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Abstract

In operation of microgrids, an important task is to match the power generation and
consumption profiles at a minimum cost. Since the highly fluctuant renewable en-
ergies constitute a significant portion of the power resources in microgrids, the
microgrid system central controller (MGCC) faces the challenge of effectively
utilizing the renewable energies while fullfilling the requirements of customers.
In this paper, we propose a power demand and supply management framework to
tackle the problem stated above. A flexible uncertainty model is developed to cap-
ture the randomness of renewable energy generation. Specifically, we introduce a
reference distribution according to the past observations and empirical knowledge,
and then define a distribution uncertainty set to confine the uncertainty of renew-
able energies. The new model allows the renewable energy to fluctuate around
the reference distribution. An optimization problem is then formulated to deter-
mine the optimal power consumption and generation scheduling for minimizing
the fuel cost. We present a two-stage optimization approach to first transform and
then solve the prime problem. Numerical results indicate the properties of our
problem formulation and provide some illuminations on the policy making for the
MGCC. We also show that the proposed power demand and supply management
mechanism can effectively reduce the energy cost.
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1. Introduction

The smart grid is the innovative future electric power system that will improve
the conventional electrical grid network to be more clean, reliable, secure, coop-
erative, and efficient. The growth and evolution of the smart grid is expected to
come with the plug-and-play integration of the basic structures called microgrids.
Specifically, microgrids are small-scale low voltage power supply networks de-
signed to supply electrical load for a small community such as a university cam-
pus, a commercial area and a trading estate, etc. Microgrids can autonomously
coordinate local generations and demands in a dynamic manner. It can operate
in either grid-connected mode or island mode [1]. There have been world wide
deployments of pilot microgrids, such as those in US, Germany, Greece and Japan
[2].

Microgrids are expected to be more robust and cost-effective than the tradi-
tional approach of centralized grids. However, to achieve a stable and economical
operation, a number of technical and regulatory issues have to be resolved be-
fore microgrids can become a commonplace. One problem that would require
due attention is the effective management of power supply and demand loads,
which amounts to matching the power generation and consumption profiles [3][4].
Specifically, the power generators or microsources employed in microgrids are
usually renewable or non-conventional distributed energy resources. While the
incorporation of such renewable resources shall certainly bring great environmen-
tal benefits, it imposes new challenges as well: different from that in the tradi-
tional power systems with conventional controllable electric generators, genera-
tion scheduling in microgrids with fluctuant, climate-dependent renewable energy
sources has to cope with the nontrivial uncertainties.

The microgrids may adopt hierarchical or decentralized demand control schemes
[5] [6]. The decentralized control schemes facilitate distributed control and man-
agement of large complex systems. However, such control requires significant
experiments before implementation and sophisticated coordination. Also it may
introduce new security challenges. Hierarchical control is performed by a master
controller which is responsible for matching the generation and load. When the
demand resources are controlled upon the occurrence of disturbance, the strategy
is often known as direct load control [7] [8]. In direct control program, based
on an agreement between the central controller and customers, the controller can
remotely control the operations of certain appliances in a household. This capabil-
ity can be especically effecitve where there are electric devices allowing flexible
usage time and/or energy storage, such as electric water heater (EWH) equipped
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with hot water storage tank and plug-in hybrid electric vehicles (PHEVs), etc. The
Kyotango microgrid project in Japan is an example of hierarchically controlled
microgrid [2].

In this paper, we tackle the basic problem faced by the microgrid system cen-
tral controller (MGCC), namely to achieve a good match between power demand
and supply subject to uncertainties of renewable energies. On the power demand
side, we envision a scenario with real-time communication between the controller
and energy consumer premises. Specifically, in each time period, the operator con-
troller receives consumer power demands with different power level requirements,
durations and time elasticity levels. The MGCC needs to minimize the electricity
generation cost by optimally scheduling the operation of each appliance subject to
the requirements set by the users. Here the generation cost is modeled as a convex
function of instantaneous total power consumption.

On the power supply side, MGCC has to focus on how to effectively manage
power generation so as to match the user load and maintain system reliability.
We propose an uncertainty model to capture the fluctuant nature of renewable
energies. Specifically, we extract an empirical distribution as a useful reference
and allow the actual distribution of renewable energies to vary around it. To the
best of our knowledge, this is the first time that the distribution uncertainty model
is adopted to depict the indeterminacy property of renewable energy generation.
The load balance constraint is aptly approximated using the chance constraint
representation, where we can use a parameter to vary the conservation level of the
solution. A tractable robust optimization approach is developed for transforming
the chance constraints into linear constraints. Finally we investigate some of the
desired properties of our problem formulation and provide some illuminations for
the policy making of MGCC. It is also shown that the power demand and supply
management scheme can greatly reduce the energy cost for the microgrid system.

The remainder of this paper is organized as follows. Section 2 provides a brief
survey of the related work. In Section 3, we show the mathematical depiction of
the power demand and supply management problem and the uncertainty model of
the renewable energies. Section 4 presents the robust approach for handling the
load balance constraint, and the problem decomposition process. We provide the
simulation results and discussions in Section 5 and conclude the paper in Section
6.
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2. Related Work

The problem we are tackling can be viewed as containing two different parts.
On the power demand side, we try to build a hierarchical demand control scheme
so as to achieve the economic consumption scheduling and fulfill the requirements
set by energy users; on the power supply side, we need to properly model the
randomness of renewable energy generation, which may account for a significant
portion of power supply in microgrids. Note that load balance constraints act as
the connection between power consumption and generation.

Demand control techniques can be categorized into either price based load
control techniques, referred to as demand response methods, or direct load con-
trol, referred to as demand side management. Under price based load control
scheme, users are encouraged to make energy consumption decisions individually
according to the price information. Demand side management strategies, however,
are usually applied directly by a central controller and require consumer subscrip-
tion to an economic incentive program. Several representative works have studied
demand control techniques in residential microgrids. A recent paper [9] devel-
oped a real-time pricing scheme that aims at reducing the peak to average load
ratio (PAR) through demand response management in smart grid systems. A two-
stage optimization problem was then proposed and solved. Fathi et al. developed
a stochastic model of scheduling in a local area network with the objective of cost
minimization and PAR minimization [10]. The work [11] presented a linear pro-
gramming formulation for minimizing the energy cost through direct load control.
In [12] an optimization model was presented to adjust the hourly load level of a
given consumer in response to hourly electricity prices. The price uncertainty
was modeled through robust optimization techniques. The uncertainties of renew-
able energies, however, are not considered in these studies. As such, the control
schemes may not be readily optimal and applicable to microgrid scenario where
renewable energies constitute a significant portion of power resources.

The research literature also includes some work related to renewable energy
analysis. Zhang et al. considered a distributed economic dispatch problem for
microgrid with high penetration of renewable energies [13]. The intrinsically
stochastic and time-varying availability of renewable energy sources are captured
by a polyhedral uncertainty set. Another work [14] defined stochastic upper and
lower supply curves to capture a broad range of fluctuations in the power sys-
tem. Energy generated by each power source was modeled as stochastic arrivals
in the queuing model. In addition, hidden Markov models were adopted to char-
acterize renewable energy generation [15] [16] [17]. Considering the fact that
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in practical scenarios, renewable energy may not follow Markov process or any
simple distributions, Fang et al. used non-stochastic multi-armed bandit online
learning technique to learn the evolution properties of renewable energy [18]. Our
work jointly considers power demand and supply management, proposing a flex-
ible way of analyzing the uncertainties of renewable energies. Furthermore, we
propose an algorithm with different levels of safety guarantees while harvesting
the renewable energies.

3. Formulation of the Microgrid Demand and Supply Management Problem

In this section, we provide a mathematical representation of the energy con-
sumption and generation scheduling problem in an islanded microgrid with re-
newable energies. An MGCC is responsible for controlling the operations of the
microgrid as well as performing optimization for minimizing the electricity gener-
ation cost for the microgrid system. We introduce the operations of the system and
its mathematical depictions from the energy user side and energy generation side,
respectively. The uncertainty model for describing the randomness of renewable
energies is then demonstrated.

3.1. Energy Demand Side
Consider a group of energy consumers participating in this energy consump-

tion scheduling program. We assume that there are two-way communication
infrastructures (e.g., a local area network (LAN)) between MGCC and energy
consumers. Let A denote the set of appliances belonging to these consumers,
which may include PHEVs, dishwashers, cloth dryers, air conditioners, etc. We
divide time into discrete time slots with equal length. For each appliance a that
is switched on, the active power consumed during one unit of time slot is xa. We
also define an energy consumption scheduling vector ya for each appliance a as
follows:

ya = [y1a, ..., y
H
a ] (1)

where H ≥ 1 is the scheduling horizon indicating the number of time slots
ahead that are taken into account for decision making in the energy consumption
scheduling. For each coming time slot h ∈ H = [1, 2, ..., H], a binary variable
yha = 0/1 denotes the state of appliance a (on/off). In this case, the actual energy
consumption for appliance a at time slot h can be expressed as xa · yha .
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There is usually an upper limit on the total energy consumption in the micro-
grid in each time slot. Denoting this limit as Emax, we have:∑

a∈A

xa · yha ≤ Emax, ∀h ∈ H. (2)

Next, assume that for each appliance a ∈ A, the user indicates αa, βa ∈ H as the
beginning and end of a time interval in which the appliance a can be scheduled,
respectively. Obviously, αa < βa. For instance, the user may select αa = 8 PM
and βa = 6 AM (the next day) for his PHEV so that he could plug it in at night
and get it fully charged before going to work the next day. Denote the minimum
number of time slots needed for appliance a to finish its preset work as Ta. Given
the predetermined parameters αa, βa, Ta, the appliance scheduling is subject to the
following constraints:

βa∑
h=αa

yha ≥ Ta, ∀a ∈ A, (3)

and

yha = 0, ∀a ∈ A, ∀h ∈ H \ [αa, βa]. (4)

Constraint (3) shows that the time length βa − αa needs to be large enough to
allow finishing the normal operation of appliance a. In addition, the energy user
can choose proper αa, βa and Ta to indicate whether the operation of appliance a
needs to be started immediately (βa−αa = Ta) or can be deferred (βa−αa > Ta).

To reveal the ramping down and ramping up limits on load levels of each time
slot, we have:∑

a∈A

xa · yha −
∑
a∈A

xa · yh+1
a ≤ rD, h ∈ [1, 2..., H − 1], (5)∑

a∈A

xa · yh+1
a −

∑
a∈A

xa · yha ≤ rU , h ∈ [1, 2..., H − 1]. (6)

In this regard, we assume that each household participating in this energy con-
sumption scheduling program is equipped with a smart meter, which is capable
of detecting the electric power level of each appliance. The energy consumer an-
nounces to the MGCC his needs by selecting parameters αa, βa and Ta for each
appliance a ∈ A.

6



The above constraints (2) to (6) describe common characteristics of household
appliances. However, there exist some appliances of which the operation cannot
be interrupted. We call such kind of loads as uninterruptible loads. Discussions
on how we may handle such loads are presented below.

Operation of Uninterruptible Loads: Some loads are interruptible, such as
PHEV, which means that it is possible to charge the battery for some time, stop-
ping charging for some time and then switching on the charging process again.
Some other loads, however, are not interruptible, e.g., microwave oven. Appli-
ances generating such loads, once started, has to be finished in one go. For each
uninterruptible appliance a ∈ A′, where A′ represents the set of uninterruptible
appliances, and each time slot h, let zha denote an auxiliary binary variable such
that zha , 1 if appliance a starts operation at time slot h and zha , 0 otherwise.
We have

βa−Ta+1∑
h=αa

zha = 1 (7)

and

zha = 0, ∀h ∈ H\[αa, βa − Ta + 1]. (8)

Then we relate start time vector zha with decision variable vector yh
a as follows:

yha ≥ zha , y
h+1
a ≥ zha , ..., y

h+Ta−1
a ≥ zha . (9)

From (9), if zha = 1, then yha = yh+1
a = ... = yh+Ta−1

a = 1.

3.2. Energy Supply Side
We now turn to the energy supply side to consider the load balance constraint

in the microgrid. The microgrid may be considered as a graph consisting of three
nodes as illustrated in Fig. 1. The first node represents the renewable energy
generation sources such as wind turbines, solar panels and fuel cells. At time
slot h, denote the total energy generated in this node as ξh, where ξh is a random
variable of which the probability density function may not be known. Node 2 in
Fig. 1 represents the load connected through the transmission line to node 1 and
node 3. The load at time h, denoted as lh, is dependent on the energy consumption
from the user side which, from the above analysis, can be expressed as:

lh =
∑
a∈A

xa · yha (10)
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Figure 1: The microgrid’s graph.

Finally the third node includes a group of controllable electricity generators,
which has a total amount of generation P h

cg as commanded by MGCC. A key
requirement to the MGCC is to set the generation source power such that the
supply could meet the demand. This statement can be mathematically described
as

ξh + P h
cg ≥ lh. (11)

3.3. Problem Formulation
The objective function of MGCC can be defined in terms of minimizing the

energy cost of the whole microgrid system. Hence we have the optimal energy
consumption scheduling problem formulated as follows:

min
H∑

h=1

Ch(P h
cg) (12)

s.t. (2) to (11)

where Ch(·) is the cost function of electricity plant in the microgrid, which is
assumed to be an increasing convex function. The convex property reflects the
fact that each additional unit of power needed to serve the demands is provided at
a higher cost. Example cases include the quadratic cost function [19] [20] and the
piecewise linear cost function [21] [3], etc. Without loss of generality, we consider
quadratic cost function Ch(P h

cg) = ahP
h
cg

2
+bhP

h
cg+ch throughout this paper, where

ah > 0, bh ≥ 0 and ch ≥ 0 are known parameters for each time slot h. In practice,
the coefficient of the quadratic term is usually small. Therefore, the quadratic cost
function can be reduced to a linear cost function. We also assume that the marginal
cost of renewable energy generation is 0, leading to its omission in the objective
function [22]. The main difficulty in solving problem (12) is the indeterminacy of
renewable energy generation ξh that exists in constraint (11). Note that to optimize
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over the space defined by (11) amounts to solving an optimization problem with
potentially large or even infinite number of constraints. Obviously, this realization
of uncertainty is an intractable problem. Next, we develop a practical and flexible
model to capture the uncertainty of ξh.

3.4. Probability Distribution Measure of Renewable Energies
It is generally difficult to characterize the renewable energy generation. In our

optimization models, operations on the random variable ξh is cumbersome and
computationally intractable. Moreover, in practice, we may not know the precise
distribution of ξh. Solutions based on assumed distributions hence may not be jus-
tified. We usually measure the variability of a random variable using its variance
or second moments which, however, may not provide sufficient details in describ-
ing the random variable. In this paper, we extract a reference distribution, rather
than moment statistics, from historical data that will capture the distribution prop-
erties. Since renewable energy generation distribution is fluctuating over time and
hard to be described in a closed-form expression, we may adopt empirical distri-
bution as a useful reference and allow the actual distribution to fluctuate around
it. For example, we may assume that the renewable energy generation distribu-
tion f0(ξ

h) is shifting around a known Gaussian distribution (or other distribution)
gh(ξ

h), which can be obtained based on long-term field measurement.
The discrepancy between f0(ξ

h) and its reference gh(ξh) can be described by a
probabilistic distance measure, for example the Kullback-Leibler (KL) divergence
[23], which is a non-symmetric measure of the difference between two probability
distributions. Name these two distributions as f(ξh) and g(ξh), respectively. Gen-
erally, one of the distributions, say, f(ξh), represents the real distribution through
precise modeling, while the reference g(ξh) is a closed-form approximation based
on the theoretic assumptions and simplifications. The definition of the KL diver-
gence between two continuous distributions is given as follows:

DKL(f(ξ
h), g(ξh)) =

∫
ξh∈S

[lnf(ξh)− lng(ξh)]f(ξh)dξh (13)

where S is the integral domain. When distributions f(ξh) and g(ξh) are close to
each other, the distance measure is close to zero. Adopting the KL divergence, we
define the distribution uncertainty set as follows:

Ur(g(ξ
h), D0) = {f(ξh) | Ef [lnf(ξh)− lng(ξh)] ≤ D0} (14)

where D0 > 0 represents a distance limit and is obtained from empirical data
or real-time measurement. It indicates energy generation’s variation level. If the
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energy generation is very volatile, we have less confidence on the reference dis-
tribution and thus may set a larger distance limit.

Considering the renewable energy generation distribution f0(ξ
h) with refer-

ence distribution gh(ξ
h) and distance limit Dh, we have the following constraints

for renewable energy generation distribution f0(ξ
h):

Ef0 [lnf0(ξ
h)− lngh(ξh)] ≤ Dh (15)

Ef0 [1] = 1 (16)

Given (15) and (16), we are now ready to transform the load balance constraint
(11) to allow efficient solution of problem (12).

4. Optimization Algorithms

In this section, we present the optimization algorithms for solving the prime
problem (12). We first present a robust approach for handling the load balance
constraint, and then decompose the prime problem into a subproblem and a main
problem to allow easier solution.

4.1. Robust Approach for the Load Balance Constraint
As shown in (11), the load balance constraint is ξh + P h

cg ≥ lh. In practice,
a decision criterion is to set ξh in such a way that we are confident that the load
balance constraint is achieved. To achieve that, we may introduce a small value
ϵ to control the degree of conservatism and change the above expression into a
chance constraint:

P(ξh ≤ lh − P h
cg) ≤ ϵ (17)

where ϵ is the fault tolerance limit of the power grid, representing the acceptable
probability that the desirable power supply is not attained. Then we can have its
robust expression:

max
f0(ξh)∈Ur(gh,Dh)

P(ξh ≤ lh − P h
cg) ≤ ϵ (18)

which is equivalent to:

max
f0(ξh)∈Ur(gh,Dh)

∫ lh−Ph
cg

0

f0(ξ
h)dξh ≤ ϵ. (19)
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Defining δh = lh − P h
cg as the robust renewable energy usage (REU) decision,

which equals the amount of energy dispatched to renewable energy plants at time
slot h, we can introduce an auxiliary function as follows:

h(ξh, δh) =

{
1, ξh ≤ δh;

0, ξh > δh.
(20)

The left part of inequality (19) then can be formulated into an optimization prob-
lem:

max
f0(ξh)

∫ +∞

0

h(ξh, δh) · f0(ξh)dξh (21)

s.t. Ef0 [lnf0(ξ
h)− lngh(ξh)] ≤ Dh

Ef0 [1] = 1

Define Qh
f (δ

h) = maxf0(ξh)∈Ur(gh,Dh)

∫ +∞
0

h(ξh, δh) · f0(ξh)dξh as the worst-case
fault probability. We can then get a worst-case mapping Mh

ws which maps robust
REU decision δh to Qh

f (δ
h):

Mh
wc : δh −→ Qh

f (δ
h). (22)

4.2. Sub-Problem: Determine the Robust REU Decision Threshold
Since there exists a random variable ξh in the constraints, we cannot solve

energy generation and consumption scheduling problem (12) directly. As afore-
mentioned, we decompose the problem into a subproblem and a main problem.
The goal of our sub-problem is to determine the robust REU decision threshold
δh

∗ so that the load balance constraint can be transformed into a solvable form.
Proposition 1: Problem (21) is a convex optimization problem.
Proof: Rewrite (21) as follows:

max
f0(ξh)

∫ +∞

0

h(ξh, δh) · f0(ξh)dξh (23)

s.t.
∫ +∞

0

[lnf0(ξh)− lngh(ξh)]f0(ξh)dξh ≤ Dh (24)∫ +∞

0

f0(ξ
h)dξh = 1. (25)

We can see that the objective function (23) and equality constraint function (25)
are affine with respect to f0(ξ

h). Next we show that the inequality constraint
function (24) is convex.
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Lemma 1: If f : Rn −→ R is convex, then the perspective of f , which is
denoted as a function g :Rn+1 −→ R that

g(x, t) = tf(x/t), (26)

with domain

dom g = {(x, t)|x/t ∈ dom f, t > 0} (27)

preserves convexity.
That is to say, if f is a convex function, so is its perspective function g. Sim-

ilarly, if f is concave, so is g. This can be proved in several ways, e.g., by direct
verification of the defining inequality or using epigraphs and the perspective map-
ping on Rn+1. Readers can refer to [24] for more detailed discussions.

We consider the convex function f(x) = −ln x on R++. Its perspective is

g(x, t) = −t ln(x/t) = t ln(t/x) = t(ln t− ln x) (28)

and it is convex on R2
++. The function g is called the relative entropy of t and

x. Then we have that the KL divergence
∫
x∈S[lnf(x) − lng(x)]f(x)dx between

distribution f(x) and g(x) is convex in f(x) (and g(x) as well). In this case, we
claim that the inequality constraint (24) is convex in distribution f0(ξ

h).
Through Slater’s condition, we can see that strong duality holds for problem

(23)-(25). Using the Lagrangian method, we can obtain the worst-case fault prob-
ability Qh

f (δ
h) as follows:

Qh
f (δ

h) = min
τ,η

max
f0(ξh)

Ef0

[
h(ξh, δh)− η − τ ln

f0(ξ
h)

gh(ξh)

]
+ τDh + η

where τ ≥ 0 and η are Lagrangian multipliers associated with constraints (24)
and (25), respectively. Let P(δh, f0, τ, η) = Ef0

[
h(ξh, δh)− η − τ ln f0(ξh)

gh(ξh)

]
, the

derivative of P(δh, f0, τ, η) with respect to f0 can be derived as

∂P
∂f0

=

∫ +∞

0

(
h(ξh, δh)− τ ln

f0(ξ
h)

gh(ξh)
− η − τ

)
dξh. (29)
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Using the Karush-Kuhn-Tucker (KKT) optimality conditions, we thus have

h(ξh, δh)− τ ln
f0(ξ

h)

gh(ξh)
− η − τ = 0 (30)∫ +∞

0

f0(ξ
h)dξh = 1 (31)

E
[

ln
f0(ξ

h)

gh(ξh)

]
−Dh ≤ 0 (32)

τ ·
(
Dh − E

[
ln
f0(ξ

h)

gh(ξh)

])
= 0 (33)

τ ≥ 0 (34)

From (30), the optimal distribution function can be expressed as follows:

f ∗
0 (ξ

h) = gh(ξ
h) exp

(
h(ξh, δh)− η

τ
− 1

)
. (35)

The dual variables (τ, η) in (35) should be chosen properly such that conditions
(31)-(34) are satisfied. Specifically, we have the following results:

Proposition 2: The choice of (τ, η) is a solution of the following nonlinear
equations.

H1(τ, η) = R(δh)e−η/τ + S(δh)e(1−η)/τ − 1 = 0 (36)
H2(τ, η) = S(δh)e(1−η)/τ − η − τ(1 +Dh) = 0, (37)

where S(δh) = (1−Gh(δ
h)) exp(−1), R(δh) = Gh(δ

h) exp(−1), and Gh(δ
h) =∫

ξh≥δh
gh(ξ

h)dξh denotes the complementary cumulative distribution function of
reference distribution gh(ξ

h).
Proof: By substituting the optimal distribution f ∗

0 (ξ
h) back into (31) and

f ∗
0 (ξ

h), (30) into (33), we have∫ +∞

0

gh(ξ
h) exp

(
h(ξh, δh)− η

τ
− 1

)
dξh = 1 (38)∫ +∞

0

(
h(ξh, δh)− η − τ

)
gh(ξ

h) (39)

· exp
(
h(ξh, δh)− η

τ
− 1

)
dξh −Dh · τ = 0,
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which are equivalent to:

exp
(
−1− η

τ

)
·
∫ +∞

δh
g(ξh)dξh (40)

+exp

(
−1 +

1− η

τ

)
·
∫ δh

0

g(ξh)dξh − 1 = 0

(1− η − τ) exp

(
−1 +

1− η

τ

)
·
∫ δh

0

g(ξh)dξh (41)

+(−η − τ) exp
(
−1− η

τ

)∫ ∞

ξh
g(ξh)dξh − τDh = 0.

Equation (36) can be easily obtained from (40) by introducing S(δh) and R(δh).
Through (40), (41) can be transformed into:

(1− η − τ) exp

(
−1 +

1− η

τ

)
·
∫ δh

0

g(ξh)dξh +

(−η − τ)

[
1− exp

(
−1 +

1− η

τ

)
·
∫ δh

0

g(ξh)dξh
]
− τDh = 0.

Then we have

exp

(
−1 +

1− η

τ

)
·
∫ δh

0

g(ξh)dξh − η − τ − τDh = 0, (42)

which is equivalent to (37). Hence, we prove Proposition 2.
It is, however, still rather difficult to obtain an explicit solution from (36) and

(37). Hence we propose the Newton iterations as detailed in Algorithm 1.
Once we determine the solutions for (36) and (37) in Proposition 2, we can

obtain the worst-case fault probability from (30) and (33) as follows:

Qh
f (δ

h) = Ef∗
0
[h(ξh, δh)] = (1 +Dh)τ + η (43)

Our next step is then to find the robust REU decision threshold δh
∗ such that

Qh
f (δ

h∗) = ϵ, which involves the calculation of inverse function of Qh
f (δ

h) and
it is not directly possible from (43). The following property of function Qh

f (δ
h),

however, may help us design such a search method.
Proposition 3: The worst-case fault probability Qh

f (δ
h) is non-decreasing

with respect to the REU decision δh.
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The conclusion in Proposition 3 is straightforward since we have dQh
f (δ

h)/dδh =

dEf∗
0
[h(ξh, δh)]/dδh = f∗

0 (δ
h) ≥ 0. Though direct solution is not available, the

monotonicity of Qh
f (δ) enlightens us a bisection method to search for the solution

for Qh
f (δ

h) = ϵ. The main idea is to perform the search within an interval of [0, ρ],
where ρ is an empirical constant such that Qh

f (ρ) > ϵ.
Details of the algorithm for searching the robust REU decision threshold are

presented in Algorithm 1. Note that, from the 3rd to the 11th lines of the algo-
rithm, we use Newton iteration to solve the equation in Proposition 2 and obtain
the worst-case probability with fixed robust REU decision threshold. Then we
compare the worst-case probability at δh− and δh

− with the fault tolerant limit ϵ,
respectively. The comparison results help shrink the search region as shown in
lines 12-14.

4.3. Main-Problem: Determine the Optimal Energy Consumption and Genera-
tion Scheduling

Once the robust REU decision threshold δh
∗ for the robust load balance con-

straint (19) is obtained, we can reformulate the energy generation and consump-
tion management problem. Specifically, we can tackle the following optimization
problem rather than the original Eq. (12)

min
H∑

h=1

Ch(P h
cg) (44)

s.t.
∑
a∈A

xa · yha − P h
cg = δh

∗
, h ∈ H, a ∈ A

and (2) to (10),

where the optimization variables include the controllable energy generation vari-
able P h

cg for all time slots h ∈ H, and the energy consumption scheduling vector
ya for all appliances a ∈ A. The objective function aims at minimizing the overall
energy cost in microgrid over the whole time horizon.

We can see that all the constraints of (44) are linear and the objective function
is quadratic. This problem is a mixed integer quadratic programming problem.
Algorithms that can be used to tackle this kind of problem include cutting plane
method and the branch and bound method. The problem can also be effectively
solved by some commercial optimization softwares including CPLEX, Mosek,
FortMP and Gurobi, etc.
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Algorithm 1 Search for robust REU decision threshold δh
∗

Input: Reference distribution gh(ξ
h);

Distance limit Dh;
Search radius ρ;
Load balance fault tolerant limit ϵ;
Tolerance ε.

Output: Robust REU decision threshold such that Qh
f (δ

h∗) = ϵ;
1: Begin
2: initialize δh− = 0, δh− = ρ, and set H(τ, η) = [H1(τ, η), H2(τ, η)]

T

3: while |δh− − δh
−| > ε

4: set δ̄h = δh−+δh
−

2
and initiate the time iteration k = 1

5: while H(τ, η) > ε
6: evaluate H(τ, η) and Jacobian matrix J(τ, η)
7: solve J(τ, η)∆xk = −H(τ, η)
8: update τk+1 = [τk +∆τk]

+, ηk+1 = ηk +∆ηk
9: update Qh

f (δ̄
h) = (1 +Dh)τk+1 + ηk+1

10: set k = k + 1
11: end while
12: if

(
Qh

f (δ̄
h)− ϵ

)(
Qh

f (δ
h−)− ϵ

)
< 0

13: then set δh− = δ̄h else set δh− = δ̄h end if
14: if |Qh

f (δ̄
h)− ϵ| < ε break end if

15: end while
16: set δh∗ = δ̄h

17: End

5. Simulation results and Discussions

In this section, we present simulation results for assessing the performance of
the proposed power demand and supply management scheme and evaluating the
effects of different system parameters. Here, we make an assumption on top of
paper [25] [26], where Gaussian random process has been utilized to describe the
renewable energy generation. Specifically, we assume that the reference distribu-
tion is a Gaussian distribution gh(ξ

h) with mean mh and standard deviation σh. In
addition, we set the parameters of the cost function in (44) for each time slot as
ah > 0, bh = 0, and ch = 0.
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Figure 2: Robust REU Decision Threshold δh
∗ with Distance Limit Dh for differ-

ent mh

5.1. The Impacts of Distribution Uncertainty Set
We first set the fault tolerant limit ϵ = 10−3 and try to investigate the relations

between robust REU decision threshold δh
∗ and distance limit Dh for different

values of mh and σh. The results are plotted in Fig. 2 and Fig. 3. It is shown
that the robust REU decision threshold decreases with the increase of the distance
limit. This observation is intuitive since a larger distance limit defines a larger
distribution set which allows the renewable energy output to fluctuate more inten-
sively. Given the required fault tolerant limit, REU decision threshold has to be set
at a lower value so as to rely less on the more uncertain renewable energy and keep
the system reliable. Note that when Dh = 0, the renewable energy follows exactly
the reference distribution gh(ξ

h). In this special case, renewable energy genera-
tion is a random variable with determinate distribution gh(ξ

h). While Dh > 0, our
reference model considers a more general case which allows discrepancy between
actual distribution and its reference. The discrepancy however is limited and con-
fined by a probabilistic distance measure. Simply put, the reference model allows
the actual renewable energy generation to follow a different distribution function
from the reference distribution, but not be too disparate based on historical data
or empirical knowledge.

From Fig. 2 and Fig. 3, we also can achieve the following statement: when
the reference distribution is Gaussian, the robust REU decision threshold δh

∗ lin-
early increases with the mean of reference distribution mh and linearly decreases
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Figure 3: Robust REU Decision Threshold δh
∗ with Distance Limit Dh for differ-

ent σh

with the standard deviation of reference distribution σh. This statement can be
explained analytically as follows. We first transform Gh(δ

h) in (36) and (37) into

Gh(δ
h) =

∫
ξh≥δh

gh(ξ
h)dξh =

∫ +∞

δh−mh
σh

n(x)dx, (45)

where n(x) is the probability density function of the standard Gaussian distribu-
tion. Since fault tolerant limit ϵ is of a relatively small value, we have that δh∗ is
less than mh. As mh and σh vary, in order to preserve the same worst-case prob-
ability Qh

f (δ
h∗), the solutions (η, τ ) of the equations (36) and (37) need to remain

unchanged, indicating that S(δh∗), R(δh
∗
) and G(δh

∗
) also need to be constants.

In this case, we have:

δh
∗ −mh

σh

= C =⇒ δh
∗
= Cσh +mh,

where C is a negative constant. Thus, δh∗ linearly increases with mh and linearly
decreases with σh.

5.2. Effects of Fault Tolerant Limit ϵ
We set mh = 36 and σh = 2 and investigate how the robust REU decision

threshold varies when fault tolerance limit increases. Figure 4 plots the mapping
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Figure 4: Robust REU Decision Threshold δh
∗ with Fault Tolerant Limit ϵ for

different Dh

from fault tolerant limit ϵ to robust decision threshold δh
∗ under different values of

the distant limit Dh. The figure indicates that a larger fault tolerant limit permits
a higher reliance on renewable energy (a larger robust REU decision threshold),
which is straightforward to understand. We also note that the worst-case fault
probability is an increasing function of the REU decision threshold. Thus we are
justified to use the bisection method as presented in Algorithm 1 to search for the
REU decision threshold which satisfies the fault tolerant limit requirement. Note
that in this figure, the red triangle line is the special case where renewable energy
follows reference distribution exactly. We also observe that robust REU threshold
δh

∗ is more sensitive to ϵ when Dh increases.

5.3. The Impacts of Uninterruptible Loads
For the experiment studied in this part, we set the power consumption schedul-

ing horizon |H| = 12 h. That is, the MGCC solves optimization problem (44) to
decide on the operations of each appliance for the next 12 hours. In this paper,
30 household appliances including electric cookers (EC), air conditioners (AC),
electric water heaters (EWH), cloth dryers (CD), dish washers (DW) and plug-in
hybrid electric vehicles (PHEVs) are considered to study the optimal power con-
sumption scheduling with a mixed integer quadratic programming approach. The
detailed operation data we use is modified based on the information from [27]
[28] [29] [30] [31], and is shown in Table 1. Note that we also introduce a user
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elasticity index

γa =
Ta

βa − αa + 1

to describe the scheduling flexibility of appliance a. Obviously, γa ∈ (0, 1], and a
larger γa implies a more inflexible arrangement property. The operation window
[αa, βa] of each appliance is chosen according to the preferences of different users.
In this paper, we do not enumerate the values of αa and βa one by one due to
limited space, instead, we list the range of γa for each kind of appliance, which is
presented in the last column of Table 1.

Table 1: Operation Data for Appliances in the microgrid

Type of Appliance Power Level (KW) Ta γa

EC 2 1 0.3-0.4
AC 3.5 10 0.9-1.0

EWH 4.5 3 0.5-0.7
CD 5 3 0.3-0.4
DW 0.85 2 0.3-0.4

PHEV 7.3 7 0.6-0.7

The mean mh and standard deviation σh of the reference distribution, together
with the distance limits for the next 12 time slots are given in Table 2. Based on
these data and adopting Algorithm 1, we obtain the robust REU threshold δh

∗ for
each time slot, representing the amount of energy dispatched to renewable energy
plants. The results are demonstrated in the last column of Table 2 and are used
to solve the main problem (44). Our experiments utilize MOSEK optimization
toolbox 6.0 on an Intel-P4 2.4-GHz personal computer. To investigate the impacts
of uninterruptible loads, we study the following cases:

• Case 1: Only electric cookers are classified into the uninterruptible appli-
ance set A′, i.e., A′ = {EC}.

• Case 2: On top of Case 1, air conditioners are added to the uninterruptible
appliance set A′, i.e., A′ = {EC,AC}.

• Case 3: On top of Case 2, electric water heaters are added to the uninter-
ruptible appliance set A′, i.e., A′ = {EC,AC,EWH}.
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Table 2: Parameters of Distribution Uncertainty Set and Corresponding Robust
REU Threshold

Time Slot mh σh Dh δh
∗

1 14.678 0.9571 0.0162 8.419
2 14.757 0.4853 0.0181 11.453
3 14.743 0.8002 0.0025 11.531
4 14.392 0.1418 0.0182 13.423
5 14.655 0.4217 0.0126 12.137
6 14.171 0.9157 0.0019 10.630
7 14.706 0.7922 0.0055 10.995
8 14.031 0.9594 0.0109 8.577
9 14.276 0.6557 0.0191 9.716

10 14.046 0.0357 0.0192 13.797
11 14.097 0.8491 0.0031 10.565
12 14.823 0.9339 0.0194 8.294
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Figure 5: The impacts of uninterruptible loads on the energy cost of the microgrid
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Figure 6: The Impact of User Elasticity on the Energy Cost of the Microgrid

• Case 4: On top of Case 3, cloth dryers are added to the uninterruptible
appliance set A′, i.e., A′ = {EC,AC,EWH,CD}.

• Case 5: On top of Case 4, dish washers are added to the uninterruptible
appliance set A′, i.e., A′ = {EC,AC,EWH,CD,DW}.

• Case 6: On top of Case 5, PHEVs are added to the uninterruptible appliance
set A′, i.e., A′ = {EC,AC,EWH,CD,DW,PHEV}.

Figure 5 demonstrates the energy cost for each case. Obviously, the energy
cost goes up when we scale up the uninterruptible appliance set A′. We compare
the costs of adjacent cases, and the difference between these costs is called cost
gap. The largest cost gap is shown between Case 5 and Case 6 due to PHEVs’ high
electric power consumption (P = 7.3 KW) and relatively considerable scheduling
elasticity (γa = 0.6− 0.7).

5.4. The Price of User Elasticity
In this section, we explore the effects of user elasticity on the energy cost of

the microgrid system. First we assume that all the appliances are uninterrupt-
ible. Since the minimum running time of each appliance Ta is fixed, we extend or
shrink the operation window [αa, βa] to relax or tighten the user elasticity. Note
that, at one time, the operation window [αa, βa] of each appliance a will expand
or shrink one unit of time slot from both sides, i.e., the operation window will
scale up or down two time slots. If one side of the operation window cannot be
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extended due to the finite length of time horizon, the operation window will only
scale up on one side until it covers the whole time horizon. We keep on extending
or shrinking the operation window of each appliance until all the operation win-
dows cannot be changed. Then, we demonstrate how energy cost changes when
operation windows vary. We select the case when operation windows are shrunk
6, 4, 2 time slots and extended 0, 2, 4 time slots respectively. The results are pre-
sented in Fig. 6. In this figure, we find that when user elasticities are tightened,
energy cost increases rapidly. We can interpret that the user elasticity can make a
significant impact on the energy cost of the microgrid system. Compared with the
the effects of interruptibility property, user elasticity has stronger influences on the
expenditure of the whole system. This result may give MGCC an inspiration that
it is worthy to provide more rewards to customers who agree to have more time
flexibility than those who allow interruptions to some appliances. Moreover, we
find that when the operation windows are shrunk by 6 time slots, nearly all the ap-
pliances’ elasticity reaches 1. This approximates the case when all the appliances
operate at their desired time with no flexibility. Compared with this benchmark
case, we observe that the proposed power consumption management scheme can
reduce the energy cost significantly.

6. Conclusion

In this paper, we studied a fundamental problem of using a microgrid sys-
tem central controller to optimally schedule the demand and supply profiles so
as to minimize the fuel consumption costs during the whole time horizon. We
focused on a scenario where the control of customer appliances is delegated to
the grid operator. To tackle the randomness of renewable energy, we introduced
a reference distribution and then defined a distribution uncertainty set to confine
the uncertainty. Such a new model allows convenient handling of fluctuating re-
newable generation as long as the renewable energy generation profile is not too
drastically different from the past observation or empirical knowledge. An op-
timization formulation of the problem was proposed and a two-stage algorithm
approach was developed, to first transform and then solve the problem. Numeri-
cal results indicated that the proposed energy consumption management scheme
can significantly cut down energy expenses. Effects of a few factors, including the
reference distribution, the fault tolerant limit, the types and amount of uninterrupt-
ible loads, and the user elasticity etc. were carefully evaluated. Such evaluations,
as we believe, help provide some useful insights for MGCC to develop more ef-
fective payback policies for their customers.
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