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Abstract

In this paper, controllability of Markovian jump Boolean control networks (MJBCNs) is studied via semi-tensor product of matrices. First,
based on the algebraic expression of the considered Boolean control networks, a necessary and sufficient condition for controllability is
presented by iteration equations, which however may lead to high-dimensional matrices. To avoid having such matrices, a new matrix
is defined and applied to derive another equivalent condition to verify controllability of MJBCNs. Moreover, a maximum principle of
MJBCNs is established to further study the minimal controllable time. Finally, two examples are presented to illustrate the obtained results.
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1 Introduction

Boolean networks, first applied to model genetic networks
by Kauffman (Kauffman 1969), have received considerable
attention owing to their wide applications in various fields,
such as biology (Davidson et al. 2002), game theory (Cheng
2014), and smart home (Kabir et al. 2014), to name just a
few. The state variables in these systems are quantized to
two values (1 and 0), and the value of each state at time t+1
is modified according to logical functions with respect to the
values of its neighbors at time t. As many biological systems
are affected by extra factors, it is natural to extend Boolean
networks to Boolean control networks by adding Boolean
inputs. Witnessed by an increasing number of high-quality
and landmark results (Akutsu et al. 2007, Cheng, Zhao &
Xu 2015, Fornasini & Valcher 2013, Guo et al. 2017, Liang
et al. 2017, Meng et al. 2018), Boolean (control) networks
have proved to be highly effective in describing numerous
practical processes.

It is noteworthy that one gene may update its value according
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to several possible logical rules at every discrete moment.
For example, the bacteriophage lambda, which contains two
different models (lysis and lysogeny), may change its state
in the light of two different strategies; in an eukaryotic cel-
l, the growth and division of the cell triggered by a set of
events usually include four phases. These can be regarded
as the switching phenomena in genetic regulatory networks.
While reachability, controllability and stability of determin-
istic Boolean networks have been well investigated (Li et al.
2014), an accurate model cannot be applied when there are
uncertainties in switching signals. A novel class of Boolean
networks, probabilistic Boolean networks (Liu et al. 2015,
Qi et al. 2010, Shmulevich et al. 2003), has therefore been
proposed to describe rule-based properties, as well as tack-
ling nondeterminacy in data and model selection. Since in
genetic regulatory networks, which are constructed by net-
works of regulatory interactions among DNA, RNA and pro-
teins, an array of molecular processes are always affected
by some intrinsic fluctuations and extrinsic perturbations, s-
tochastic process such as Markov chain has been employed
to depict these dynamics (Kim 2002, Sun et al. 2009). With
the observation that transitions between states in a gene net-
work occur randomly (Elowitz et al. 2002), Markovian jump
Boolean networks (MJBNs) presented in (Meng et al. 2019,
2017) become a favourable option to model some gene ex-
pressions with stochastic switching factors.

On the other hand, controllability with the property that the
trajectory of a controlled system can be steered from some
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given initial state to the desired one, is one of the core is-
sues in control theory and plays a crucial role in genetic di-
agnosis and detection. Theoretical research on controllabil-
ity of Boolean control networks may be helpful for achiev-
ing a better understanding of the interaction among genes
and designing therapeutic strategies. To date, many results
have been reported for controllability of typical, determinis-
tic switched and probabilistic Boolean networks by resorting
to the semi-tensor product of matrices (Laschov & Margaliot
2012, Li & Sun 2011, Liang et al. 2017, Liu et al. 2015,
Zhao & Cheng 2014). However, it turns out to be a challenge
to study on controllability of Markovian jump Boolean con-
trol networks (MJBCNs) due to the inherent high complex-
ities of a combination of switching operations and stochas-
tic properties. As the research on MJBCNs as an extension
of deterministic switched and probabilistic Boolean control
networks can help enlarge the applications in genetic net-
works, we are motivated to study controllability of MJBCNs
in this paper.

In this paper, controllability of MJBCNs is first defined and
discussed by using semi-tensor product of matrices. Based
on the algebraic expression of the considered network, a
necessary and sufficient condition for controllability with
probability one is derived by iterations. With the obtained
condition, the required control can also be designed. How-
ever, the dimensions of involved matrices may be very high
when the controllable time and the number of nodes are
large, which seriously restricts the applications of the result-
s. To cope with this problem, a new controllability matrix
is defined for MJBCNs and based on it, another equivalent
condition for verifying controllability is presented. Further-
more, by proposing the maximum principle of MJBCNs,
extending the results in Laschov & Margaliot (2011, 2013),
a necessary condition for the minimal controllable time is
established.

The main contributions of this paper are threefold: i) this is,
for the first time, to the best of our knowledge, that a study
on controllability of MJBCNs is conducted, which shall lay
a theoretical foundation for diagnosing diseases in stochas-
tic genetic regulatory networks; ii) since MJBCNs are more
general than typical and probabilistic Boolean networks, the
obtained results allow extensions of some previous result-
s (e.g., the results in Li & Sun (2011), Liu, Chen, Lu &
Wu (2015)); iii) the newly proposed maximum principle for
MJBCNs can be applied to get a necessary condition for
the minimal controllable time, which is always difficult to
determine.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries of the semi-tensor product
and problem formulation. The main results of this paper
are presented in Section 3. Section 4 gives two examples to
illustrate the effectiveness of the obtained results, which is
followed by a brief conclusion in Section 5.

2 Preliminaries and problem formulation

Some primary notations and definitions to be adopted in this
study are presented below.

Rn and Mm×n denote the sets of n-dimensional column vec-
tors and m× n real matrices, respectively. The i-th column
of the identity matrix In is defined as δ i

n, i = 1,2, . . . ,n. De-
note ∆n := {δ i

n| i = 1,2, . . . ,n} and ∆ := ∆2. Denote by ∆n

the Cartesian product ∆×∆×·· ·×∆︸ ︷︷ ︸
n

. A matrix L ∈ Mn×r,

written as L = [δ i1
n ,δ i2

n , . . . ,δ ir
n ], is called a logical matrix

and can be rewritten as L = δn[i1, i2, . . . , ir] for simpler nota-
tion. Coli(L) represents the i-th column of L and Col(L) is
the set of columns of L. Denote by Ln×r the set of n×r log-
ical matrices. A column vector v = (v1,v2, . . . ,vn)

T is called
a stochastic vector if ∑n

i=1 vi = 1 and vi ≥ 0. A matrix is
called a stochastic matrix if its every column is a stochastic
vector. Denote by, respectively, L r

n and L r
m×n the sets of

n-dimensional stochastic vectors and m× n stochastic ma-
trices. W[m,n] represents an mn×mn swap matrix defined in
Cheng & Qi (2007), Cheng, Qi & Li. (2011). 1n (0n) is a
column vector in Rn with all of its elements being 1 (0).
diag{M1,M2, . . . ,Mn} represents a diagonal matrix with the
i-th diagonal as Mi. For two m× n matrices A = (ai j) and
B = (bi j), matrix disjunction A∨B and conjunction A∧B
mean m×n matrices with the (i, j)-th element being ai j ∨bi j
and ai j ∧bi j, respectively, where ∨ and ∧ are two traditional
logical operators, disjunction and conjunction, respectively.

Definition 1 (Cheng, Qi & Li. 2011) The semi-tensor prod-
uct of matrices M ∈ Ma×b and N ∈ Mc×d , denoted by
MnN, is defined as MnN = (M⊗ Il/b)(N ⊗ Il/c), where l
is the least common multiple of b and c, and ⊗ is the Kro-
necker product (Liu & Trenkler 2008).

The semi-tensor product of matrices in Definition 1 general-
izes the traditional matrix product: MnN =MN when b= c.
Therefore, in this paper the symbol “n” is omitted if no
confusion arises. Further discussions on properties and ap-
plications of the semi-tensor product can be found in Cheng
& Qi (2007), Cheng, Qi & Li. (2011).

Consider a Boolean control network with n nodes and s
updated rules for every node as follows:

x1(t +1) = f σ(t)
1 (X(t),U(t)),

x2(t +1) = f σ(t)
2 (X(t),U(t)),

...

xn(t +1) = f σ(t)
n (X(t),U(t)),

(1)

where xi(t) ∈ ∆ is the state, u j(t) ∈ ∆ is the control in-
put, f σ(t)

i : ∆n+m → ∆ is a Boolean function, i = 1,2, . . . ,n,
j = 1,2, . . . ,m, and σ(t) is a switching signal. X(t) =
(x1(t),x2(t), . . . ,xn(t)), U(t) = (u1(t),u2(t), . . . ,um(t)). In
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this paper, the studied control inputs u j(t)∈∆, j = 1,2, . . . ,m
are deterministic and free Boolean sequences, as the first
kind of control considered in Li & Sun (2011). {σ(t)|t ≥ 0}
is modeled as a discrete time homogeneous Markov chain
with the finite mode set S = {1,2 . . . ,s} and its transition
probability matrix Λ = (λi j)s×s is given by

λi j = Pr{σ(t +1) = j|σ(t) = i}, (2)

where λi j ≥ 0 for i, j ∈ S and ∑s
j=1 λi j = 1 for any i ∈ S .

In this setting, switching-based Boolean function f σ(t)
i is in

the possible update rule set { f 1
i , f 2

i , . . . , f s
i } and f σ(t)

i = f j
i

when σ(t) = j for j ∈S . Network (1) is called an MJBCN.

Via semi-tensor product, the following lemma is presented,
which is applied to convert Boolean networks into an alge-
braic form similar to that of linear systems.

Lemma 1 (Cheng & Qi 2007) Let f (x1,x2, . . . ,xn) ∈ ∆ be
a Boolean function with xi ∈ ∆, i = 1,2, . . . ,n. There exists
a unique matrix M f ∈ L2×2n , called the structure matrix of
f , which satisfies f (x1,x2, . . . ,xn) = M f nn

i=1 xi := x1 nx2 n
· · ·n xn.

Subsequently, by Lemma 1, MJBCN (1) can be equivalently
transformed into an algebraic form as follows (Cheng & Qi
2007, Cheng et al. 2011):

x(t +1) = Fσ(t)u(t)x(t), (3)

where x(t) = nn
i=1xi(t) ∈ ∆2n , u(t) = nm

i=1ui(t) ∈ ∆2m .
Fσ(t) ∈ L2n×2n+m is called the transition matrix of network
(1). The definition of controllability with probability one is
given based on the algebraic form (3) in the following.

Definition 2 (Li & Sun 2011, Liu et al. 2015) Consider
MJBCN (3). Given the initial state x0 ∈ ∆2n and the destina-
tion state xd ∈ ∆2n , xd is controllable from x0 at time N ≥ 1
with probability one if there exists a sequence of determin-
istic controls u(0), u(1), . . . ,u(N − 1) such that under any
initial distribution of σ(t),

Pr{x(N) = xd |x(0) = x0}= 1. (4)

The aim of this paper is to derive some equivalent conditions
to verify whether there exists a sequence of controls steering
a given initial state x0 to a required state xd at time N with
probability one, and to determine the minimal controllable
time, i.e., the minimal N > 0 satisfying (4).

3 Main results

In this section, controllability of MJBCNs is first discussed
and then a new maximum principle is proposed to establish
a necessary condition for the minimal controllable time.

Consider the algebraic expression (3) of (1). Then, reviewing
some basic results of probability theory and Markov jump
systems (Borovkov 2013, Costa et al. 2006) and denoting
ξi(t) = E{x(t)1{σ(t)=i}} where 1{σ(t)=i} stands for the in-
dicator function of the set {σ(t) = i} and i ∈ S , it can be
obtained that E{x(t)}= E

{
∑s

i=1 x(t)1{σ(t)=i}
}
= ∑s

i=1 ξi(t),
and

ξ j(t +1) =
s

∑
i=1

E{x(t +1)1{σ(t+1)= j}1{σ(t)=i}}

=
s

∑
i=1

λi jFiW[2n,2m]E{x(t)1{σ(t)=i}}u(t)

=
s

∑
i=1

λi jF̃iξi(t)u(t),

where F̃i = FiW[2n,2m]. Let ξ (t) = (ξ T
1 (t), . . . ,ξ T

s (t))T , then

ξ (t +1) = (ΛT ⊗ I2n)diag{F̃1, F̃2, . . . , F̃s}ξ (t)u(t)
= F̃ξ (t)u(t), (5)

where F̃ = (ΛT ⊗ I2n)diag{F̃1, F̃2, . . . , F̃s} ∈ Ms2n×s2n+m .

Remark 1 The algebraic expression (5) cannot be obtained
by simply taking expectation on both sides of (3) since the
probability distribution of σ(t) is not easy to get. Besides,
probabilistic Boolean networks studied in Li & Sun (2011),
Liu, Chen, Lu & Wu (2015) can be viewed as a special
case of MJBCNs. The reason is as follows. Consider an
arbitrary probabilistic Boolean control network, in which
there are s subnetworks admitting a probability distribution
as π = (π1,π2, . . . ,πs). If one associates the probabilistic
Boolean control network with a Markov chain {σ(t)|t ≥ 0}
with its transition probability matrix being Λ = 1s ⊗π , then
this probabilistic Boolean control network is an MJBCN.

Remark 2 By now, MJBCN (1) is equivalently converted
into an algebraic form (5) similar to that of typical Boolean
control networks. However, it should be pointed out that the
state space of (5) is no longer ∆s2n , which is different from
that of typical Boolean control networks. The original state
variable x(t) is in ∆2n , that is, the state variable x(t) is a 2n-
dimensional vector with only one element equaling 1 and the
others 0, which implies that 1T

2nx(t) = 1. Hence, one obtains
1T

2n E{x(t)} = 1, and 1T
s2n ξ (t) = ∑s

i=1 1T
2nξi(t) = 1. That is,

ξ (t) ∈ L r
s2n . Moreover, based on the construction of F̃, it

can be obtained that

1T
s2n F̃ = 1T

s2n(ΛT ⊗ I2n)diag{F̃1, F̃2, . . . , F̃s}
= 1T

s2n diag{F̃1, F̃2, . . . , F̃s}
= 1T

s2n+m ,

1T
s2n F̃N = 1T

s2n+m F̃N−1

= (1T
s2n ⊗1T

2m)(F̃ ⊗ I2m)F̃N−2

= 1T
s2n+2m F̃N−2 = · · ·

= 1T
s2n+Nm .
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Thus the transition matrix F̃, as well as its any power F̃N , is
a stochastic matrix. Therefore, the state variable and tran-
sition matrix in the algebraic expression (5) of (1) remain
the property of column sum being equal to 1, although their
elements do not attain 1 or 0 any more.

To discuss controllability, first we assume that the initial
state is x0 = δ α

2n and the destination state is xd = δ β
2n for

given α ,β ∈ {1,2, . . . ,2n}. The following result is presented
based on the algebraic expression (5).

Lemma 2 Consider MJBCN (3). xd is controllable from x0
at time N with probability one if and only if under any initial
distribution of σ(t), (1T

s ⊗ I2n)ξ (N) = xd .

Proof. Combining Definition 2 and the definition of expecta-
tion, condition (4) is equivalent to E{x(N)|x(0) = x0}= xd .
Taking the notation of ξ (t) into consideration, one has for
the given x0, E{x(N)}= ∑s

i=1 ξi(N) = (1T
s ⊗ I2n)ξ (N). The

proof is thus completed. �

Theorem 1 Consider MJBCN (3). xd is controllable from
x0 = δ α

2n at time N with probability one if and only if xd ∈
Col(ΦN), where

ΦN =
(
(1T

s ⊗ I2n)F̃Nδ α
s2n
)∧(

(1T
s ⊗ I2n)F̃Nδ 2n+α

s2n

)
∧

· · ·
∧(

(1T
s ⊗ I2n)F̃Nδ (s−1)2n+α

s2n

)
.

Proof. Necessity: From Lemma 2, under any initial dis-
tribution of σ(t), (1T

s ⊗ I2n)ξ (N) = xd . Assume that the
initial distribution of σ(t) is Pr{σ(0) = i} = pi with
any nonnegative numbers pi’s satisfying ∑s

i=1 pi = 1.
Note that ξi(0) = E{x(0)1{σ(0)=i}} = piδ α

2n and ξ (0) =
(ξ T

1 (0),ξ T
2 (0), . . . ,ξ T

s (0))T , then

ξ (0) = (p1(δ α
2n)T , p2(δ α

2n)T , . . . , ps(δ α
2n)T )T

= p1δ 1
s δ α

2n + p2δ 2
s δ α

2n + · · ·+ psδ s
s δ α

2n

=
s

∑
i=1

piδ
(i−1)2n+α
s2n . (6)

Consider the dynamics of ξ (t) in (5). By iteration, it leads to

ξ (N) = F̃ξ (N −1)u(N −1) = · · ·
= F̃Nξ (0)u(0) · · ·u(N −2)u(N −1)

=
s

∑
i=1

piF̃Nδ (i−1)2n+α
s2n u(0) · · ·u(N −2)u(N −1).

Accordingly, for any nonnegative numbers pi’s satisfying

∑s
i=1 pi = 1, one gets

(1T
s ⊗ I2n)

s

∑
i=1

piF̃Nδ (i−1)2n+α
s2n u(0) · · ·u(N −2)u(N −1)

= (1T
s ⊗ I2n)ξ (N)

= xd . (7)

That is, for any required pi’s, an integer h ∈ {1,2, . . . ,2Nm}
exists such that

xd = Colh

(
s

∑
i=1

pi(1T
s ⊗ I2n)F̃Nδ (i−1)2n+α

s2n

)
. (8)

Recalling Remark 2, we note that F̃N ∈ L r
s2n×s2n+Nm , then

(1T
s ⊗ I2n)F̃Nδ (i−1)2n+α

s2n ∈ L r
2n×2Nm . Thereby, xd equal-

s Colh((1T
s ⊗ I2n)F̃Nδ (i−1)2n+α

s2n ) for any i ∈ S , which is
equivalent to xd ∈ Col(ΦN).

Sufficiency: If xd ∈ Col(ΦN), then an integer h exists such
that for any i ∈ S , xd = Colh

(
(1T

s ⊗ I2n)F̃Nδ (i−1)2n+α
s2n

)
.

Immediately, (8) holds for any nonnegative pi’s satisfying
∑s

i=1 pi = 1. From the analysis on necessity, xd is controllable
from x0 = δ α

2n at time N with probability one. �

Remark 3 From the proof of Theorem 1, xd is control-
lable from x0 at time N with probability one, and the re-
quired control sequence can be designed as u(0) = δ i1

2m ,
u(1) = δ i2

2m , . . . ,u(N −1) = δ iN
2m , where i1, i2, . . . , iN are uni-

formly determined by δ i1
2m n · · ·n δ iN−1

2m n δ iN
2m = δ h

2Nm , i.e.,
(i1−1)2(N−1)m+ · · ·+(iN−2−1)22m+(iN−1−1)2m+ iN = h
with h satisfying (8). In addition, the result in Theorem 1
looks similar to Theorem 3.1 in Li & Sun (2011), howev-
er, the derivations are rather different. The results in Li &
Sun (2011) are not applicable for dealing with the network
studied in this paper.

From Theorem 1, to check whether xd is controllable from
x(0) = δ α

2n at time N with probability one, we need to com-
pute ΦN and check whether the condition xd ∈ Col(ΦN) is
satisfied. Moreover, if xd =Colγ(ΦN), it can be seen from the
proof of Theorem 1 that the product u(0)u(1) · · ·u(N−1) =
δ γ

2Nm . By the results in (Cheng & Qi 2007), the control se-
quence u(0), u(1), . . ., u(N−1) can be uniquely determined.
Despite of this, the dimensions of matrices in Theorem 1
may be very large, restricting applicability of the method
when n,m and N are large. To have a more practical so-
lution for the controllability problem, next we shall tackle
this problem from a different angle by constructing a new
controllable matrix.

Note that the dynamics in (5) can be rewritten as

ξ (t +1) = Lu(t)ξ (t), (9)
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where L = F̃W[2m,s2n] ∈ L r
s2n×s2n+m . Denote

Θ1 = {(1T
s ⊗ I2n)L1,(1T

s ⊗ I2n)L2, . . . ,(1T
s ⊗ I2n)L2m}, (10)

where [L1,L2, . . . ,L2m ] =L and Li ∈L r
s2n×s2n , i= 1,2, . . . ,2m.

For a positive integer k, define

Θk = {(1T
s ⊗ I2n)Lik Lik−1 · · ·Li1 | i j = 1,2, . . . ,2m,

j = 1,2, . . . ,k}, (11)

⌊Θk⌋=
{
(⌊∆⌋δ 1

s )∧ (⌊∆⌋δ 2
s )∧·· ·∧ (⌊∆⌋δ s

s )|∆ ∈ Θk
}

(12)

where for a matrix A = (ai j), ⌊A⌋ represents that every el-
ement ai j of matrix A is mapped to its corresponding floor
function ⌊ai j⌋, i.e., the largest integer less than or equal to
ai j. Let Rk = ⟨⌊Θk⌋⟩ denote the disjunction of all the matri-
ces in the set ⌊Θk⌋, then Rk ∈ M2n×2n is a 0-1 matrix since
every element in ⌊Θk⌋ is not only in M2n×2n but also a 0-1
matrix. Another equivalent condition for controllability with
probability one can be derived as follows.

Theorem 2 Consider MJBCN (3). xd = δ β
2n is controllable

from x0 = δ α
2n at time N with probability one if and only if

the (β ,α)-th element of RN is

(RN)β ,α = 1. (13)

Proof. Necessity: If xd = δ β
2n is controllable from x0 = δ α

2n

at time N with probability one, then by Lemma 2 and (9),
there exists a control sequence u(0) = δ i1

2m , u(1) = δ i2
2m , . . .,

u(N −1) = δ iN
2m , such that

δ β
2n = (1T

s ⊗ I2n)ξ (N)

= (1T
s ⊗ I2n)Lu(N −1)ξ (N −1)

= (1T
s ⊗ I2n)LiN ξ (N −1) = · · ·

= (1T
s ⊗ I2n)LiN LiN−1 · · ·Li1 ξ (0).

Let the distribution of σ(0) be Pr{σ(0) = i} = pi for any
nonnegative numbers pi’s satisfying ∑s

i=1 pi = 1. By the
proof of Theorem 1, we have ξ (0)=∑s

i=1 piδ
(i−1)2n+α
s2n . Thus

δ β
2n =

s

∑
i=1

pi(1T
s ⊗ I2n)LiN LiN−1 · · ·Li1 δ (i−1)2n+α

s2n , (14)

which means that for any i ∈ S , the (β ,(i− 1)2n +α)-th
element of (1T

s ⊗ I2n)LiN LiN−1 · · ·Li1 is 1. That is, for any
i∈S , the (β ,α)-th element of ⌊(1T

s ⊗I2n)LiN LiN−1 · · ·Li1⌋δ i
s

is 1. From the definition of RN based on ΘN and ⌊ΘN⌋ in
(11), (12), one can get (13).

Sufficiency: If condition (13) holds, then there exists a
sequence of integers i1, i2, . . . , iN such that for any i ∈ S ,
the (β ,α)-th element of ⌊(1T

s ⊗ I2n)LiN LiN−1 · · ·Li1⌋δ i
s is

1, which implies that (1T
s ⊗ I2n)LiN LiN−1 · · ·Li1 δ i

sδ α
2n = δ β

2n ,

since (1T
s ⊗ I2n)LiN LiN−1 · · ·Li1 is a stochastic matrix.

Therefore, under any initial distribution of σ(t) given as
Pr{σ(0) = i}= pi for any nonnegative numbers pi’s satis-
fying ∑s

i=1 pi = 1, one can get

(1T
s ⊗ I2n)ξ (N) = (1T

s ⊗ I2n)LiN LiN−1 · · ·Li1

s

∑
i=1

piδ
(i−1)2n+α
s2n

= δ β
2n .

The proof is thus completed. �

Remark 4 The Markovian switching signal σ(t) is not as-
sumed to be ergodic; that is, σ(t) may not admit a station-
ary distribution (π1,π2, . . . ,πs) with πi > 0 for any i ∈ S .
Thus, at any time t, Pr{σ(t) = i} may be zero for some
i ∈ S . From this, one cannot claim that the β -th element
of ξi(N) is 1 when xd = δ β

2n is controllable from x0 at time
N with probability one. On the other hand, as explained in
Remark 1, probabilistic Boolean control networks are a spe-
cial class of MJBCNs. Therefore, our results obtained in this
paper are applicable for studying controllability of proba-
bilistic Boolean control networks (Li & Sun 2011, Liu et al.
2015), while the results in Li & Sun (2011), Liu, Chen, Lu
& Wu (2015) cannot be utilized to deal with the problem for
MJBCNs studied in this paper.

The dimension of F̃ involved in Theorem 1 is s2n × s2n+m

and hence the dimension of F̃N is s2n × s2n+Nm. By the
properties of semi-tensor product, the dimension of ΦN in
Theorem 1 is obtained as 2n × 2Nm. For Theorem 2, con-
sidering the notation of ΘN , there may be 2Nm matrices in
ΘN . However, since Li ∈ Ms2n×s2n for i = 1,2, . . . ,2m, ev-
ery matrix in ΘN is of dimension 2n × s2n. From the above
analysis, we can see that the large value of N may lead to
high-dimensional matrices involved in Theorem 1 and makes
the computation infeasible. In contrast, although the num-
ber of matrices in ΘN is large, the dimensions of matrices
in ΘN remain unchanged. The result of Theorem 2 therefore
has a winning margin from this perspective. Moreover, the
computational time complexities of Theorems 1 and 2 are,
respectively, O((s2n)3 ·2(2N−1)m) and O((s2n)3 ·N ·2Nm) in
the worst case. It can be seen that when N = 1 or N = 2,
m = 1, the computational time complexities of the result-
s in Theorems 1 and 2 are exactly the same; otherwise the
computational time complexity of the result in Theorem 2
is lower than that of Theorem 1.

To study the minimal controllable time, consider the equiv-
alent algebraic form (3) of (1). Since a payoff function
in a game can be described by a pseudo-Boolean function
(Cheng, He, Qi & Xu 2015), we define a cost function as-
sociated with (3) as

J(x(t f );u) = E{qT
σ(t f )

x(t f )}, (15)

where the terminal time t f and qi ∈ R2n
, i ∈ S , are fixed.
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The aim is to find a control sequence u(0),u(1), . . . ,u(t f −
1) steering the state trajectory of (3) from x(0) = x0 to a
terminal state x(t f ) such that J(x(t f );u) is maximal. This
can be viewed as an optimal control problem formulated as

maxuJ(x(t f );u) (16)

where the state x(t) and the control input u(t) are with
respect to equation (3). Here, if a control sequence u∗ =
{u∗(0),u∗(1), . . . ,u∗(t f − 1)} exists such that J(x∗(t f ),u∗),
where x∗(t) is the corresponding state trajectory, is maximal,
then u∗ is called an optimal control sequence. Reviewing the
maximum principle in Laschov & Margaliot (2011) deal-
ing with optimal control problem for deterministic Boolean
control networks, a new maximum principle for solving the
optimal control problem in (16) for MJBCNs can be derived.

Lemma 3 Assume that u∗ = {u∗(0),u∗(1), . . . ,u∗(t f − 1)}
is an optimal control sequence and x∗(t) denotes the corre-
sponding state trajectory. Let q = (qT

1 ,q
T
2 , . . . ,q

T
s )

T . Define
a mapping a : {1,2, . . . , t f }→ Rs2n

as

a(t) = (Lu∗(t))T a(t +1), a(t f ) = q (17)

and functions bh : {0,1, . . . , t f −1}→R, h = 1,2, . . . ,2m, as

bh(t) = aT (t +1)Lhξ ∗(t), (18)

where ξ ∗(t) corresponds to x∗(t). For any t ∈ {0,1, . . . , t f −
1}, if there exists an integer h ∈ {1,2, . . . ,2m} such that
bh(t̂)≥ b j(t̂) for any j ̸= h, then u∗(t) = δ h

2m .

Proof. With the description of ξ (t), one has

J(x(t f );u) =
s

∑
i=1

qT
i E{x(t f )1{σ(t f )=i}}= qT ξ (t f ). (19)

To develop an analytical characterization of the optimal con-
trols, based on (9), denote

Φ(t1, t2;u) = Lu(t1 −1)Lu(t1 −2) · · ·Lu(t2), t1 ≥ t2. (20)

Then ξ (t1)=Φ(t1, t2;u)ξ (t2). Fix any time t̂ ∈{0,1, . . . , t f −
1} and define a new control input as

u(t) =

{
ω, t = t̂,

u∗(t), otherwise,
(21)

where ω ∈ ∆2m and ω ̸= u∗(t̂). Based on the dynamics of
ξ (t) in (9), one gets that

J(x∗(t f );u∗)− J(x(t f );u)

= qT (ξ ∗(t f )−ξ (t f ))

= qT (Φ(t f , t̂ +1;u∗)Lu∗(t̂)ξ ∗(t̂)−Φ(t f , t̂ +1;u∗)Lωξ ∗(t̂))

= qT Φ(t f , t̂ +1;u∗)L(u∗(t̂)−ω)ξ ∗(t̂).

By utilizing a(t) and bh(t) defined in (17) and (18), one has

aT (t) = aT (t +1)Lu∗(t)

= aT (t +2)Lu∗(t +1)Lu∗(t) = · · ·
= aT (t f )Lu∗(t f −1) · · ·Lu∗(t +1)Lu∗(t)

= qT Φ(t f , t;u∗),

which derives that J(x∗(t f );u∗) − J(x(t f );u) = aT (t̂ +
1)L(u∗(t̂) − ω)ξ ∗(t̂). If there exists an integer h ∈
{1,2, . . . ,2m} such that bh(t̂) ≥ b j(t̂) for any j ̸= h,
then u∗(t̂) = δ h

2m , since for any ω = δ j
2m with j ̸= h,

J(x∗(t f );u∗) − J(x(t f );u) = aT (t̂ + 1)L(δ h
2m − ω)ξ ∗(t̂) =

bh(t̂)−b j(t̂)≥ 0. �

Consider the controllability problem again. Let qi = δ β
2n −

12n , i ∈ S , then J(x(N);u) = qT ξ (N) ≤ 0 since every ele-
ment of −q =−(qT

1 ,q
T
2 , . . . ,q

T
s )

T and ξ (N) is nonnegative.
If xd = δ β

2n is controllable from x0 at time N with probabil-
ity one, then the corresponding u maximizes J(x(N);u) =
qT

i δ β
2n = 0. Based on this, a necessary condition for the min-

imal controllable time is obtained.

Theorem 3 Assume that for network (3), xd = δ β
2n is con-

trollable from x0 at minimal time t f = N∗ with probability
one, and denote the corresponding control and state trajec-
tory by u∗ and x∗, respectively. Mapping a(t) is defined as
that in (17) with q = 1s⊗qi and qi = δ β

2n −12n . Then for any
t1 > t2,

aT (t1)ξ ∗(t1) = 0, (22)

aT (t1)ξ ∗(t2)< 0, (23)

where ξ ∗(t) corresponds to x∗(t) with the dynamics in (9).

Proof. Since J(x∗(N∗);u∗) = qT ξ ∗(N∗) = 0, one has

0 = qT ξ ∗(N∗) = qT Φ(N∗, t1;u∗)ξ ∗(t1) = aT (t1)ξ ∗(t1).

To prove the condition (23), suppose that there exists t2 < t1
such that aT (t1)ξ ∗(t2) ≥ 0. Owing to the nonnegativity of
ξ ∗(t) and −a(t) according to the dynamics in (17), it can
only hold that aT (t1)ξ ∗(t2) = 0, i.e.,

qT Φ(N∗, t1;u∗)ξ ∗(t2) = 0. (24)

Since q = 1s ⊗ qi with qi = δ β
2n − 12n , from (24), we have

(1T
s ⊗ (δ β

2n)T )Φ(N∗, t1;u∗)ξ ∗(t2) = 1T
s2n Φ(N∗, t1;u∗)ξ ∗(t2)

implying (δ β
2n)T (1T

s ⊗ I2n)Φ(N∗, t1;u∗)ξ ∗(t2) = 1, i.e.,
(1T

s ⊗ I2n)Φ(N∗, t1;u∗)ξ ∗(t2) = δ β
2n . Therefore, xd = δ β

2n

is controllable at time N∗ − t1 + t2 < N∗ with probability
one. This is contrary to the minimal controllable time N∗.
Therefore, the proof is completed. �
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Based on Theorem 3, if N∗ is the minimal control-
lable time, then aT (N∗)x∗(N∗) = qT x∗(N∗) = 0 and
aT (N∗)x∗(t) = qT x∗(t)< 0 for any t < N∗.

Remark 5 Unlike that in deterministic Boolean control
networks with finite and deterministic states, calculating
the controllable time is a challenging issue for stochastic
Boolean control networks. Although the studied MJBCN in
this paper can be equivalently converted into algebraic ex-
pressions (5) and (9), which are similar to that of Boolean
control networks, the state space and the transition matri-
ces are no longer ∆2n and logical matrices, respectively.
This leads to major difficulties in determining an upper
bound of the controllable time for MJBCNs. However, the
minimal controllable time can be verified by the conditions
in Theorem 3.

4 Examples

Example 1 Motivated by the fact that Boolean network-
s have been widely applied in genetic regulatory network-
s (Kobayashi & Hiraishi 2011), we consider a Markovian
jump network:{

x1(t +1) = f σ(t)
1 (x1(t),x2(t),u(t)),

x2(t +1) = f σ(t)
2 (x1(t),x2(t),u(t)),

(25)

where x1(t),x2(t) denote some gene states, u(t) represents
the factor determined by the external environment, and
σ(t) ∈ S = {1,2} is modeled as a Markov chain with its

transition probability matrix being Λ =

[
0.3 0.7

0.6 0.4

]
. The

possible update rules are: f1 ∈ {u∨ (x1 ∨ x2),u∨ (x1 ∧ x2)},
f2 ∈ {x1 ↔ x2,x1 ∨ x2}. By a simple computation, the tran-
sition matrices are obtained as F1 = δ4[1,4,4,3,3,4,4,3],
F2 = δ4[1,2,2,4,3,4,4,4]. Network (25) switches stochasti-
cally between two networks according to the Markov chain
{σ(t)|t ≥ 0}. Assume that the initial state x0 = δ 1

4 represents
a sick state. The purpose is to find a proper control such
that state variable is steered to (x1,x2) = (δ 2

2 ,δ 2
2 ) or xd = δ 4

4
corresponding to a desirable target, namely cell survival.

First, based on Theorem 1, after a computation by mathe-
matical software (MATLAB in this paper), one has

xd = δ 4
4 ∈ Col

(
(1T

2 ⊗ I4)F̃2δ 1
8 ∧ (1T

2 ⊗ I4)F̃2δ 5
8

)
,

which means that for network (25), xd = δ 4
4 is controllable

from x0 = δ 1
4 at N = 2 with probability one.

The dimension of F̃N increases with N, which can be very
high. To avoid having an extra-large matrix, we use the
result in Theorem 2 to discuss the controllability. With the

obtained R1 and R2 where

R1 =


1 0 0 0

0 0 0 0

1 0 0 0

0 1 1 0

 , R2 =


1 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

 ,

one finds that (R2)4,1 = 1. Then by Theorem 2, xd = δ 4
4 is

controllable from x0 = δ 1
4 at N = 2 with probability one.

For network (25), n = 2, m = 1, s = 2 and the controllable
time is N = 2. Thus the computational times for verifying
the conditions in both Theorems 1 and 2 are O(212) in the
worst case. The actual computational times for calculating
the conditions in Theorems 1 and 2 are, respectively, about
0.001009 and 0.000589 seconds by MATLAB running on
i7-7500U CPU@2.7 GHz, which is reasonably short.

On the other hand, let q1 = q2 = δ 4
4 − 14 in (15). As ana-

lyzed above, at time t f = 2, the cost function Jmax = 0. In
what follows, the maximum principle of MJBCNs in Lem-
ma 3 and Theorem 3 is applied to validate whether t f = 2 is
the minimal controllable time and meanwhile determine the
optimal control. By a simple computation, since a(2) = q
and

b1(1) = aT (2)L1ξ ∗(1) =−[1 0 0 1 1 1 1 0]ξ ∗(1),

b2(1) = aT (2)L2ξ ∗(1) =−[1 0 0 1 1 0 0 0]ξ ∗(1),

one has that b2(1)≥ b1(1). Thus u∗(1) = δ 2
2 . Then a(1) =

(Lu∗(1))T a(2) = −[1 0 0 1 1 0 0 0]T . Assume that the
initial distribution of σ(t) is Pr{σ(0) = i} = pi, i = 1,2,
with p1+ p2 = 1. Then ξ ∗(0) = p1δ 1

8 + p2δ 5
8 . From b1(0) =

aT (1)L1ξ ∗(0) = −1 and b2(0) = aT (1)L2ξ ∗(0) = 0, one
can also get that u∗(0) = δ 2

2 . Moreover, ξ ∗(1) = L2ξ ∗(0)
and a(0) = −[0 0.3 0.3 0 0 0.6 0.6 0.6]T . It follows that
qT ξ ∗(2) = 0, qT ξ ∗(1) < 0 and qT ξ ∗(0) < 0. That is, by
Theorem 3, t f = 2 is the minimal controllable time from
x0 = δ 1

4 to xd = δ 4
4 with probability one.

Example 2 The lac operon in Escherichia coli has been
studied extensively and used as a model system in gene
regulation (Jacob & Monod 1961). There are many math-
ematical models, most of which are differential equations,
describing the behavior and interactions of the lac gene. It
has been proved that information of network topology and
interaction type (activation/inhibition) is sufficient for cap-
turing dynamics of gene networks (Albert & Othmer 2003).
Therefore, Boolean networks provide an effective tool for
conducting qualitative analysis on genetic networks (Jacob
& Monod 1961). A reduced Boolean network whose dy-
namics is equivalent to that of the original model of the lac
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operon is considered as follows (Jacob & Monod 1961):
M(t +1) = ¬Ge(t)∧ (L(t)∨Lm(t)),

L(t +1) = M(t)∧Le(t)∧¬Ge(t),

Lm(t +1) = ((Lem(t)∧M(t))∨Le(t))∧¬Ge(t),

(26)

where M, L, Lm, Ge, Le, and Lem represent lac mRNA,
lactose, medium concentration of lactose, extracellular glu-
cose, low concentration of extracellular lactose, and medi-
um concentration of extracellular lactose, respectively. As in
Jacob & Monod (1961), (Le,Lem) attains three values, i.e.,
(Le,Lem) ∈

{
(δ 2

2 ,δ 2
2 ),(δ 2

2 ,δ 1
2 ),(δ 1

2 ,δ 1
2 )
}

(here, δ 1
2 and δ 2

2
are equivalent to 1 and 0, respectively). If the extracellular
lactose is in a stochastic circumstance modeled by a Markov
chain σ(t), then (26) becomes an MJBCN as in (1) with Ge
acting as a control input. This MJBCN switches among the
following three subnetworks:

M(t +1) = ¬Ge(t)∧ (L(t)∨Lm(t)),

L(t +1) = δ 2
2 ,

Lm(t +1) = δ 2
2 ,

(27)


M(t +1) = ¬Ge(t)∧ (L(t)∨Lm(t)),

L(t +1) = δ 2
2 ,

Lm(t +1) = M(t)∧¬Ge(t),

(28)


M(t +1) = ¬Ge(t)∧ (L(t)∨Lm(t)),

L(t +1) = M(t)∧¬Ge(t),

Lm(t +1) = ¬Ge(t),

(29)

and the transition probability matrix of σ(t) is given as

Λ =


0.3 0.4 0.3

0.2 0.5 0.3

0.4 0.3 0.3

 . In these settings, the operon is ON

when M = δ 1
2 and OFF when M = δ 2

2 . The research problem
is whether the operon can be streered from ON to OFF by
a sequence of extracellular glucose Ge.

With this aim, let x(t) = M(t)L(t)Lm(t) and u(t) = Ge(t),
then the MJBCN model in this example can be converted in-
to the form as (3) and the studied problem is changed to the
controllability problem from δ 4

8 ,δ 3
8 ,δ

2
8 ,δ 1

8 to δ 8
8 ,δ

7
8 ,δ 6

8 ,δ
5
8

with probability one. Here, we just consider whether the state
δ 8

8 is controllability from δ 4
8 with probability one. By The-

orem 1 and some computation, the condition δ 8
8 ∈ Col(ΦN)

for N = 2 holds; that is, the state δ 8
8 is controllability from

δ 4
8 with probability one.

5 Conclusion

In this paper, controllability of MJBCNs was investigated by
the semi-tensor product of matrices. By converting MJBC-

Ns into a deterministic network with the dynamics similar to
that of typical Boolean control networks, one necessary and
sufficient condition was obtained by iteration. To lower the
dimensions of involved matrices, another equivalent condi-
tion was derived based on a newly defined controllable ma-
trix. Moreover, to deal with the minimal controllable time, a
necessary condition was derived by utilizing the maximum
principle of MJBCNs. Future research of interest is to study
the minimal controllable time via a more general condition
that is independent of the optimal control and optimal trajec-
tory. Besides, observability is one of the fundamentally im-
portant topics in Boolean networks. To our best knowledge,
observability of deterministic Boolean networks has four d-
ifferent definitions as stated in Zhang & Zhang (2016). As
pointed out in Zhang & Zhang (2016), the methods and tech-
niques dealing with observability are different from those
tackling controllability. Observability of MJBCNs is anoth-
er topic which shall be of our future research interest.
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