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Abstract—In this paper, a cost minimization problem is formu- and hard to predict. Although the integration of energy-stor
lated to intelligently schedule energy generations for miogrids  ages may to a certain extent alleviate the uncertainty probl
equipped with unstable renewable sources and energy stores. 5,sed by the fluctuations of renewable energies, it further
In such systems, the uncertain renewable energy will impose . . ’ .
unprecedented scheduling challenges. To cope with the flucite complicates the SCh_edu“ng process ,Of the.SyStem Ope_'rat'on
nature of the renewable energy, an uncertainty model basedro Because of these unique challenges, it remains an operntessue

renewable energies’ moment statistics is developed. Spically, design robust and cost-effective energy generation sdingdu
we obtain the mean vector and second-order moment matrix schemes for microgrids.

according to predictions and field measurements and then defe

uncertainty set to confine the renewable energy generatiorthe A, Related Work

uncertainty model allows the renewable energy generationisiri- . . L
butions to fluctuate within the uncertainty set. We develop bance ~ There exists some literature taking into account renewable

constraint approximations and robust optimization approaches energy uncertainties when scheduling the energy genaratio
based on a Chebyshev inequality framework to firstly transfom  in microgrids. Such work can be mainly classified into two
and then solve the scheduling problem. Numerical results tsed categories: the stochastic optimization based approdches

on real-world data traces evaluate the performance bounds fo o
the proposed scheduling scheme. It is shown that the tempdra [6] and robust optimization based approaches{[L0]. the

correlation information of the renewable energy within a proper ~Stochastic optimization approaches explicitly incorpera
time span can effectively reduce the conservativeness of ¢h probability distribution function of the uncertainty, artlidey

solution. Moreover, detailed studies on the impacts of difrent often rely on enumerating discrete scenarios of the uriogyta
factors on the proposed scheme provide some interesting Bt regjizations. Such approaches mainly have two limitations
which shall be useful for the policy making for the future . . e .
microgrids. FII’.S.t, it may be. difficult and cc_>st|y to obtain an accur:_ﬂetpro
ability distribution of uncertainty. Second, the solutioray
only provide probabilistic guarantees to the system réiigh
To obtain a highly reliable guarantee requires a large numbe
The power grid is being restructured to allow high penetraf samples, which poses substantial computational chgien
tion of distributed generators to become more environntentaln some recent studies, robust optimization has received
friendly and cost effective. The growth and evolution of thgrowing attention as a modeling framework for optimization
future electricity grids is expected to come with the plugla under uncertainties. Instead of postulating explicit jartmlity
play of the basic structure named microgrid. Microgrids cadistribution, robust optimization confines the random aale
operate in grid-connected mode, where they are allowedito a pre-defined uncertainty set containing the worst-case
import power from the electricity grid, or in islanded modescenario. For instance, in7]-[10], uncertainties in renew-
in which they are isolated from the upstream power grid arable energy generation are presented as interval valués wit
utilize their local generators as the source of power suppieterministic lower and upper bounds, and the framework
when needed. There are world-wide deployments of pildeveloped in]1]is incorporated to solve the problem. With no
microgrids, such as those reported i &nd [2]. requirement for an explicit probability distribution, wertainty
Energy generation scheduling to achieve reliable and eaan be characterized more flexibly. The conservativeness of
nomic power supply is an essential component in microgridbe solution can also be easily controlled and the problem
Two features of microgrids are the integrations of largés computationally tractable both practically and theicedly
scale renewable sources and energy storage systems. Savemm for large scale problems.
features, however, impose significant challenges on thiges In our study, the robust optimization concept is also ap-
of intelligent control strategies for microgrids. Traditial plied to tackle the renewable energy uncertainties in snerg
generation scheduling schemes are typically based ongperfgeneration scheduling problem of microgrids. Differerdnfr
predictability of energy generation, which is hardly thesea the previous robust optimization workgH{ 10 which usually
in the microgrids as the renewable energies are highly il®latconfine the uncertainty within a pre-defined lower and upper

I. INTRODUCTION



bounds, in this paper, we adopt first- and second-order mbmen Microgrid System

statistics to characterize the renewable energy uncégsjn ﬂ ower Units \

which can provide more details in describing the underlying i

uncertainty. Moreover, moment statistics are very easy to @ @ W ;
ouseholds

obtain in practice.

B. Main Contributions

In this paper, by extending our previous work?], [13], Electricity
we consider a robust optimization-based energy generation 4
scheduling problem in a microgrid scenario considering the Blectricity =[~
uncertainty of renewable energy and integration of energy ' . )
storages. The main contributions of this paper can be briefly Q“'”rpm‘e‘s Energy Storage Sy“y
summarized as follows:

« We adopt the moment statistic model to capture the fluc- Fig. 1: The architecture of a typical microgrid system.
tuant nature of the renewable energy. To the best of our
knowledge, this is the first time that moment statistics are
utilized to model and analyze the properties of renewabfeurrently the microgrid is operated in the islanded mode.
energy generation. In addition, moment statistics are eaBje illustration of the microgrid system is shown in Fig.
to obtain in practical applications. Compared with th&he particulars of the system operation are explained in the
distribution uncertainty model proposed in our previoullowings.
work [12], [13], the microgrid systems do not need to We divide time into discrete time slots with an equal length.
analyze a large amount of historical data by adopting tt&t A denote the set of conventional power generators. Further
moment statistic model. denote the start up cost for turning on a generatasc:, the

« The energy generation scheduling problem is formulaténk cost of maintaining the generatorin active mode for
into a cost minimization problem with random variable§ne unit of time as?, and the marginal cost for the generator
in the constraints. We develop chance constraint approxiio produce one unit of electricity a§'. Adopting a general
mations and robust optimization approaches to transfoawer unit model, we define the energy generation scheduling
the problem into a solvable form. vectorx, and state vectoy, as follows:

o To the best of our knowledge, this work is the first to 1 9 o 1 9 o
investigate how the temporal-correlation information of Xa = [Ta) Ta - Tq | ANAYa = [Ya, Yar -V |, (1)
renewable energy impacts the energy generation schedyhere # > 1 is the scheduling horizon which indicates the
ing in microgrids. number of time slots ahead that are taken into account for

« Numerical results based on real-world data evaluate thecision making in the energy generation scheduling. Fcn ea
impacts of different parameters and performance bounglsming time sloth € H = [1,2,..., H], we use a binary
of the proposed scheduling scheme. A novel observariabley! = 0/1 to denote the state of generatoloff/on)
tion is that the temporal-correlation information of theind a variable:” to denote the dispatched load to power unit

renewable energy can help to effectively reduce thg For each unitz with a maximum power output capacity
conservativeness of the problem solving and imprO\@;naw and a minimum stable outpu”*", we have

the performance of the proposed generation scheduling P , P
scheme. Yo - B < xy Syo - B 2)

~ The rest of this paper is organized as follows. Section |5 our model, we assume that the renewable energy har-
introduces the particulars of the system operation. Ini§ect yested from solar panels will be first saved into energy g@ra
IIl, we introduce the mathematical depiction of the energy gedevices for future use, i.e., a solar-plus-battery system i
eration scheduling problem and the moment statistic moflel ¢ynsidered. The household can obtain electricity from gyner
renewable energies. Sectidvi presents the chance constraingiorages in an on-demand manner. Denote the household
the demand balancing and renewable energy uncertainties. , as ph and V", respectively. A central requirement of

The parameters and calibration data are drawn from redtwoghe electricity could meet the demand at all time slots. This
statistics. Finally, we conclude our paper and discussuh&é ctatement can be described as

work directions in Sectiorv].

H
Il. SYSTEM MODEL > al+Vh=D" Vhen. (3)
h=1

We consider a microgrid comprising a number of homoge-
neous conventional power units, a renewable energy geémerat_et B” denote the amount of energy stored in the battery. To
system (e.g., solar panels) and an energy storage systemsure that there is always backup power for emergency use,




we require the battery to be maintained at or above its InitiAnother difficulty in solving problem?) is the indeterminacy

level at the end of the scheduling horizon: of renewable energy generatiogé existing in @). Note
H H that to optimize over the space defined bf @mounts to
th _ Zgh <0, (4) solving an optimization problem with potentially large or
el el even infinite number of constraints. Obviously, this restlian

. . . of uncertainties is intractable. Next, we adopt the moment
where¢ € [0,£m9*] is the random variable representing th P

_statistic model to capture the uncertaintiestbf
amount of energy harvested from renewable energy devices

(e.g., solar panels), argd*** denotes the maximum generation -
capacity of the renewable energy generators. A batteryé& le B. Moment Statistic Model
can never go beyond the maximum capacity or drop bé&low |t is generally difficult to characterize the renewable gyer
Therefore we have that generation. However, we may measure the variability of re-
0 < Bh < gmax ) newable energy generation using its mean and second-order
- - ’ moments, which are quite easy to obtain from field mea-
where B™%* represents the maximum capacity of the energgurements. Mathematically, we may assume that renewable
storage devices. Last, the battery level varies over time asenergy generatio = [¢!, ..., ] is confined by the following
uncertainty set:

Bh+1 _ Bh +§h _ Vh. (6)
In this paper, we assume that the energy storage device is of  P(y, S) = {]}»E € Py £-P(d¢) = p, 9)
a large size. Under such case, constraifjsaphd ©) can be R™
relaxed when scheduling the energy generation in micregrid ¢eTP(dg) = S},
[14]. -
[1l. PROBLEM FORMULATION wherep € R¥ and S € S#, S is the set of symmetric
A. Cost Minimization Formulation matrixes with dimensioi#/, while P, represents the set of all

The microgrid aims to minimize the operation cost ofistributions onR¥. Thus,P(p, S) contains all distributions.
the whole system over the entire time horizon. The co at share the same meﬁran_d secon_d-order moment matrix
minimization formulation is defined as follows - The _tempor_al-correla_ted information of _renewable energy
o gelnerat;]on(;_s mcluldeg |r£;j e.g., rt]he two IIlnles ap(r)]ye and
Z Z [c;” e yZ,l)q elow the diagonal ofS indicate the correlation within one

XYV a time slot. With this moment statistic model, we are now ready
h=1a€cA . .. .
N to transform the constrain®) to allow efficient solution of
S.t. (2) - (4)3 Ya € {Oa 1} (7) (8)

Ve RS, h e Hya € A,

whereX = [x1,Xa, ..., Xa, ..]T andY = [y1,y2, ., Ya,..|T IV. OPTIMIZATION ALGORITHM

are matrices of decision vectoss, and y, for a € A,
respectively;V = [V1 V2 ... Vh ] is the vector of de-
cision variablesV" for h € #; (-)* is a function where  As shown in {), the energy storage balance can be ex-
(z)* = max(0, z). The cost function comprises the operatiopressed asy_,, V" — =17 ¢ < 0. In practice, a decision
and start-up costs of conventional power generators for tbeiterion is to properly set decision vect® to allow good
entire time horizonH. confidence that4) is satisfied. To achieve that, we may intro-
A difficulty in solving this problem lies in the correlationduce a small value to control the degree of conservativeness
term (y? — y"~1)*. By introducing an auxiliary variable” and change the above expression into a chance constraint

a

into the problem formulation, an equivalent expressionwan

A. Robust Approach for Constraint (4)

obtained as P(XH: ¢h < XH: Vh) < (10)
u h=1 h=1 ="
win S [aralvdyk v st] ©
XY.av h=1a€A wheree is the fault tolerance limit of the microgrid, represent-
s.t. >0, 2>yl -yt ing the acceptable probability that the desirable poweplup
(2) — (4), 4, 2" € {0,1} is not attained. Then we can have the robust expression that
ah Ve RS, h e Hya € A, L
. . . . * P < V) <e 11
whereZ 4 i is the matrix of auxiliary variable’ for a € A, m;ﬁ‘as) (hz::lg }; )< (11)

h € H. The objective for introducing an auxiliary variable
2" into problem formulation 7) is to have an equivalent, Theorem 1: Solving the left part of inequality 1(1) is

a

solvable problem without the correlation tef® — y”~')*. equivalent to solving the following semidefinite programmi

a



problem (SDP): tolerance limite, respectively. The comparison results help
shrink the search region as shown in lines 6-9.

k
max Y A (12)
—y Algorithm 1 Search for robust EA decision threshaid
st. zeRF Z,eST N eR Vi=1,2,..,k Input: Mean vectoru; Second-order moment matri
alz > b\ Vi=1,2,.. k Search radiup; Battery balance fault tolerant limé;
Computational accuracy toleranee
ST K Output: Robust EA decision threshold such thigg(b}) = e;
pro 1 : Begin

1

2: initialize b1_ =0,b1" =p
3: while |by_ — b1 | >¢

4 seth = b=t
5
6
7
8

k
> (% :
< >>-O Vi=1,2,....k

whereay,,,, = —1-[1,1,..,17; [az,...,ams1] = =1 - 1y;
[agt2,...;aom+1] = Iy, and1y is the identity matrix with
dimensionH; by = S0, V" [by,....,bga] = [0,..,0]7;
[bE1 2, bog 1] = €M% . [1,1,...,1]T, and obviouslyk =
2H + 1.

compute K¢ (b1) by solving the SDP problemlp)
if (Kg(b’l) —e) (Kg(bl_) —e) <0
then setb, _ = by

elsesetb;” = by end if

The SDP reformulation1?) can be obtained through the enl(; Lﬁﬁgl) —el<e break endif

generalized Chebyshev inequality bounds. Detailed prdof 91 seth* — b
Theorem 1is lengthy and omitted here due to limited space 2: End ! !
Readers may refer to referendés] for more detailed descrip- —

tions. Definingb; = ZhH 1 V" as the robust electricity acqui- . .
sition (EA) decision, which equals the amount of electyicit Once the robust EA decision thresheéldfor the constraint

obtained from energy storage systems during the whole tirff8 IS obtained, we can approximaté) (with the following
horizon. Further defin&e (b1) = supp, ep(,.) P(O ey & < constraint.

Zthl Vh) as the worst-case fault probability. We can then u h
get a worst-case mapping!,,. which maps the robust EA Z 4
decisionb; to K¢(b):

=
o ©

= b (14)

Now we can tackle the following optimization problem rather

Mue i bi — Kg(b). (13)  than the original formulationg)
B. Determine the Robust EA Decision Threshold
Since there exist random variables in the constrai ( Xr‘gi%lv Z Z [C? calh byt e zf{} (15)
we cannot solve energy generation scheduling problgm ( T h=1acA
directly. As mentioned before, we adopt chance constraint S.t. >0, 2> ya y{; !
approximations and robust approaches to transform the con- (2) (3) (14), ¥, 2" € {0,1}

straint @). The goal of such transformation is to determine h <ok 4
the maximum robust EA decisidij (i.e., robust EA decision Ta, VI ERg heH,ac A

threshold) so that the constrai can be transformed into aNote that constraint4) with random variables in the initial

solvable form. N _ formulation @) is approximated and replaced i} with no
Theorem 2: The worst-case fault probabiliti(¢ (b ) is non-  random variable. This problem is a mixed integer program-
decreasing with respect to the robust EA decigion ming (MILP) problem, which can be solved effectively by

It is straightforward to derive Theorem 2 since cutting plane method, branch and bounded method, etc.
dK¢(b1)/dby = fe(b1) > 0, where f¢ is the probability
density function of random variable;"_, . Though directly V. PERFORMANCEEVALUATION AND ANALYSIS
obtaining the robust decision threshold is not practidag t In this section, we present numerical results based on real
monotonicity of K¢(b1) enlightens us a bisection method tavorld traces to assess the performance bounds of the prbpose
search for the solution foK¢(b7) = €. The main idea is to energy generation scheduling scheme and evaluate theaseffec
perform the search within an interval {f, p|, wherep is an of different parameters.
empirical constant such thé,(p) > e.

Details of the algorithm for searching the robust EA decf Parameters and Settings
sion threshold are presented in Algorithm 1. Note that, & th We assume there are solar panels in the microgrid system.
5th line of the algorithm, we use interior point method toveol The area of solar panels in this microgrid system is set to
the SDP problem ifTheorem 1 and obtain the worst-casebe 1.5 x 10* m2. The energy conversion efficiency is4.
probability with fixed robust EA decision. Then we compar&he monthly clearness index time series are froinmete-
the worst-case fault probability & _ andb;~ with the fault orological stations in Singapore. These stations are deslig
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Fig. 2: Temporal correlation fitting using first two weeksdia Fig. 3: Robust EA decision threshold with respect to the

ation data of Novembe012. Nonlinear least square method idault tolerant limite.
adopted to get the fitted curvg. = 1—0.16447+0.0.003872.
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N
N

to perform monitoring of solar radiation. Silicon sensors a
employed at each station, with some also having pyranoseter
that measure diffuse and global irradiance. The silicors@en
are calibrated by the Fraunhofer Institute for Solar Energy
Systems to achieve an uncertainty un@gf. The data used

in this work is hourly data collected by thedé stations in
November2012 [16], [17].

We obtain the electricity demand statistics frof][ We O
focus on a college at Forecasting Climate Zone (FGZ)This ) i _
trace contains hourly electricity demand of the collegedary F19- 4: Cost bounds of the microgrid system with respect to
2002. The parameters of conventional power generators dn¢ fault tolerant limite.
set based on the statistics ih9. The maximum output of
a power unit isE** = 3.5 MWh and the minimum stable . ) o
output is E™" = 1.5 MWh. The marginal cost for producing Next, we investigate how the ropu;t EA decision _threshold
one unit of electricity is™ = 0.051 $/KWh, which is obtained b1 varies when the fault tolerant limit increases. Figuré
using the fuel price and the energy conversion efficiency TRIOtS the mapping from fault tolerance limitto robust EA
sunk cost for a generator keeping in active mode?is= decision thresho_ldf{. It is shown from the fl_gure that the
110 $/h, which includes the operation cost, capital cost, af@bust EA decision thresholtii grows whene increases. In
maintenance cost. The start up cost is set tape- 560 $. other words, a larger fault tolerant limét permits a h|ghe_r.
Finally, unless otherwise stated, it is assumed therelare reliance on the solar energy (a larger robust EA decision
power units in this microgird system, the duration of a timfreshold), which is straightforward to understand. Nétat t
slot is 1 h and the time horizon i$2 h. The MILP problem the robust EA decision threshold function is monotone,gher
is solved using Mosek optimization toolbdx0 on an Intel fore it is justified to adopt the bisection method as presente
workstation with6 processors clocking &.2 GHZ and 16 in Algorithm 1 to search for the robust EA decision threshold.
GB of RAM. We also observe that the incremental rate of the robust EA
decision threshold slows down wherincreases.

In Fig. 4, we vary the values of fault tolerance limit

We first investigate the statistical properties of solargpe and study how system cost bound changes with respect to
generation in the time domain. In particular, we adopt solar Note that the cost bound represents the operation cost of
irradiance data for the first two weeks in Novemt2€r2. the microgrid system under the worst-case condition ofrsola
Nonlinear least square method is used to obtain the fittedergy generation. Apparently, the cost bound decreases wh
line. The results concerning the temporal coherence ofr sotancreases. The reason is that wheancreases, the protection
energy generation with respect to time lag is depicted in Figvel for the robust solution will decrease, the scheduling
2. Note that the colored dots show the coherence of sokirategies of the microgrid hence become less conseryative
energy generations im0 stations, and the blue curve is thdeading to the decline of the operation cost. Also note that t
fitted functionr,., = 1 — 0.16447 + 0.0.003872, wherer is cost bound is less sensitive when the fault tolerance knst
the time lag and-. is the coherence. As we observe in that a higher level.
figure, solar energy generations show near-linear coelat In Fig. 5, we evaluate how the fault probabilitiK, (b:)
in the time domain, and such observations help us analyzies with respect to the amount of temporal-correlation i
the performance bounds of the proposed energy generatiomation utilized under different values of robust EA dgan
scheduling scheme in the following contents. b1. Specifically, we conduct a set of experiments. In the first
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B. Results and Discussions
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e is shown that the temporal-correlation information of sola
il dl R energy generation within a proper time lag is beneficial for
—O= b = A58.33) reducing the conservativeness of the robust solution, easer
the correlation information of longer time span may be haitmf
for the decision making. These results, as we believe, shall
provide useful insights helping the microgrid system ofmsa

to develop rational scheduling strategies.
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