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Community structures widely exist in various complex networks. Extensive studies have been carried out
on defining and quantifying community structures as well as developing algorithms for detecting them
in extra-large complex systems. Despite all these efforts, however, our understanding of why commu-
nity structures widely exist in so many real-life systems, or in other words, the benefits/drawbacks for
real-life systems to have community structures, remains to be rather limited. In this work, we discuss
on the effects of community structures on infection propagation, detection and control in complex net-
works. Specifically, we investigate (i) the effects of community structures on transmission speed and
infection size; (ii) when monitors can be deployed in the network to detect the infection spreading, the
effects of community structures on early-stage infection detection; and (iii) in adaptive networks with
link rewiring for isolating the infected nodes, the effects of community structures on infection control.
Our results show that the existence of community structures generally speaking helps slow down the
infection spreading; whether it helps reduce the overall infection size when no control method is adopted
however depends on the network topology. When infection detection and controlling methods such as
link rewiring are adopted, the existence of community structures steadily helps improve the efficiency of
infection detection and control, though having too many communities may not necessarily bring along
additional benefits.
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1. Introduction

Community structures widely exist in all kinds of networks, such as social and biological systems [7],
information networks [37], musical compositions [8], and brain networks [34], etc. There have to be
some good reasons why community structures widely exist in so many real-life systems: intuitively,
we may expect that the existence of community structures may in a certain way help make the systems
function more efficiently.

Majority of the existing studies have been focusing on defining, measuring and detecting community
structures in complex systems. Pioneering works conducted by Newman et al. [14, 19–21] proposed to
measure community structures by measuring their modularities. Follow-up works include the exten-
sions to weighted networks [24], definition and detection of overlapping communities [9, 10, 23, 32],
methods for tuning the modularity of the networks [41], as well as some debates on the limitations of
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the modularity-based approaches [13, 25, 40], etc. Since there is no general statistic model capable of
describing all kinds of community structures, various models have been proposed, each of which typ-
ically trying to reveal a certain aspect of the community structures. For example, a random network
model with community structures and adjustable modularity was proposed in [17]; while in [12, 16], a
network model was proposed to have both the nodal degrees of inter-community and intra-community
links follow power-law distributions. Studies have also been carried out to reveal the community struc-
tures of real-life networks [6, 37] and to propose algorithms for efficiently detecting community struc-
tures in extra-large systems [3, 29, 39], etc.

Despite these extensive studies, our understanding of the importance of the community structures
and how their existence benefits the systems remains to be rather limited. In this paper, we study the
effects of community structures on infection spreading, detection, and control in complex networks.
As accurate theoretical analysis on such problems remains largely an open issue, extensive numer-
ical simulations have to be carried out. It is found that community structures help slow down the
infection spreading; whether they help significantly reduce the overall infection size when no detec-
tion/controlling approaches are adopted, however, depends on detailed network topology. When detec-
tion/controlling approaches are adopted, the existence of the community structures helps make the early
detection of infection and isolation of the infected nodes much easier and more efficient, though hav-
ing too many communities may not necessarily lead to significant additional benefits. Since infection
spreading and control is of critical importance in many complex systems, especially human social sys-
tems, such observations may to a certain extent help explain the wide existence of community structures
in complex systems: when the infection spreading is welcome (say, in spreading of a new idea), the
existence of the community structures may not lower the impacts of the spreading at the end of the day
though it may slightly slow down the spreading process. When the agent/idea being spread is dangerous,
however, the existence of the community structures gives the systems a better chance to react and put
the infection under control.

The rest of the paper is organized as follows. A brief survey to the related existing results on
infection spreading, detection and control in complex networks is presented in Section 2. In Section 3,
we describe the network models, epidemic models and algorithms adopted in this paper. Extensive
numerical simulations results and discussions are presented in Section 4. Finally, Section 5 concludes
the paper.

2. Related Existing Results: A Very Brief Survey

Epidemic spreading and immunization is among the most extensively studied topics in complex net-
works (e.g., [4, 5, 18, 22, 26–28, 35, 36]). For epidemic spreading in community networks, the typical
existing works include: in [17], the author studied on a simple random network model with adjustable
modularity level. It was shown that when the modularity score increases, which denotes a larger num-
ber of intra-community links and a smaller number of inter-community links, the epidemic threshold
becomes lower. It however does not discuss the effects of community structures on the infection size in
an epidemic breakout. In [12], the author adopted a scale-free network model with adjustable commu-
nity structures [16]. It is shown that when the Susceptible-Infected (SI) model is adopted, which means
that the infected nodes are never recovered [1], the epidemic spreading is relatively slower in networks
with stronger community structures. In [33], the author considered a simple two-community network
model. The SIS model is adopted to study the epidemic spreading in networks with and without adap-
tive rewiring respectively. It is showed that the steady state infection sizes may be significantly different
in two communities in a static network. In an adaptive network with rewiring operation, however, the
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two communities would have similar infection sizes. It is also showed that the time for the infection to
penetrate into the second community is inversely proportional to the density of inter-community links.
The results are interesting yet cannot be easily generalized to other cases.

Studies on the detection of infection in complex networks typically adopt the main idea to deploy
a certain number of monitors in the networks as detection agents to reduce the expected detection time
and/or infection size as much as possible. The first work in the area was reported in [15], which devel-
oped an algorithm termed cost effective lazy-forward selection method to deploy monitors for minimiz-
ing the average damage of an infection. The algorithm was evaluated on water supply network and
blog space network for multiple penalty reductions. A follow-up work in [38] developed a heuristic
algorithm called minimizing maximum infection size (MMI) to minimize the worst-case infection size in
early spreading of a strong infection.

Infection control in complex network has also been well studied. The most well-known studies are
probably those on immunization of network nodes [4, 5, 28, 35, 36]. Such works showed that random
immunization is not effective in scale-free networks while targeted immunization, which immunizes the
hubs, significantly reduces the infection size [28]. In [5], it was further revealed that another effective
method is to cure the hubs with a higher probability. Methods for separating the networks into a certain
number of clusters in order to control the infection spreading to be within a single cluster have also
been proposed (e.g., [4]), typically at a rather high cost. A more popular approach is the link rewiring,
where healthy nodes may break their connections with infected nodes and rewire to other healthy ones
[11, 31]. It is shown that fast-enough rewiring operation may quickly eliminate an infection spreading.

3. Models and algorithms

3.1 Network models with community structures

3.1.1 Generation of homogeneous random networks with communities We adopt the algorithm pro-
posed in [17] to generate random networks with community structures. The main idea is to generate
inter-community links with a lower probability than that for intra-community links. The algorithm can
be briefly described as follows [17]:

• Randomly divide N nodes into M communities with ni nodes in ith community such we have
∑M

i=1 ni = N.

• Within each community, connect every pair of nodes with a probability p.

• For each pair of nodes belonging to different communities, connect them with a lower probability
q. Denote σ = p/q.

The overall number of links in the network can be estimated as:

V =
M

∑
i=1

1
2

ni(ni −1)q+
M

∑
i< j

nin jq (3.1)

In the rest of this paper, the number of edges is calculated using this equation. We control the
strength of community structures and the average nodal degree of the network by adjusting p and q.

3.1.2 Generation of scale-free networks with communities In scale-free networks, the nodal degrees
follow the power-law distribution, i.e.,

p(k)∼ k−γ (3.2)
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where p(k) denotes the probability that a randomly selected node has a degree k, and γ is the exponent
which typically lies between 2 to 3 in many real-life systems [2]. The well-known BA model [2], which
generates a scale-free network by growth and preferential attachment, has an exponent value of γ = 3.
A method for generating scale-free networks with community structures, still adopting the main idea of
growth and preferential attachment but with a different approach, was proposed in [12]. Specifically,
when a new node joins the network, it is randomly assigned to a community and brings with itself a
fixed number (denoted as m) of intra-community links. It also has a certain probability to have a fixed
number (denoted as n) of inter-community links. The intra-community links are attached to nodes in
the same community, while the inter-community links are connected to nodes in other communities,
both by preferential attachment (i.e., the probability that a node is selected is linearly proportional to its
current degree).

The construction process can be briefly described as follows [12]:

• Initialization: Build an initial network with the given number of communities, where the nodes
within each community are connected into a complete graph (i.e., there is a link between every
pair of nodes in the same community). For every pair of communities, randomly choose one node
in each of them and connect these two nodes with an inter-community link. Keep separate records
of each node’s intra- and inter-community degrees respectively.

• Evolving: A newly added node will be randomly assigned to a community. Connect this new node
with m existing nodes in the same community with intra-community preferential attachment, i.e.,
the new node connects to an existing node in the same community with a probability proportional
to the intra-community degree of that existing node. Each new node, with a probability α , has n
inter-community links. Specifically, with the probability α , the new node connects to n existing
nodes in other communities. The chance that it is connected to a node in another community
is proportional to the inter-community degree of that existing node. This above procedure is
repeated until the network grows to the expected size.

The network generated in this way roughly follows a power-law degree distribution where [12]:

p(k) =
2(m+αn)2t

Mm0 + t
k−3 (3.3)

considering its combined intra- and inter-community degrees.

3.2 Epidemic spreading models

In this work, we adopt the well-known Susceptible-Infected-Recovered (SIR) model [1] in evaluating
the infection spreading speed and infection size. Specifically, we assume that time is slotted and in
each time slot, any susceptible node adjacent to an infected node has a probability λ of being infected.
Meanwhile, each infected node has a probability µ to recover. For the SIR model, recovered nodes
become permanently immunized to the infection. We also assume that the epidemic starts from a single
infection source. In the rest of the paper, unless otherwise specified, we set λ = 0.05 and µ = 0.1 for
all the simulations adopting the SIR model.

While evaluating the maximum/average infection sizes in networks equipped with monitors for
infection detection, as that in existing studies, the SI model is adopted. For the SI model, it differs
from the SIR model by not allowing any node to recover. In early stage of a strong infection when
recovery hardly starts yet, the SI model closely resembles the real-life cases [38]. In Section 4.2 where
the SI model is adopted in simulations, we set λ = 1 following the assumptions in [38].
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3.3 Monitor deployment algorithm for infection detection

For infection detection, we adopt the algorithms surveyed in Section 2 for minimizing the average/maximum
infection size. Specifically, for minimizing the average infection size, we adopt the cost effective lazy-
forward selection algorithm [15], also referred to as MAI algorithm [38]. The simple greedy algorithm
adds monitors one by one, each time trying to find the best location for the newly added monitor to mini-
mize the average infection size. For minimizing the maximum infection size, a heuristic algorithm MMI
was proposed [38]. The algorithm adopts a simple iterative approach which guarantees to converge to
a local optimal solution. Repeating the calculations for a large enough times will ensure reaching a
suboptimal solution of the problem.

These two algorithms will be adopted in the numerical simulations in Section 4.2

3.4 Adaptive rewiring model

For infection control, we adopt the adaptive model [11] surveyed in Section 2. Specifically, in each
time step, there is a certain probability that a susceptible node will break the connection with each of its
infected neighbors and establish a new connection either to another susceptible node (S) or immunized
node (R) in the same community. For each link that connects a susceptible node A and an infected
node B, rewiring happens with a probability of pintra if A and B are from the same community and
with a probability of pinter if the two nodes are in different communities. When rewiring happens, the
susceptible node A shall rewire the link to connect to a susceptible or immunized node C which is in the
same community as node B. Note that in Section 4.3, we will compare two different cases where C is a
susceptible nodes (S) and an immunized nodes (R) respectively.

4. Simulation results and discussions

In this section, extensive simulations are carried out to evaluate the effects of community structures
on infection spreading, detection and control in complex networks. Specifically, three topics will be
discussed: i) we investigate the infection spreading in community networks, revealing the influences
of communities on dynamics of infection size and spreading speed; ii) for the case where monitors
are deployed in community networks for infection detection, we evaluate the influences of community
structures on the maximum/average infection size at the moment when infection spreading is detected;
and iii) for the case where link rewiring is adopted to isolate infected nodes for infection control, we
investigate the effects of community structures when a few different link rewiring schemes are adopted
respectively.

4.1 Infection spreading in community networks

In this subsection, we evaluate how community structures influence the infection size and infection
spreading speed. Specifically, as defined in Section 3.1, we generate single-community, 5-community
and 10-community random and scale-free networks, with specific values of σ and α , respectively. For
the epidemic spreading, we adopt the SIR model. Ten networks are generated for each given number
of communities, and for each network, we let each node serve as the infection source for 10 times and
average the results of all these 100N realizations where N is the network size.

The method for generating random networks with 1, 5, and 10 communities respectively is as
follows. Each network has 500 nodes and 2500 edges. For these three different cases, we choose
σ = p/q = ∞ (single community), 500 (5 communities), 250 (10 communities), respectively. For the
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FIG. 1. Evolution of infection size along time in (a) random networks with community structures and (b) scale-free networks with
community structures; cumulative infection sizes in (c) random networks with community structures and (d) scale-free networks
with community structures.

networks with 5 and 10 communities, the values of σ we chose let the inter-communities links account
for about 1% of all the network links. For each case we generate 10 random networks; and in each
network, we let each of the 500 nodes serve as the infection source for 10 times and average the results
of all these 50,000 realizations. For the scale-free networks, we also generate them with 1 community,
5 communities, 10 communities respectively. Each network has 1000 nodes and 3000 edges. For net-
works with 5 and 10 communities, we let α = 0.02. The inter-community links thus make up about 2%
of all the network links. Again, we generate 10 random networks for each case, and for each network
we let each of the 1000 nodes serve as the infection source for 10 times and average the results of these
100,000 realizations. Unless otherwise specified, the networks generated for simulation all adopt the
parameters as described above.

Figure 1 demonstrates the evolution of infection size (Figures 1(a) and 1(b)) and the overall cumu-
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FIG. 2. Distribution of the time for the infection to enter into new communities in (a) random network with community structures;
and (b) scale-free network with community structures.

lative infection size (Figures 1(c) and 1(d)) under SIR model. We find that the existence of community
structures not only delays the time to reach peak infection size, but also reduces the peak infection size
itself. In random networks, community structures even help reduce the overall cumulative infection
size. In scale-free networks, however, reduction in cumulative infection size is insignificant. The rea-
son lies in the existence of high-degree hubs in scale-free networks: in random networks, having more
communities slows down the infection propagation. Since the infected nodes recover at a fixed rate,
having a slower propagation speed helps reduce the cumulative infection size. In scale-free networks,
however, the hubs with high inter-community degrees make the inter-community infection spreading
much easier and faster. Thus the existence of community structures does not make significant difference
to the cumulative infection size.

Also note that the 5-community and 10-community scale-free networks have nearly the same infec-
tion size over time: when having community structures helps slow down infection spreading in scale-free
networks, having more communities does not necessarily lead to more benefits. The effects of the hub
nodes as discussed above quickly exhaust the benefits of having more communities: penetrating into a
large number of small communities is not significantly more difficult than penetrating a small number
of large communities when hub nodes with high intercommunity degrees exist.

To have a closer look at how the infection propagates into different communities, we count the time
when infection for the first time enters into each community, respectively. Specifically, we test on the
networks with 5 communities. We still generate 10 networks and for each network let each node serve
as the infection source for 10 times. For each realization, we count the time that the infection for the first
time enters into the 2nd, 3rd, 4th and 5th communities, respectively. From all the 100N realizations (N
is the size of the network), we can obtain the distribution of the time that the infection for the first time
enters into the 2nd, 3rd, 4th and 5th communities respectively.

Figure 2 illustrates the simulation results. For the 5-community random networks, the average time
steps it takes for the infection to enter into the 2nd, 3rd, 4th and 5th communities are 20.17, 31.18,
43.29, and 60.17, respectively. For the 5-community scale-free networks, the corresponding values are
18.52, 23.32, 29.08, and 38.05, respectively. We find that averagely it takes significantly longer time for
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FIG. 3. Maximum infection size versus the number of monitors deployed in (a) random networks with community structures and
(b) scale-free networks with community structures; average infection size versus the number of monitors deployed in (c) random
networks with community structures and (d) in scale-free networks with community structures.

the infection to spread from the first community into the 2nd community than that for further penetrating
into other communities. For example, in the 5-community scale-free networks, it takes an average of
about 18 time steps for infection to spread into the 2nd community; and after that, it takes only about
5 to 9 time steps to penetrate into each of the following communities. This means that once the first
inter-community link is breached, the infection will soon appear in multiple communities, especially in
scale-free networks containing hub nodes with high inter-community degrees. Such observations may
help explain why it becomes much more difficult to control disease spreading once the opportunity to
act at a very early stage has been missed [30]. Some further discussions will be presented in Section
4.3.

4.2 Monitoring the community network

In this subsection, we evaluate infection detection in community networks. Specifically, a certain num-
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ber of monitors are deployed in community networks, and we record the infection size at the moment
when infection spreading is detected. As to the monitor allocation, we adopt the MMI and MAI algo-
rithms [38] as described in Section 3.3 to minimize the maximum/average infection size, respectively.
Specifically, simulations are again carried out on both the random and scale-free networks, with 1, 5
and 10 communities, respectively. For each given number of communities, we randomly generate 10
different networks. The MMI algorithm is performed 5000 times on each random network and 1000
times on each scale-free network (As pointed out in [38], detection results have a larger variation on a
random network due to its uniform degree distribution. Hence more rounds of algorithm are needed.),
and we choose the monitor location with the best performance. For MAI algorithm, we only need to
run it once for each network. For the epidemic spreading, we adopt the SI mode as defined in Section
3.2 with λ = 1. Each node serves as the infection source in turn. The maximum/average infection size
for all the different infection sources is the maximum/average infection size of the network. Averaged
simulation results in 10 networks are presented in Fig. 3 where error bars indicate 95% confidence
intervals.

Figures 3(a) and (c) show that the existence of community structures significantly reduces both the
maximum and average infection sizes in random networks. In scale-free networks, however, only the
maximum infection size is significantly reduced (Fig.3(b)), while the average infection size is actually
slightly larger in networks with more communities (Fig.3(d)). To understand such an observation, we
go back to Fig.3(b) where we can see that, with 4 and 7 monitors, the maximum infection size in the
10-community scale-free networks is slightly larger than that in 5-community ones. Notice that for these
cases, we use fewer than 10 monitors in scale-free networks with 10 communities. For the worst case
where infection starts from an un-monitored community, infection spreading can easily penetrate into
other un-monitored communities (if any) through hub nodes with high inter-community degrees. Hence
the worst-case infection size becomes larger in networks with a large number (larger than the number
of monitors) of communities. However, when more than 10 monitors are deployed, the infection can
hardly spread out of its source community; having a larger number of communities under such case
hence helps reduce the maximum infection size. For the average infection size in scale-free network,
the case is different: it is shown in [38] that scale-free networks are typically quite easy to be monitored
and most of the monitors will be installed on hub nodes in an optimal/suboptimal solution. When
monitors are installed on high-degree hubs, most of other nodes have a short distance to at least one
of these monitors, making early detection of infection spreading a likely event. In community scale-
free networks with a larger number of communities, the hub nodes on which monitors are deployed
tend to have a smaller average nodal degree and other nodes tend to have a slightly larger distance to
their nearest monitor. Thus the average infection size becomes slightly larger. For example, when 10
monitors are deployed in single community, 5-community and 10-community scale-free networks, the
average nodal degrees of the 10 nodes on which monitors are deployed are 55, 46 and 25 respectively;
and the average distances between each of the other nodes and its nearest monitor node are 1.58, 1.64
and 1.78 hops, respectively.

4.3 Infection control in adaptive networks with community structures

In this subsection, we consider the link rewiring schemes for infection control, with a main focus on
evaluating the effects of community structures when different link rewiring methods are adopted. Specif-
ically, by implementing two different rewiring strategies, namely rewiring to susceptible nodes (S) and
immunized nodes (R) respectively, and adjusting the speed and starting time of the rewiring operation,
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FIG. 4. The maximum expected cumulative infection size versus the probability of link rewiring in (a) random networks with
community structures and (b) scale-free networks with community structures; average cumulative infection size versus the proba-
bility of link rewiring in (c) random networks with community structures and (d) scale-free networks with community structures.
Susceptible nodes are rewired to immunized nodes.
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FIG. 5. The maximum expected cumulative infection size versus the probability of link rewiring in (a) random networks with
community structures and (b) scale-free networks with community structures; average cumulative infection size versus the proba-
bility of link rewiring in (c) random networks with community structures and (d) scale-free networks with community structures.
Susceptible nodes are rewired to susceptible nodes.
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FIG. 6. Evolution of cumulative infection size in scale-free network with different community structures for (a) susceptible nodes
are rewired to immunized nodes; and (b) susceptible nodes are rewired to susceptible nodes. The rewiring probability at each time
step is p = 0.2. Reaction starts from t = 20.

we aim to evaluate (i) the effects of community structures on the overall infection size when different
rewiring methods are adopted; and (ii) the effectiveness of rewiring inter-community links.

We adopt the adaptive link rewiring model described in Section 3.4, where in each time step, each
susceptible node rewires each of its inter-community and intra-community links connected to an infected
node, if any, at probabilities pinter and pintra respectively. Simulations are still conducted on random net-
works and scale-free networks with 1, 5 and 10 communities and SIR model is adopted for the epidemic
spreading. For each given number of communities, we generate 10 networks, while in each network we
let each node serve as the infection source for 10 times. The average cumulative infection size of the 10
realizations for each infection source is calculated. For all the infection sources, the maximum/average
of their cumulative average infection sizes is the maximum/average expected cumulative infection size
of the network.

Figures 4 and 5 illustrate the relationship between rewiring probability and cumulative infection
size while using the two different rewiring strategies respectively. Here we set pintra = pinter = p and
let p increase from 0.05 to 0.8 with a step length of 0.05. The link rewiring starts at time step 20 to
allow an initial spreading of the infection. We find that when we rewire susceptible nodes to immunized
nodes, a moderate rewiring probability already depresses the infection size to a low level while further
increasing the probability does not help too much (Figure 4). When we rewire susceptible nodes to
susceptible nodes, however, a small rewiring probability hardly helps. Only when we increase the
rewiring probability to a high enough level (about 0.3-0.4) , would the infection size be significantly
reduced. After this sharp decrease, further increasing the rewiring probability does not help too much
in reducing the cumulative infection size (Figure 5).

The above observations can be explained: when susceptible nodes are rewired to susceptible nodes,
rewiring operation increases the nodal degree of susceptible nodes yet may not stop the infection from
reaching these nodes. Once such relatively high-degree susceptible nodes are infected, the infection
may soon go out of control. In such cases, rewiring only delays the infection but hardly reduce the
infection size. Only when rewiring probability is high enough, would some susceptible nodes have a
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reasonably good chance to be cut off from infected nodes altogether and therefore get protected from
infection. When susceptible nodes are rewired to immunized nodes, on the other hand, the chance that
a susceptible node gets infected is reduced, which helps lower the infection size.

A common observation in the above cases is that in networks with rewiring operations, the exis-
tence of community structures generally speaking helps lower both the maximum and average expected
infection sizes; stronger community structures lead to a smaller infection sizes. The reason is not diffi-
cult to understand: in Section 4.1, it was shown that infection propagation is slowed down in networks
with community structures. As a result, when link rewiring starts, community networks averagely have
a smaller infection size. The slower infection propagation speed also allows the subsequent rewiring
operation to be more effective. Therefore, for a given rewiring speed, the average/maximum infection
size in community networks is smaller.

The effects of community structures however have their limit in reducing the average infection size
in scale-free networks. As we can see in Figures 4(d) and 5(d), having 5 communities and 10 commu-
nities in scale-free networks lead to nearly the same average cumulative infection size regardless of the
rewiring strategy we adopt. The reason still lies in the existence of hubs with large inter-community
degree, which makes the inter-community spreading of infection much easier. Figure 6 shows the infec-
tion spreading process when rewiring starts at t = 20 adopting the strategies of rewiring to immunized
nodes (Figure 6(a)) and susceptible nodes (Figure 6(b)) respectively. Similar to what we have observed
in Figure 1(d), having a larger number of smaller communities may not help further slow down the
infection spreading; and it remains to be the case when rewiring operation is adopted.

Figures 7 and 8 evaluate the effects of two factors: the starting time of the rewiring operation and
rewiring of inter-community links. To make comparisons, we test on two different cases with different
probabilities of rewiring each intra-community link (pintra) and inter-community link (pinter), respec-
tively. Specifically, we test on two ”extreme” cases: case 1 where pintra = 0.2 and pinter = 1, and case 2
where pintra = 0.2 and pinter = 0. For each case, we test on the average/maximum infection size when
link rewiring starts at different time. Simulation results on 5-community networks are presented though
the conclusions apply to all the other networks as well.

For both of the above rewiring strategies, we observe that it is critically important to start link
rewiring in early stage of infection spreading. This can be easily understood since, as we can observe
in Fig.1, infection size increases quickly with infection time. A too-late action therefore would not
help avoid having a large infection size. Besides, it is observed that rewiring inter-community links
also has to start very early in order to be of any significant help, even when the inter-community link
rewiring probability is set to 1. The reason is obvious: as observed in Fig.2, infection penetrates into
different communities rather quickly, especially in scale-free networks. Rewiring or removing inter-
community links after infection has penetrated into most communities certainly would not be of any big
help. Further, it is not a surprise to observe that, for either inter-community or intra-community links,
link rewiring to immunized nodes is more effective than rewiring to susceptible nodes.

5. Conclusion and future work

In this paper, we studied the effects of community structures on propagation, detection and control of
infection in complex networks. Specifically, we investigated the effects of community structures on
transmission speed, infection size, effectiveness of early-stage infection detection and effectiveness of
infection control by link rewiring, respectively. Our results on random and scale-free networks basically
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FIG. 7. The maximum expected infection size versus the starting time of rewiring operation in (a) random networks with commu-
nity structures and (b) scale-free networks with community structures; average infection size versus the starting time of rewiring
operation in (c) random networks with community structures and (d) scale-free networks with community structures. Susceptible
nodes are rewired to immunized nodes.
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FIG. 8. The maximum expected infection size versus the reaction start time in (a) random networks with community structures and
(b) scale-free networks with community structures; average infection size versus the reaction start time in (c) random networks
with community structures and (d) scale-free networks with community structures. Susceptible nodes are rewired to susceptible
nodes.



16 of 17 YI YU, GAOXI XIAO

show that the existence of community structures helps slow down the infection spreading; whether it
helps reduce the overall infection size when no control method is adopted depends on network topology.
When infection detection and link rewiring are adopted, the existence of community structures helps
improve the efficiency of infection detection and control, though having too many communities may not
bring along additional benefits, especially in scale-free networks. The benefits of having community
structures generally become more significant when a large enough number of monitors are installed in
the network or when link rewiring could start at an early stage of infection spreading.

It is not fully understood whether infection detection and control help the emergence of the commu-
nity structures, which may be of our future research interest.
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