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Abstract

Individual decision to accept a new idea or product is often driven by both self-adoption and

others’ persuasion, which has been simulated using a double threshold model [Huang et al.,

Scientific Reports 6, 23766 (2016)]. We extend the study to consider the case with limited

persuasion. That is, a set of individuals is chosen from the population to be equipped with

persuasion capabilities, who may succeed in persuading their friends to take the new entity

when certain conditions are satisfied. Network node centrality is adopted to characterize

each node’s influence, based on which three heuristic strategies are applied to pick out per-

suaders. We compare these strategies for persuader selection on both homogeneous and

heterogeneous networks. Two regimes of the underline networks are identified in which the

system exhibits distinct behaviors: when networks are sufficiently sparse, selecting per-

suader nodes in descending order of node centrality achieves the best performance; when

networks are sufficiently dense, however, selecting nodes with medium centralities to serve

as the persuaders performs the best. Under respective optimal strategies for different types

of networks, we further probe which centrality measure is most suitable for persuader selec-

tion. It turns out that for the first regime, degree centrality offers the best measure for picking

out persuaders from homogeneous networks; while in heterogeneous networks, between-

ness centrality takes its place. In the second regime, there is no significant difference

caused by centrality measures in persuader selection for homogeneous network; while for

heterogeneous networks, closeness centrality offers the best measure.

Introduction

In many complex systems, small initial shocks can cascade to affect or disrupt the systems

under certain circumstances. Examples include the diffusion of cultural fads [1], the outbreak

of political unrest [2], and the spread of rumors [3], etc. These phenomena can be studied by

contagion models [4, 5], in which inactive (or susceptible) individuals are activated (or

infected) by contacts with active neighbors. Of particular importance is the threshold model,

which originated from the seminal work of Schelling [6] on residential segregation, and subse-

quently was developed by Granovetter [7] in the study of social influences. The name of
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threshold stems from the step behavior; that is, an individual adopts a new opinion only if a

critical fraction (the Watts model [4]) or number (the Centola-Macy model [5]) of her friends

have already been activated. This required fraction/number of adopters in the neighborhood is

defined as the threshold. Hereafter, we call it adoption threshold.

Although the propagation rule is simple, the threshold model can exhibit complex behavior

when individual heterogeneity and interaction structure are considered. Watts [4] studied the

model with one random initiator on complex networks to examine the effects of two factors

on the cascade dynamics: it was found that heterogeneous nodal degrees enhance systemic sta-

bility compared to that of homogeneous networks. Threshold heterogeneity, however, has an

opposite effect. Gleeson and Cahalane [8] extended Watts’ model to a finite number of initia-

tors. The varying seed size has an effect on the cascade transition as a function of the average

nodal degree z, even making the transition to be discontinuous for relatively small values of z.

Following this line, a series of studies have been carried out by considering other network

properties, such as degree correlation [9, 10], weight [11], small world [12], modularity [13],

clustering [14, 15], temporality [16, 17], multi-layers [18–20], etc.

Research has also been conducted on contagion mechanisms. Dodds and Watts [21, 22]

proposed a generalized contagion model incorporating individual memory, variable magni-

tude of exposure, and susceptibility heterogeneity. Another study [23] decomposed the moti-

vation for a node to adopt a new behavior as a combination of personal preference, the average

of the states of each node’s neighbors and the system average. It is worth mentioning that Mel-

nik et al. [24] considered the threshold model with multi-stages and found that global cascades

can be driven not only by high-stage influencers but also by low-stage ones. Ruan et al. [25]

considered individual conservativeness and studied Watts’ model with mechanisms of sponta-

neous adoption and complete reluctance to adoption. More recently, Huang et al. [26] consid-

ered asymmetric interactions of social networks, where the change of individual opinion

depends on both catching and giving dynamics. In analogy to the catching dynamics described

by the adoption threshold, the persuasion threshold was introduced to describe the giving

dynamics; in other words, an activated individual can convince her inactivate friends if the

active fraction among her friends is larger than a critical fraction.

In the real world, however, persuasion is more difficult than adoption. Not everyone can

be a persuader, and not each persuader can succeed. An important problem is to optimize

the selection of persuaders, i.e., to choose persuaders for maximizing the cascade size. To

address this issue we compare three different strategies for selecting a set of persuaders with

a predefined size on complex networks. Intuitively, the selection of persuaders is related to

the influences of individuals in social networks [27], which can typically be measured by

network nodes’ centralities, including degree centrality (DC) [28], eigenvector centrality

(EC) [29], betweenness centrality (BC) [30], closeness centrality (CC) [28], and so on. With

these quantities, we pick out persuaders with maximum, medium, and minimum centrali-

ties, respectively. As will be seen below, the best strategy depends on the global connectivity

of the underline network. Specifically, as network connectivity varies, there exist different

optimal selection strategies where persuaders should be selected with different centrality

measures within different ranges. Notably, in dense networks, it leads to better performance

by selecting nodes with medium rather than maximum centrality values. Moreover, in

sparse homogeneous networks, selecting nodes with maximum degree centrality as persuad-

ers performs the best, while for sparse heterogeneous networks, betweenness centrality is

the measure that should be adopted; in dense homogeneous networks, all centrality mea-

sures work equally good as long as nodes with medium centralities are selected as persuad-

ers; while in dense heterogeneous networks, nodes with medium closeness centrality should

be selected.
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Methods

Construction of interaction networks

The homogeneous networks used are Erdős-Rényi (ER) graphs [31] which can be con-

structed as follows. Starting with N isolated nodes, we connect each pair of nodes with a link

with the identical probability p. A ER network is generated randomly from the collection of

all graphs which have N nodes and pN(N − 1)/2 edges. The nodal degree of the ER network

takes the form of the Possion distribution P(k) = e−z zk/k!. The heterogeneous networks used

are scale-free (SF) networks. Following the idea proposed by Newman et al. [32], the random

SF network can be constructed by the following steps: i) A priori random integers sequence,

each of which represents the degree of a node, is drawn from a power-law distribution

P(k) = ck−r, where c and r are respectively the normalized factor and the power exponent.

Notice that in order to generate uncorrelated SF networks, the restriction on the maximum

degree kcðNÞ �
ffiffiffiffi
N
p

[33] is imposed. ii) Node i with degree ki is picked out randomly from

the sequence and connected to others until its degree quota ki is realized. Duplicate connec-

tions are avoided. This process is repeated throughout all the elements of the sequence, and

finally a network is generated randomly from the set of all graphs with the same degree

sequence. All the networks we use are undirected and unweighted.

Formulation of the (ϕ, ϕ0)-threshold model

According to Ref. [26], the (ϕ, ϕ0)-threshold model has two thresholds: the adoption threshold ϕ
and the persuasion threshold ϕ0. Initially, a fraction ρ0 of nodes are chosen randomly from the

network to be active, and the others are inactive. At each time step, an inactive node i will be

activated if either of the following two conditions is satisfied: i) the active fraction of the neigh-

bors of node i is larger than its adoption threshold ϕi, which is defined as the adoption dynam-

ics; or ii) the adoption dynamics does not occur, but there is at least one active neighbor j of the

node i being a persuader and the active fraction in the neighborhood of node j is larger than the

persuasion threshold �
0

j. We call it persuasion dynamics. Once a node is activated, it remains

active. The system evolves according to the above rules until no further activation occurs.

Heuristic strategies for persuader selection

Considering limited persuasion, a fraction 10% of all nodes are chosen to have persuasion

capabilities who can persuade their inactive neighbors if the condition ii) is satisfied. Note that

the percentage of persuaders may change while all the main conclusions would still hold. The

selecting process is related to the node’s influence. As aforesaid, we use the concept of central-

ity to represent the node’s influence in the network. For comparison, four centrality measures

(DC, EC, BC, and CC) are adopted based on which three heuristic strategies are applied to

pick out a given number of persuaders: i) selecting nodes in descending order of their central-

ity (Cmax), ii) selecting nodes with medium centrality (Cmed), and iii) selecting nodes in

increasing order of their centrality (Cmin). For the Cmed strategy, we firstly choose nodes

with mean centrality. If the chosen number doesn’t reach the proportion, we then select nodes

form both sides of the mean centrality as a complement. In spite of the simplicity of such heu-

ristics, diverse selection strategies do make the dynamics much richer.

Tree-like approximation of the threshold model

For analytical calculation, we apply the method of Ref. [26]. Given an uncorrelated network of

N nodes following the degree distribution P(k), a fraction ρ0 of nodes are chosen randomly to
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be active. According to the model definition, we obtain the stable fraction of inactive nodes:

Z ¼ ð1 � r0Þ
Xkmax

ki¼0

PðkiÞ
Xki

s¼0

Cs
ki
ð1 � a � bÞ

s
b

ki � sF
ki � s

ki

� �

; ð1Þ

where F(x) denotes the probability that the adoption threshold ϕ of a node is no less than x. α
represents the probability that a random neighbor j of the inactive node i is active and is cho-

sen as a persuader. β represents the probability that a random neighbor j of the inactive node i
is active and the active fraction in the neighborhood of j is less than the persuasion threshold

�
0

j. Following the ideas of Refs. [8, 34], we obtain the self-consistent equations for the two prob-

abilities:
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b ¼ 1 � a � ð1 � r0Þ
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where G(x) denotes the probability that the persuasion threshold ϕ0 of a node is no less than x.

Q(k)� (k + 1)P(k + 1)/z is the excess degree distribution. ku and kv correspond to upper and

lower bounds of degrees of the nodes that have been selected as persuaders, respectively. In

Ref. [26], all the nodes are potential persuaders, and the upper and lower bounds are maxi-

mum and minimum degrees, respectively. γ refers to the critical case separating α and β. δ
describes the probability that a random neighbor j of the active node i is active, written as

g ¼ ð1 � r0Þ
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One can solve the above equations using a simple iterative scheme, and finally get the stable
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size of the giant component of inactive nodes:

Zc ¼ ð1 � r0Þ
Xkmax

ki¼1

PðkiÞ
Xki

s¼1
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ki

b
ki� sF

s
ki

� �
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where θ is the probability that a random neighbor j of the inactive node i is inactive but not

belonging to the giant component of the inactive nodes, given by

y ¼ ð1 � r0Þ
Xkmax
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Results

The persuasion rule characterizes the situation that a persuader convinces her friends to accept

the new entity. Therefore it gives rise to global cascades. According to the model definition,

the higher the value of ϕ0, the lower the persuasion possibility is. In the extreme case ϕ0 = 1, the

double threshold model reduces to Watts’ model [4]. In this scenario, the cascade condition in

random networks for one seed is ∑k k(k − 1)%(k)P(k) = z, where %(k) represents the distribution

of vulnerable nodes. While the network is sparse, the criterion of the cascade is ϕ< 1/z. But if

the number of initiators is sufficiently large, large cascades will occur irrespective of the value

of ϕ [8, 35, 36].

Impact of selection strategies on the cascade dynamics

In Fig 1 we plot the normalized size of the final giant component of inactive nodes ηc as a func-

tion of the seed fraction ρ0 in the ER network. Without loss of generality, we let ϕ = ϕ0 = 0.5

(Note that all the main conclusions hold for other cases we have tested as well.). From left to

Fig 1. Normalized size of the giant component of inactive nodes ηc in the stable state as a function of the seed fraction ρ0 in

homogeneous networks. Symbols represent simulation results on ER networks of N = 104 nodes and average degree z = 3 (upper

panel) and 10 (lower panel), respectively. All the results are averaged over 10 realizations of the model, each of which is performed

on 10 network configurations. Dashed lines are theoretical predictions by Eq (6). DC, EC, BC, and CC correspond to degree

centrality, eigenvector centrality, betweenness centrality, and closeness centrality, respectively.

doi:10.1371/journal.pone.0169771.g001
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right, the selection strategies are based on the DC, EC, BC, and CC, respectively. All the plots

separate two phases, defining the transition point ρc. Global cascades are observed when

ρ0 > ρc. In case of z = 3 (upper panel), one can find that the Cmax strategy (closed triangles) is

optimal to make the system most vulnerable, since it needs the smallest size of initiators to trig-

ger a large cascade. In case of z = 10 (lower panel), the Cmed strategy, as well as the Cmax strat-

egy, have a marginal advantage over the Cmin strategy. Meanwhile, the system exhibits

discontinuous transitions with a sharp drop from a finite size to zero at ρc. Fig 2 shows plots of

ηc as a function of ρ0 in the SF network. Both adoption and persuasion thresholds are the same

as those in Fig 1. In case of z = 3 (upper panel), one notices similar behaviors, i.e., the optimal

method to increase the likelihood of global cascades is the Cmax strategy (closed triangles). In

case of z = 10 (lower panel), however, the Cmed strategy (closed circles) becomes superior in

causing global cascades except for the BC case where the Cmax strategy performs equally well

(Fig 2(g)).

To draw a general view of the above results, we plot in Fig 3 the minimum fraction ρc of ini-

tial seeds for causing global cascades as a function of the average node degree z. In the ER net-

work (upper panel), the plots of the Cmax strategy (closed triangles) are lowest when network

connectivity is sufficiently sparse, hence the optimal solution to promote the cascade dynam-

ics. While the connectivity is sufficiently dense, the Cmed strategy takes its place with a little

advantage. This conclusion holds in the SF network as well (lower panel) except for the BC

measure [Fig 3(g)] where the Cmax strategy performs equally well as the Cmed strategy. To

achieve further insights, we calculate the average node degree of selected persuaders hkpi as a

function of z in Fig 4. In the ER network (upper panel), hkpi increases linearly with z under

three selection strategies and the increasing rates are relatively low. In the low-connectivity

regime, the cascade propagation is limited by the global connectivity of the network. As the

average degree of selected persuaders under three selection strategies is several times as much

as the network connectivity, they give rise to global cascades more easily. Among these

Fig 2. Normalized size of the giant component of inactive nodes ηc in the stable states as a function of the seed fraction ρ0

in heterogeneous networks. Symbols represent simulation results on SF networks of N = 104 nodes and average degree z = 3

(upper panel) and 10 (lower panel), respectively. All the results are averaged over 10 realizations of the model, each of which is

performed on 10 network configurations. Dashed lines are theoretical predictions by Eq (6).

doi:10.1371/journal.pone.0169771.g002

Heuristic Strategies for Persuader Selection in Contagions on Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0169771 January 10, 2017 6 / 13



operations, the value of hkpi is largest under the Cmax strategy, implying optimal persuasion.

In the high-connectivity regime, the cascade propagation is limited by local stability of individ-

ual nodes. As a persuader is surrounded by many inactive neighbors, there is a lower chance

for her to satisfy the persuasion threshold. Therefore the difference in the three strategies is

small. In the SF network (lower panel), however, the difference in hkpi is obvious. The value of

hkpi under the Cmax strategy is larger than that of the ER network. While under the Cmin

Fig 3. Minimum seed fractions ρc for causing global cascades as a function of the average node degree z. All the results are

averaged over 10 realizations of the model, each of which is performed on 10 ER (upper panel) and SF (lower panel) network

configurations, respectively.

doi:10.1371/journal.pone.0169771.g003

Fig 4. Average degree of selected persuaders hkpi as a function of the average degree of total nodes z. All the results are

averaged over 10 realizations of the model, each of which is performed on 10 ER (upper panel) and SF (lower panel) network

configurations, respectively.

doi:10.1371/journal.pone.0169771.g004
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strategy, hkpi is almost independent of z. The plot of the Cmed strategy lies between the cases

of Cmax and Cmin strategies with the same order of the increasing rate as that on the ER net-

work, hence having the largest inducing effect on the highly connected network.

Impact of centrality measures on the optimal strategies

We have noticed that some generic features of global cascades can be explained in terms of net-

work connectivity. For both the ER and SF networks, the Cmax strategy is optimal to promote

global cascades in networks with low connectivity, while the Cmed strategy becomes superior

in dense networks. Next, we shall probe which centrality measure is most suitable for choosing

the set of persuaders while adopting the optimal selection strategies in the two different

regimes, respectively.

Fig 5 shows the transition behavior of ηc as a function of ρ0 under the Cmax strategy in

cases of z = 2 and 3, respectively. Still let ϕ = ϕ0 = 0.5. For the ER network (upper panel), the

system exhibits a continuous transition under the Cmax strategy for all the centrality measures

with a little effect on the transition point; whereas for the SF network (lower panel), the unique

transition point reflects the same effect of all the centrality measures on persuader selection.

Fig 6 shows an opposite behavior under the Cmed strategy in cases of z = 10 and 12, respec-

tively. For both networks, the system exhibits a discontinuous transition. Moreover, in

Fig 5. Normalized size of the giant component of inactive nodes ηc in the stable states as a function of the seed fraction ρ0

in the network with z = 2 and 3, respectively. The Cmax strategy is applied to pick out persuaders. All the results are averaged

over 10 realizations of the model, each of which is performed on 10 ER (upper panel) and SF (lower panel) network configurations,

respectively.

doi:10.1371/journal.pone.0169771.g005
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contrast to the ER networks with the coincidence of all the plots (upper panel), the SF net-

works demonstrate diverse influences of centrality measures with CC performing best (lower

panel).

To get a clear understanding on this point, we plot ρc as a function of z for global cascades

in Fig 7. Under the Cmax strategy in the low-connectivity regime, the value of ρc is lowest cor-

responding to the DC in the ER network [Fig 7(a)], indicating the best solution for persuader

selection; in the SF network, however, the BC results in the lowest ρc [Fig 7(b)] in a wide range,

hence the most appropriate solution. Under the Cmed strategy in the high-connectivity

regime, in contrast to the case on the ER network where effects of the four centralities on the

transition point are nearly the same [Fig 7(c)], the SF network turns out to be more vulnerable

when CC is utilized [Fig 7(d)] to pick out persuaders. Since a potential persuader can succeed

in persuading others only when the persuasion threshold is achieved, we term such persuaders

as actual persuaders. In Fig 8, we illustrate the number of actual persuaders Np as a function of

ρ0 in the stable states. We see that, for all the different connectivity levels, CC always leads to a

larger number of actual persuaders in the SF networks than in the ER network. Similar conclu-

sion holds for the other three centrality measures in most cases as well.

Fig 6. Normalized size of the giant component of inactive nodes ηc in the stable states as a function of the seed fraction ρ0

in the network with z = 10 and 12, respectively. The Cmed strategy is applied to pick out persuaders. All the results are averaged

over 10 realizations of the model, each of which is performed on 10 ER (upper panel) and SF (lower panel) network configurations,

respectively.

doi:10.1371/journal.pone.0169771.g006
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Discussion

Interpersonal influences of social networks are usually asymmetric, that is, the diffusion of an

entity among individuals depends on both the probability of giving it and the probability of

catching it. We classify the acceptance of an entity as due to self-adoption and others’ persua-

sion, which can be simulated by the (ϕ, ϕ0)-threshold model. Although the adoption mecha-

nism has stimulated a rapid acceleration of research work, little attention has been paid to the

persuasion mechanism. The focus of this work is to identify optimal strategies for persuader

selection and study their persuasion effects and dynamics on the networks. Since the optimiza-

tion selection of nodes for information maximization in a general complex network is NP-

hard [37], heuristic algorithms become the most common approaches, e.g., to rank all nodes

according to their degrees or centralities and choose the highest-value ones.

We utilized four centralities (DC, EC, BC, and CC) to rank each node’s influence and

applied three heuristic strategies (Cmax, Cmed, and Cmin) to select 10% of network nodes as

potential persuaders. We first examined the impacts of three selection strategies on the cascade

dynamics. When network connectivity is sufficiently sparse, the Cmax strategy is optimal for

persuader selection to promote global cascades; when it is sufficiently dense, the Cmed strategy

performs best. Under optimal strategies, we studied further which centrality measure is most

Fig 7. Minimum seed fractions ρc for global cascades as a function of the average degree z under two optimal strategies.

The Cmax and Cmed strategies are used in low-connectivity (upper panel) and high-connectivity (lower panel) regimes,

respectively. All the results are averaged over 10 realizations of the model, each of which is performed on 10 network

configurations, respectively.

doi:10.1371/journal.pone.0169771.g007
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appropriate for persuader selection. In the low-connectivity regime, we found that the DC is

most suitable for the homogeneous networks under the Cmax strategy; whereas the heteroge-

neous networks favors the BC. In the high-connectivity regime, all the centrality measures

have nearly the same effect on the Cmed strategy for the homogeneous networks, whereas for

heterogeneous networks, the CC results in largest cascade size compared with other centrality

measures. We also simulated the case of 5% and obtained qualitatively same results.

Although the underline networks and heuristic algorithms are elementary, we do obtain

striking results of optimal solutions. In future study, it is interesting to consider more topologi-

cal and dynamical features. On the one hand, one can design efficient algorithms for identify-

ing influential nodes in various networks, e.g., temporal networks and multi-layer networks.

On the other hand, one may consider more dynamical processes, e.g., transportation and

routing.
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