qðt; x2Þ þ �hkip � qðt; x1Þ: (3)

Meanwhile, mutation may decrease P(t, x1, x2) at a rate of

P�mutationðt; x1; x2Þ
¼ hki�p � qðt; x1Þcðt; x1; x2Þ þ hki�p � qðt; x2Þcðt; x2; x1Þ
¼ hki�p � Pðt; x1; x2Þ þ hki�p � Pðt; x2; x1Þ: (4)

For each pair of nodes with an opinion difference less than d,

they make consensus at a probability of 1 – w. Hence for

x1¼ x2, consensus formation increases P(t, x1, x2) at a rate of

Pþconsensus1ðt; x1; x2Þ

¼ �ð1� wÞ �
ðd=2

�d=2

qðt; x1 � xÞcðt; x1 � x; x2 þ xÞdx

¼ �ð1� wÞ
ðd=2

�d=2

Pðt; x1 � x; x2 þ xÞdx: (5)

For x1 6¼ x2

Pþconsensus2ðt;x1;x2Þ

¼ðhki�1Þ�ð1�wÞ�
ðd=2

�d=2

Pðt;x1þx;x1�xÞcðt;x1þx;x2Þdx

þðhki�1Þ�ð1�wÞ�
ðd=2

�d=2

Pðt;x2þx;x2�xÞcðt;x2þx;x1Þdx:

(6)

Combining the above two different cases, we have

Pþconsensusðt; x1; x2Þ

¼ �ð1� wÞ
ðd=2

�d=2

Pðt; x1 � x; x2 þ xÞdx � d1ðx1; x2Þ

þðhki � 1Þ�ð1� wÞ

�
ðd=2

�d=2

Pðt; x1 þ x; x1 � xÞcðt; x1 þ x; x2Þdx

þ ðhki � 1Þ�ð1� wÞ

�
ðd=2

�d=2

Pðt; x2 þ x; x2 � xÞcðt; x2 þ x; x1Þdx; (7)

where d1(x1, x2)¼ 1 if x1¼ x2; otherwise d(x1, x2)¼ 0.

Consensus formation decreases P(t, x1, x2) at

P�consensusðt; x1; x2Þ

¼ hki�ð1� wÞ
ðd

�d

Pðt; x1; x1 � xÞcðt; x1; x2Þdx

þhki�ð1� wÞ
ðd

�d

Pðt; x2; x2 � xÞcðt; x2; x1Þdx: (8)
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For each pair of nodes with an opinion difference greater

that d, rewiring happens at a probability of w. The link

between the two nodes will be removed; and one of the end

nodes of the link will be connected to a random node holding

a similar opinion (with a difference less that d). Thus link

rewiring increases P(t, x1, x2) at a rate of

Pþrewiringðt;x1;x2Þ

¼ �w
ð1

d

Pðt;x1;x16xÞqðt;x2Þ=/ðt;x1;dÞdx � d2ðx1;x2Þ

þ �w
ð1

d

Pðt;x2;x26xÞqðt;x1Þ=/ðt;x2;dÞdx � d2ðx1;x2Þ; (9)

where d2(x1, x2)¼ 1 for jx1 � x2j � d; and d2(x1, x2)¼ 0 oth-

erwise. Here we also define /ðt; x1; dÞ ¼
Ð d
�d oðt; x1 þ xÞdx.

Note that q(t, x1)//(t, x1, d) denotes the probability that at

time t, a node with an opinion x2 is chosen as the rewiring

target and gets connected with a node with opinion x1.

Similarly, it can be shown that link rewiring decreases

P(t, x1, x2) at a rate of

P�rewiringðt; x1; x2Þ ¼ �wPðt; x1; x2Þð1� d2ðx1; x2ÞÞ
þ �wPðt; x2; x1Þð1� d2ðx1; x2ÞÞ: (10)

Combining all the terms above, we have that the probability

density function P(t, x1, x2) changes at a rate of

DPðt;x1;x2Þ¼Pþmutationðt;x1;x2ÞþPþconsensusðt;x1;x2Þ
þPþrewiringðt;x1;x2Þ�p�mutationðt;x1;x2Þ
�p�consensusðt;x1;x2Þ�p�rewiringðt;x1;x2Þ: (11)

The whole co-evolution process can be numerically cal-

culated using Eqs. (2)–(10). Extensive simulation results

show that, for systems with a mutation probability p> 0,

with or without link rewiring, the initial opinion distribution

in most cases has no significant influence on the final opinion

distribution. Similar observations have been made on

Deffuant model with noises (what we call mutation).28

We first compare the theoretical results of the final-state

opinion distribution with the simulation results. For each set

of parameters, 100 ER random networks are generated, each

with a size of N¼ 105 and an average nodal degree of

hki ¼ 20. Assume that one pair of nodes is selected at each

time step. We record and average the opinion distribution

every 2000 time steps from t¼ 8� 106 to t¼ 107 as the final

state opinion distribution. It has been confirmed that the time

is long enough for the network to reach the steady state. The

average results in the 100 networks are considered as the

steady-state opinion distribution corresponding to the given

set of parameters.

Figure 5 compares the simulation and theoretical results

of opinion distribution in the steady-state network. The theo-

retical results are numerically calculated using Eq. (10). We

find that the theoretical results match well with the simula-

tion results. The opinion distribution has a few bell curves

with approximately equal peak values. Note that the only

exception is the case in Fig. 5(c) when d¼ 0.1 and p¼ 0.1.

The relatively small opinion tolerance combined with the

high mutation rate lead to a high density of inter-community

links, which account for about 65% of all the links. The high

mutation rate weakens the community separation and growth

to the level that communities 2, 3, and 4 never get a chance

to be fully formed up. Even in the steady state, these three

communities have significantly lower peak values than those

of communities 1 and 5.

To achieve further insights into the co-evolution pro-

cess, we examine the evolution of P(t, x1, x2) in detail. Let

FIG. 5. Comparisons between the sim-

ulation and theoretical results of

steady-state opinion distribution in the

ER random network with different sets

of parameters: (a) d¼ 0.25, p¼ 0.1,

and w¼ 0.5; (b) d¼ 0.25, p¼ 0.01,

and w¼ 0.5; (c) d¼ 0.1, p¼ 0.1, and

w¼ 0.5; and (d) d¼ 0.1, p¼ 0.01, and

w¼ 0.5. We assume that the network

size is N¼ 105 and the average nodal

degree is hki ¼ 20.
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d¼ 0.1, w¼ 0.5, p¼ 0.01, and hki ¼ 20 where the network

would finally form into 5 communities. Figure 6 shows both

the theoretical and simulation results for the evolution of P(t,
x1, x2). The theoretical results are obtained from iterative

numerical calculations of Eq. (10) by setting �¼ 0.02, which

means that in each iteration, 2% of the nodes make deci-

sions. For the corresponding numerical simulations, we let

each iteration contain 2000 time steps, which also allows

about 2% of the nodes make decision in each iteration.

Denote the iteration number as T. We only show the results

of a single round of simulation as the evolution speeds for

different rounds of simulations vary due to noises, making it

difficult to generate a clear image of average results.

However, massive rounds of simulations have revealed that

the system co-evolution always goes through nearly the

same process, though not necessarily at the same speed; and

there is a good match between theoretical and simulation

results at different time as far as the pattern of P(t, x1, x2) is

concerned.

As we could observe in Fig. 6, at the early stage of the

co-evolution, nodes holding similar opinions gradually con-

nect to each other at relatively higher probabilities. This is

indicated by the high probability stripe along the diagonal of

opinion distribution map as can be seen in Figs. 6(a) and

6(e). Then the boundary-opinion holders (holding opinions

close to 0 or 1) would make consensus first and gather

together to form up the first two communities indicated by

the two bright dots at the corner of Figs. 6(a) and 6(e). The

formation of communities then propagates inbound, forming

up two more communities, indicated by the two bright dots

closer to the centers in Figs. 6(b) and 6(f). Finally, an opin-

ion peak emerges around the central opinion value, as indi-

cated by the bright dots in the center of Figs. 6(c) and 6(g).

When the system reaches the final dynamic equilibrium, five

communities are formed up, each of which mostly containing

similar opinions around a peak value. Similar opinion hold-

ers connect to each other with a relatively high density of

connections in these communities while they still preserve

some connections with dissenters.

B. Modularity of the steady-state networks

In this subsection, we further examine the impacts of a

few factors, namely the rewiring speed, the mutation rate

and the average nodal degree, on the modularity of the

steady-state networks. From the discussions in Sec. III, intui-

tively we may expect that since a higher mutation rate and a

large average nodal degree tend to weaken the community

structures, they may lead to a lower modularity level of the

steady-state network. As to the rewiring speed, a higher

rewiring speed tends to enhance community structures and

consequently increase the network modularity at the steady

state. While such intuitive results can be confirmed by simu-

lation as later we would see, it is of interest to study in detail

how the network modularity is changed with the changes in

these parameters, which is the main goal of this subsection.

We start by proposing an approximate analysis on the

proportion of intercommunity links at the steady state. To

simplify the discussions, we assume that in the final state

there are M equal-size communities; that is, the ith commu-

nity mainly contains those nodes holding opinions within the

interval Ii {defined in Sec. III that I1 is [0, 1/M] and Ii is [(i –

1)/M, i/M] for i¼ 2,…, M respectively}. This assumption is

supported by the extensive simulation results reported in the

Sec. III, with the only exception for the case when the muta-

tion rate is quite high. We argue that in most real-life sys-

tems, the mutation rate is of a low value, especially in those

systems that can sustain a steady state. With such an assump-

tion, the simple analysis can be derived as below.

Suppose that at the steady state, a randomly selected

node averagely has q proportion of its links being

FIG. 6. Evolution of P(t, x1, x2) for theoretical results at (a) T¼ 25, (b) T¼ 100, (c) T¼ 150, and (d) T¼ 5000; and a single simulation case at time step (e)

T¼ 25, (f) T¼ 100, (g) T¼ 150, and (h) T¼ 5000. Note that for the number of time steps denoted as t, we have t¼ 2000 T.
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inter-community links. Let node pairs still be randomly

selected at a rate of �. Due to mutation, the proportion of

inter-community links is changed at a rate of

qþ ¼ � phkið1� qÞ � phkiq
1�M

� �
M � 1

M
: (12)

To explain Eq. (12), we see that when a node with q
proportion of inter-community links and (1 – q) proportion

of intra-community links is randomly selected and mutate

to an opinion belonging to the range of a different

community, all its intra-community links become inter-

community links while averagely 1/(M – 1) of its inter-

community links become intra-community links. The

absolute number of inter-community links therefore is

changed by hkipð1� qÞ �hkipq=ð1�MÞ. The probability

that a mutation does change a randomly selected node’s

opinion to be within the opinion range of another com-

munity is (M – 1)/M.

At the same time, due to the rewiring operation, inter-

community links are broken at a rate of

q� ¼ �qw: (13)

This equation shows that for a randomly chosen node and its

random neighbor, the link connecting them has a probability

q to be an inter-community link; and if it is an inter-

community link, it is broken at a probability w. Note that

here we neglect the effects of consensus formation as we

assume that in the final steady state, consensus formation

almost only happens between nodes in the same community.

The dynamics of the inter-community links at the steady

state therefore can be expressed as

�qw ¼ � phkið1� qÞ � phkiq
1�M

� �
M � 1

M
: (14)

And the inter-community link, proportion q can be expressed

as

q ¼ phki
wþ phki

M � 1

M
: (15)

With Eq. (15), we can then proceed to calculate the

modularity of the network. We adopt the definition in Ref.

37 that the network modularity can be calculated as

Q ¼ 1

4m

X
ij

Aij � ðkikjÞ
2m

sisj; (16)

where A is the adjacency matrix, m is the number of edges,

and ki is the nodal degree of node i. For all the possible com-

binations of i and j, if nodes i and j are in different communi-

ties, sisjþ 1¼ 0; and sisjþ 1¼ 2 otherwise. Since a

randomly selected node averagely has q proportion of inter-

community links, for a given node i and a randomly selected

node j, the probability that they are connected and in the

same community is ki(1 – q)/N, while with a probability 1/M,

the two nodes are in the same community. Therefore there

exists simple relationship between Q and q that

Q ¼ 1

4m

X
i

ki �
ki2m=M

2m

� �
ð1� qÞ

� 1

4m

X
i

ki �
ki2mðM � 1Þ=M

2m

� �
q

¼ 1

2m

X
i

ki
M � 1

M
� kiq

� �

¼ M � 1

M
� q: (17)

To verify the analysis, we carry out simulations on the

ER random networks with N¼ 105 and hki ¼ 10; 20; 40,

respectively. We adopt parameter values d¼ 0.25, w¼ 0.1,

and 0.5 where the networks will finally have 2 communities,

and d¼ 0.1, w¼ 0.5 where the networks will finally have 5

communities. Different opinions are uniformly distributed at

the beginning. We examine different cases with different

mutation rates of p ¼ 10ð�4þn=4Þ for n from 0 to 16. For each

parameter set, we generate 100 random networks. And in

each time step, we let a single pair of nodes be randomly

selected. We record the proportion of inter-community links

and calculate the network modularity every 2000 time steps

from t¼ 8� 106 to t¼ 107; and finally average the results of

these 1000 calculations.

Figure 7(a) shows the change of inter-community link

proportion q with the mutation rate p. We also evaluate the

effects of rewiring speed w and the average degree hki on q.

We see that in all the different cases, theoretical analyses

match well with simulation results. Notice that when the

mutation rate p is very low, we have that hkip� w; from

Eq. (14) we have wþ hkip 	 w and hence q � p. The pro-

portion of inter-community links therefore increases approxi-

mately linearly with the mutation rate. This matches the

observation in Fig. 7(a) that in a log-log scale plot, the rela-

tion between p and q approximates a linear function with a

slop value 1 when p is small enough. The increase of q
becomes slower when the mutation rate p is high, which can

be derived from Eq. (14) and also can be easily understood:

as aforementioned, a higher mutation rate leads to a larger

proportion of inter-community links and a smaller proportion

of intra-community links. When a mutation operation

changes the opinion of a node to be within the range of

another community, all the node’s intra-community links

become inter-community links while a part of their inter-

community links become intra-community links. Such muta-

tions become less effective in increasing the number of inter-

community links when there is already a large proportion of

inter-community links. The increasing speed of q thus

becomes slower than a linear function of p.

Rewiring rate w also has its impacts on the inter-

community link proportion q. A larger value of w basically

leads to a smaller value of q when other parameters are fixed.

The reason is simple: a higher rewiring speed leads to a

smaller number of inter-community links. While such an

observation is obvious, it is however interesting to observe

from (14), and Fig. 7(a) as well, that when p is small enough,

for given p and hki, q increases approximately linearly pro-

portional to 1/w.
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As to the effects of hki on q, it can be easily derived

from Eq. (14) that when hkip� w, q increases almost line-

arly with hki. Note that the steady state is a dynamic equilib-

rium where the speed of increasing inter-community links by

opinion mutation statistically speaking equals the speed of

removing inter-community links by rewiring. A high average

nodal degree allows the number of inter-community links to

be increased faster by a given number of mutation operations

(i.e., a given p). It thus takes a higher proportion of inter-

community links at the steady state to allow a larger number

of inter-community link removals such that the dynamic bal-

ance can be achieved. The effects again become less signifi-

cant when p is large, due to the same reason as we discussed

earlier that mutation becomes less effective in increasing the

number of intercommunity links under such a case.

With the understanding of the relation between q and a

few factors, the effects of these factors on the system modu-

larity value Q can be easily derived from Eq. (16): when p is

very small, Q decreases approximately linearly with p, hki
and 1/w. The decreasing speed becomes slower when p gets

larger. To allow better observation of modularity values

within the range that we are interested, Fig. 7(b) plots the

results in the log-linear scale. Note that it is confirmed that Q
decreases approximately linearly with p when p is small

though it does not appear to be an obvious observation in the

figure. Further, it is interesting to observe that when w is of a

high value, e.g., at 0.5, it takes a relatively high value of p
(higher than 10�3) to let Q significantly shift away from (M
– 1)/M. For a smaller value of w, e.g., at 0.1, a low value of p
can already lead to nontrivial changes to Q. This matches the

real-life experiences that in a more tolerant social system

(with a lower value of w), opinion changes are more effec-

tive in increasing the number of interconnections between

different opinion communities.

V. CONCLUSIONS

In this work, we evaluated the complex co-evolution

process of opinions and system structures where three differ-

ent factors, namely opinion formation, link rewiring, and

opinion mutation are integrated together into the same

model. It was observed that such a model would allow the

system to evolve into a dynamic equilibrium with multiple

communities, each of which holds a range of opinions with a

bell-curve-style distribution and with non-trivial intercom-

munity links in between. Such a system, as we claim, better

resembles the observations in the real life and would allow

the system to easily evolve further when the internal/external

conditions change. It is also observed that a few different

factors, rather than tolerance between different opinions

alone, may contribute to deciding the number of communi-

ties in the final-state networks. An analytical framework

was proposed to describe the co-evolution process with satis-

factory precision. Further, the relation between system co-

evolution and system modularity was carefully studied. It

was revealed that there exists a linear relationship between

system modularity and a few factors when the mutation rate

is low. Our study shall help better understand how different

factors work together leading to the complex co-evolution

dynamics that we may observe in many complex social

systems.

It is revealed in this article that different mutation rates

may lead to different final steady states. In our preliminary

studies,38,39 it has been further observed that the effects

of different mutation patterns may be equally, if not more,

significant. Further studies are needed to fully understand the

effects of mutation in opinion formation on complex social

networks.
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