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A Simple Discrete-time Tracking Differentiator and
Its Application to Speed and Position Detection

System for a Maglev Train
Hehong Zhang, Yunde Xie, Gaoxi Xiao, Chao Zhai, and Zhiqiang Long

Abstract—In this brief, a novel tracking differentiator based on
discrete time optimal control (DTOC) is presented. In particular,
using the state back-stepping method, a DTOC law for a discrete-
time, double-integral system is determined by linearized criterion,
which equips the tracking differentiator with a simple structure.
The analysis of the proposed tracking differentiator reveals its
filtering mechanism. Simulation results show that it performs
well in signal-tracking, differentiation acquisition and reducing
the computation resources needed. Experiments on the speed and
position detection system for a maglev train demonstrate that
the proposed tracking differentiator group, with moving-average
algorithm, can filter noises, amend distortion signals effectively
and compensate for phase delays when the train is passing over
track joints.

Index Terms—Tracking differentiator, discrete time, time opti-
mal control, linearized criterion, filter, phase delay, maglev train.

I. INTRODUCTION

THE differentiation of a given signal in real time is a well-
known yet challenging problem in control engineering

and theory [1], [2]. The proportional-integral-derivative (PID)
control law developed in the last century still plays an essential
role in modern control engineering practice [3], [4]. However,
since derivative signals are prone to be corrupted by noise
and derivative control is usually not physically implementable,
the PID control is usually degraded to PI control [5]. To
deal with this, researchers have proposed many different
approaches for differentiator design, including those based on
a high-gain observer [6], a linear time-derivative tracker [7], a
super-twisting second-order sliding mode algorithm [8], robust
exact differentiation [9], [10], and a finite time convergent
differentiator [11] etc.

First proposed by Han [12], a noise-tolerant time optimal
control (TOC)-based tracking differentiator (TD) allows one
to avoid a setpoint jump in the emerging active disturbance
rejection controller. The advantage of this TD is that it
sets a weak condition on the stability of the systems to be
constructed for TD and requires a weak condition on the input.
In addition, it also has the advantage of smoothness compared
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with the obvious chattering problem encountered by sliding-
mode-based differentiators [13]. The following presents a brief
outline for the construction of this TD:

The double-integral system is defined as{
ẋ1 = x2,
ẋ2 = u, |u| ≤ r (1)

where r is a constant. Note that, depending on the physical
limitations in each application, the parameter r can be selected
accordingly to speed up or slow down the transient profile. The
resulting feedback control law that drives the state from any
initial point to the origin in the shortest time is [14], [15]

u = −rsign(x1 − v +
x2|x2|

2r
) (2)

where v is the desired value for x1. The switching curve
function is Γ(x1, x2) = x1 + x2|x2|

2r . Using this principle, we
can obtain the desired trajectory and its derivative by solving
the following differential equations:{

v̇1 = v2,

v̇2 = −rsign(v1 − v + v2|v2|
2r )

(3)

where v1 is the desired trajectory and v2 is its derivative.
With the developments in computer control technology,

most control algorithms are now implemented in the discrete
time domain. Direct digitization of a continuous TOC solu-
tion of (2) is problematic in practice because of the high-
frequency chattering of the control signals [16]. This problem
can be addressed by using a discrete-time solution for a
discrete double-integral system v1(k + 1) = v1(k) + hv2(k),
v2(k + 1) = v2(k) + hu(k), |u(k)| ≤ r to obtain u =
Fhan(v1(k) − v(k), v2(k), r0, h0), where h is the sampling
period, and r0 and h0 are controller parameters [12], [16].

However, the discrete time optimal control (DTOC) law
(Fhan) of the TD is determined by comparing the position
of the initial state with the isochronic region obtained through
non-linear boundary transformation. This makes the structure
of a TD to be complex with non-linear calculations, including
square-root calculations. In this brief, the mathematical deriva-
tion of a new closed-form discrete time optimal control law
for discrete form of the system in (1) is presented. Unlike the
control law Fhan, the DTOC law is based on a linearized
criterion that depends upon the position of the initial state
point on the phase plane. In doing so, the new control law has
a simpler structure that is much easier to be applied in practical
engineering scenarios. Experiments are carried out on position
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signal processing for position sensing in the speed and position
detection system of a maglev train [17], [18]. In practice, the
signals from the position sensor may be aberrant due to track
joints, which leads to low efficiency of the traction system and
even safety misadventures. The proposed TD can be used to
construct a TD group with a moving-average algorithm that
filters the noises, compensates for phase delays, and amends
distortion signals when the train is passing over track joints.

The paper is organized as follows: the new DTOC law
is proposed in Section II. The structure of the TD and its
filtering characteristic are discussed in Section III. In Section
IV, numerical simulation results are presented to compare the
performance of signal tracking, differentiation acquisition and
the computation resources needed in field-programmable gate
array (FPGA) application between the control law Fhan and
the proposed law, followed by experiment results on position
signal processing for the speed and position detection system
of a maglev train. Finally Section V concludes the paper.

II. DISCRETE TIME OPTIMAL CONTROL LAW

Consider a discrete-time double-integral system

x(k + 1) = Ax(k) +Bu(k), |u(k)| ≤ r (4)

where A =

(
1 h
0 1

)
, B =

(
1
h

)
and x(k) =

[x1(k), x2(k)]T . The objective here is to derive a time optimal
control (TOC) law directly in discrete time domain. The
problem is defined as follows:

DTOC Law: Given the system (4) and its initial state x(0),
determine the control signal sequence, u(0), u(1),..., u(k),
such that the state x(k) is driven back to the origin in a
minimum and finite number of steps, subject to the constraint
of |u(k)| ≤ r. That is, find u(k∗), |u(k)| ≤ r, such that
k∗ = min {k|x(k + 1) = 0}.

In bang-bang control, the control signal switches between its
two extreme values (u = +r or u = −r) around the switching
curve, and it switches the sign instantaneously after reaching
the switching curve. For a discrete time system, however, the
process of sign-switching occurs within a sampling period h.
During that process, the corresponding state sequences remain
in a certain region (denoted as Ω) near the switching curve.
The control signals for the state sequences in region Ω are
determined by a linearized criterion. The control signal varies
from a certain positive (negative) value to a negative (positive)
value when control signal u passes from one side of the region
Ω to the other. All initial state sequences outside region Ω
when the control signal takes an extreme value, i.e., u = +r or
u = −r, are located at certain curves, referred to as boundary
curves ΓA and ΓB . Region Ω is surrounded by these boundary
curves. In addition, when the value of the control signal varies
in [−r, r], there exists a state that corresponds to u = 0. All
states that correspond to u = 0 constitute another curve, which
is referred to as the control characteristic curve ΓC .

In deriving the DTOC law, one must find the control signal
sequence for any initial state point x(0) ∈ Ω or x(0) 6∈ Ω.
The whole task is divided into two parts:

I: Determine the boundary curves of region Ω and the
control characteristic curve based on the state back-stepping
approach, i.e., the representation of the initial condition x(0) =
[x1(0), x2(0)]T in terms of h and r, from which the state can
be driven back to the origin in (k + 1) steps.

II: For any given initial condition x(0) ∈ Ω or x(0) 6∈ Ω,
find the corresponding control signal sequence.

A. Determination of the Boundary Curves and Control Char-
acteristic Curve

For any initial state sequence, at least one admissible control
sequence exists, e.g., u(0), u(1), ..., u(k), that makes the
solution to (4) satisfy x(k+1) = 0. Under the initial condition
x(0), the solution is

x(k + 1) = Ak+1x(0) +

k∑
i=0

Ak−iBu(i) (5)

where x(0) = [x1(0), x2(0)]T and i = 0, 1, 2, ..., k. It
manifests that x(k + 1) = 0. Therefore, the initial condition
satisfies

x(0) =

k∑
i=0

(
(i+ 1)h2

−h

)
u(i) (6)

Adopting the state back-stepping approach (above), we can
determine the two boundary curves ΓA and ΓB as well as the
control characteristic curve ΓC as follows:

To obtain the boundary curve ΓA, we suppose that {a+k}
and {a−k} are the sets of any x(0) that can be driven back
to the origin with the control signal sequence u(i) = +r or
u(i) = −r, i = 0, 1, 2, ..., k. For this we specify that all initial
states in set {a+k} consist of Γ+

A and all initial states in set
{a−k} consist of Γ−A.

For set {a+k}, the following result holds when the control
signal sequence takes on u(i) = +r according to (6).

x(0) = r

k∑
i=0

(
(i+ 1)h2

−h

)
(7)

And we have: x1(0) = rh2(k
2

2 + 3k
2 +1) and x2(0) = −rh(k+

1) < 0. Simplifying x(0) into x and eliminating the variable
k results in the boundary curve Γ+

A, which is x1 =
x2
2

2r −
1
2hx2, where x2 < 0. Similarly, we can get the boundary
curve Γ−A: x1 = −x

2
2

2r −
1
2hx2, where x2 > 0. Therefore, the

entire boundary curve ΓA (see Fig. 1) is

ΓA : x1 +
x2|x2|

2r
+

1

2
hx2 = 0 (8)

We then determine the boundary curve ΓB . If we suppose
that {b+k} and {b−k}(k > 2) are the sets of any initial state
x(0) that can be driven back to the origin when the control
signal takes on u(0) = −r or u(0) = +r in the first step,
from then on the control sequence becomes u(i) = +r or
u(i) = −r, i = 1, 2, ..., k, respectively. Similarly, the boundary
curve ΓB consists of Γ+

B and Γ−B .
For set {b+k}, the rule presented above for choosing the

control signal sequence allows us to obtain x1 = rh2(k
2

2 +
3k
2 − 1) and x2 = −rh(k − 1) < 0. Eliminating the variable
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Fig. 1. Illustration of two boundary curves (ΓA and ΓB), control charac-
teristic curve ΓC , region Ω (surrounded by two boundary curves), and three
intersection points A, B, and C.

k, the boundary curve Γ+
B is x1 =

x2
2

2r −
5
2hx2 +h2r and there

exists x1+hx2 = 1
2rh

2k(k+1) > 0. Similarly, we can obtain
the boundary curve Γ−B : x1 = −x

2
2

2r−
5
2hx2−h

2r, x1+hx2 < 0.
Therefore, the entire boundary curve ΓB (see Fig. 1) is

ΓB : x1 − s
x22
2r

+
5

2
hx2 − sh2r = 0 (9)

where s = sign(x1 + hx2).
We finally determine the control characteristic curve ΓC .

If we suppose that {c+k} and {c−k} (k > 2) are the sets
of any initial state x(0) that can be driven back to the origin
when the control signal takes on u(0) = 0 beginning in the
first step, then the control sequence takes on u(i) = +r or
u(i) = −r, i = 1, 2, ..., k. Similarly, the boundary curve ΓC
consists of Γ+

C and Γ−C .
For set {c+k}, there exists x1 = 1

2rh
2(k2 + 3k + 2) and

x2 = −rhk < 0 according to the rule for choosing the control
signal sequence, as shown above. By eliminating the variable
k, we have that the control characteristic curve Γ+

C is x1 =
x2
2

2r −
3
2hx2. Similarly we can obtain the control characteristic

curve Γ−C : x1 = −x
2
2

2r −
3
2hx2 − h2r. Therefore, the entire

control characteristic curve ΓC (see Fig. 1) is

ΓC : x1 +
x2|x2|

2r
+

3

2
hx2 = 0 (10)

B. Construction of the DTOC Law

The new DTOC law is constructed based on the boundary
curves and the control characteristic curve proposed above. As
shown in Fig. 1, we denote that, for any initial state M(x1, x2)
in the fourth quadrant (x1 > 0, x2 < 0), an auxiliary line x2 =
x2(M) intersects with the boundary curves and the control
characteristic curve at points A, C and B (in the direction of
x1). The coordinates of xA, xC , and xB along the x-axis are

xA =
x2
2

2r + 1
2h|x2|

xB =
x2
2

2r + + 5
2h|x2|+ h2r

xC =
x2
2

2r + + 3
2h|x2|.

(11)

For any initial state M(x1, x2) satisfying x1 < xA or x1 >
xB , the control signal is taken as u = +r or u = −r. For any

Fig. 2. Illustration of two-step reachable region Ωr , i.e., diamond region.

initial state M(x1, x2) satisfying x1 ∈ [xA, xC ], the control
signal can be determined as follows:

u = −rαsign(x2) (12)

where α = xC−x1

xC−xA
. For any initial state M(x1, x2) satisfying

x1 ∈ [xC , xB ], the control signal is calculated as:

u = rβsign(x2) (13)

where β = x1−xC

xB−xC
.

When the initial state M(x1, x2) is in the second quadrant,
the control signal sequence can be constructed similarly.
However, when the initial state M(x1, x2) is in the first or
third quadrant (located outside region Ω), two different cases
have to be considered when selecting the control signal. When
M(x1, x2) cannot be driven back to the origin within two
steps, that is, the initial state does not satisfy the condition
x21 + x22 = 0, then u = −rsign(x1 + hx2). When M(x1, x2)
can be driven back to the origin within two steps, the initial
state x(0) and the corresponding control signal sequence
satisfy (6), i.e., 

x1(1) = x1(0) + hx2(0)
x2(1) = x2(0) + hu(0)
x1(2) = x1(1) + hx2(1)
x2(2) = x2(1) + hu(1).

(14)

Furthermore, when M(x1, x2) can be driven back to the
origin within two steps, the corresponding control signals can
be derived as follows:{

u(0) = −x1(0)+2hx2(0)
h2

u(1) = x1(0)+hx2(0)
h2 .

(15)

The condition u(1) ≤ r is a sufficient condition for driving
the initial state back to the origin within two steps. When it is
satisfied, the control signal can take on u(0) and u(1) in (15)
to drive the initial state back to the origin.

The region in which any x(0) can be driven back to the ori-
gin within two steps, denoted as Ωr, is surrounded by two pairs
of parallel lines: x1 + hx2 = ±h2r and x1 + 2hx2 = ±h2r.
As shown in Fig. 2, Ωr is a parallelogram defined by the four
points of (−h2r, 0), (−3h2r, 2hr), (h2r, 0) and (3h2r,−2hr).

Now, any initial state M(x1, x2) on the x1 − x2 plane can
be driven back to the origin in a minimum and finite number
of steps according to the control signal sequence above. The
complete DTOC law is described as follows:
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Step 1: Set z1 = x1+λhx2, z2 = z1+hx2, where λ ∈ (0, 1]
is a tuning parameter to determine the different coordinates of
xA, xC , and xB . Here, we choose λ = 1. If |z1| > h2r or
|z2| > h2r, then M(x1, x2) cannot be driven back to the origin
within two steps, i.e., M(x1, x2) 6∈ Ωr, go to the next step;
otherwise, go to Step 5;

Step 2: If the initial state M(x1, x2) satisfies x1x2 ≥ 0
and M(x1, x2) 6∈ Ω2 ∪ Ω, then the control signal takes on
u = −rsign(x1 + hx2);

Step 3: Determine the boundary of the region Ω, i.e., xA,
xC and xB according to (11).

Step 4: If |x1| ≥ xB , then the control signal takes on u =
−rsign(x1); if |x1| ≤ xA, then the control signal takes on
u = rsign(x2);

Step 5: If |x1| ≤ xC , then the control signal takes on u =

−rαsign(x2); otherwise u = rβsign(x2), where α = xC−|x1|
xC−xA

and β = |x1|−xC

xB−xC
;

Step 6: If the initial state M(x1, x2) ∈ Ωr, then the control
signal takes on u = − z2

h2 ;
Step 7: The algorithm ends.
From the deduction above, the mathematical derivation of a

closed-form DTOC as a function of x1, x2, r, and h, denoted
by u(k) = Fast(x1(k), x2(k), r, h, xA, xB , xC), is obtained.

Remark 1: The DTOC law proposed by [12], [16] is
essentially a non-linear boundary transformation that includes
complex non-linear calculations. The control signal of our
new law is determined by using piecewise linear function
according to the relative positions of the initial state and the
corresponding x-axis values for intersection points xA, xC .
This allows the new law to have a simple structure.

Remark 2: For Step 1 of the algorithm in Subsection B,
choosing a different λ can result in different points xA, xC and
xB . However, the whole algorithm does not need to change.

For the given signal sequence {V (k), k = 0, 1, 2, ...}, we
can construct the TD based on Fast as follows [19], [20]: u(k) = Fast(x1(k)− V (k), x2(k), r0, c0h, xA, xB , xC)

x1(k + 1) = x1(k) + hx2(k)
x2(k + 1) = x2(k) + hu(k), k = 0, 1, 2, ...

(16)
where r0 is the quickness factor, c0 is the filtering factor, and
h is the sampling size.

III. STRUCTURE ANALYSIS AND FILTERING
CHARACTERISTIC OF Fast

The approximate linear format of the proposed TD in (16)
can be shown as follows if one properly selects parameter r:(

x1(k + 1)
x2(k + 1)

)
=

(
1− 0.5

c20
(1− 0.75

c0
)h

− 1
c20h

1− 1.5
c0

)(
x1(k)
x2(k)

)
+

1

c20h

(
1

0.5h

)
v(k).

(17)
For convenience, the above equation can be expressed as

x(k + 1) = Gx(k) + Γv(k), k = 0, 1, 2... (18)

where x(k) = [x1(k), x2(k)]T , and G,Γ are the corresponding
matrices in (17). If we assume that the input signal v(t) =

Fig. 3. Output variance sequence R vs filtering factor c0.

∑N
i=1Aie

j(wit+φi0) + ξ(t), where Ai, wi ∈ R+, φi0 ∈ R and
ξ(t) is a width-steady process. We have

x(k) = Gkp0 +

N∑
i=1

(ejwihI2−G)−1ΓAie
j(wikh+phii0) +η(k)

(19)
where η(k + 1) = Gη(k) + Γξ(k), and p0 is determined by
initial condition x(0) and η(0). The necessary and sufficient
condition for convergence for (19) is that the spectral radius
of matrix G satisfies ρ(G) < 1. It can be derived that x1(k) =
CGkp0 +

∑N
i=1 C(ejwihI2 −G)−1ΓAie

j(wikh+φi0) + Cη(k)
by choosing C = [1, 0]. When the transfer function of the
discrete time system is denoted as Φ(z) = C(zI2 − G)−1Γ,
x1(k) can be expressed as follows

x1(k) = CGkp0 +

N∑
i=1

Φ(ejwih)Aie
j(wikh+φi0) + Cη(k).

(20)
For comparisons of filtering characteristics between Fast

and Fhan algorithms, we only consider the width-steady ran-
dom process. For a discrete-time linear tracking differentiator,
width-steady input results in width-steady output. When the
random input ξ(t) is a white noise sequence, Rξ = Qδ(τ),
where δ(τ) is the Kronecker delta function [21], [22] and Q
is the constant matrix. The variance matrix then satisfies the
equation Rη(k+1) = GRη(k)GT+ΓQΓT . When the constant
k is large enough, Rη(k) converges to the constant matrix, i.e.,

Rη = GRηG
T + ΓQΓT . (21)

The above equation is a Lyapunov function of a discrete
time system that presents the relationship between the output
variance sequence R and the filtering factor c0. For the
algorithm Fhan, the matrix G and Γ are

G1 =

(
1 h
1
c0h

1− 2
c0

)
,Γ1 =

(
0
1
c20h

)
respectively. Assume that the white-noise power spectrum
density is Q = 1. Fig. 3 demonstrates the relationship between
the output variance sequence R and the filtering factor c0.

As shown in Fig. 3, choosing the proper filtering factor c0
allows that the proposed TD based on the control law Fast to
effectively filter random noise. Compared with the control law
Fhan, the Fast algorithm performs better in signal-filtering.
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Fig. 4. Illustration of state trajectory under two different algorithms.

IV. SIMULATIONS AND EXPERIMENTS

By numerical simulations, we compare the state trajectory,
signal-tracking, and differentiation of input signals between
the algorithm Fhan and the algorithm Fast. Furthermore, we
compare the computation resources needed for two algorithms
by the field-programmable gate array (FPGA) implementation.
Experiments have also been conducted on signal processing
for the position sensing in the speed and position detection
system of a maglev train. Our objective is to show that using
the proposed tracking differentiator to construct a tracking
differentiator group with a moving-average algorithm can filter
noise effectively, compensate for phase delays, and amend
distortion signals at track joints, and it performs better than
the algorithm Fhan.

A. Numerical Simulation

The switching curve function of the algorithm Fhan is ΓA :
x1 + x2|x2|

2r + 1
2hx2 = 0, while the switching curve function

of TOC is Γ0 : x1 + x2|x2|
2r = 0. Fig. 4 illustrates the state

trajectory under two different algorithms, Fhan and Fast.
We can see that the state trajectory for Fast is in accordance
with the optimal trajectory while the state trajectory for Fast
lags the optimal trajectory.

We then demonstrate the errors of tracking and differentia-
tion of signals between the algorithms Fhan and Fast. The
Matlab program of Euler method is adopted in investigation.
We choose the same initial value (x10 = 0, x20 = 2) and
the input signal sequence v(t) = sin(2πt) + γ(t) in all
simulations, where γ(t) is the evenly distributed white noise
with an intensity of 0.005. The sampling step is h = 0.01,
the quickness factor is r0 = 100, and the filtering factor is
c0 = 1.5.

The simulation results are plotted in Figs. 5 and 6. The algo-
rithm Fast quickly tracks an input signal without overshooting
and chattering, while also obtaining an excellent differentiation
of the input signal. This algorithm is more accurate in its
tracking and differentiation compared with the other algorithm.

We introduce the FPGA to compare the computational
resources needed between two algorithms. A great amount of
multipliers and logic-element resources would be consumed

Fig. 5. Comparison of tracking errors between Fhan and Fast algorithms.

Fig. 6. Differentiation of signal errors compared between Fhan and Fast
algorithms.

in FPGA implemented, in particular, for square root opera-
tions. For square root operations, the method of successive
approximations by the VHDL language is used and the FPGA
resources consumed are compared by single running of the
two different algorithms in Table 1.

From Table 1, we see that the proposed Fast algorithm
significantly reduces the computation resources needed.

B. Experiment Validation

A permanent magnet electrodynamic suspension train uses
a linear motion actuator to realize traction function [23], [24].
As shown in Fig. 7, the synchronous traction system comprises
a speed and position detection system, a radio unit, a ground
traction system, and a traction power module. The speed and
position detection system is a core part of the synchronous
traction system, which is used to receive and process the
sensors’ data. It sends the processed data of the speed and
position of the train to the traction system in terms of the
agreement to realize traction function. Therein, the position
sensor can detect inductance changes of long stators’ alveolar
structures (see Fig. 7) to acquire the position information about
the train.

In practice, the detection coils of the position sensor face
long stators’ alveolar structures. When the position sensor
moves along the long stators, it can distinguish the teeth and
the slots by detecting changes of inductance, and meanwhile,
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TABLE I
COMPARISON OF THE COMPUTATION RESOURCES NEEDED IN FPGA BETWEEN Fhan AND Fast

Algorithm Multiplications Square-root operations Logic-Element (LE) Clock cycles
Fhan (32 bit) 14 1 290 74
Fast (32 bit) 6 0 6 5

Fig. 7. Synchronous traction system.

Fig. 8. Track joint in traction system.

the position of the train can be detected by counting the
number of passed alveolar structures. Then, the position sensor
transforms the position information into the output of the
magnetic pole phase (from 0 to 60 degrees), where the phase
signal between 0 to 60 degrees represents the length of one
alveolar structure. Afterwards, the speed and position detection
system processes the position data in accordance with the
requirements of the traction system to compose the magnetic
pole phase (from 0 to 360 degrees) for the traction.

For prevention of thermal expansion and contraction, the
long stator track features numerous stators with many joints
(80mm of the actual displacement) along the track (see Fig. 8).
These joints distort the outputs of the magnetic pole phase
from the position sensors. The expected output of the position
sensor when maglev train is passing over track joint is shown
in Fig. 9. However, because of the track joints, the position
signal will be more or less aberrant as the train passes.

Fig. 9. The expected output of the position sensor when the maglev train
passes over track joint.

Fig. 10. Illustration of TD group

Fig. 11. Results of magnetic pole phase filtering and phase compensation
with the algorithm Fast and Fhan.

To amend the distortion of position signals at track joints,
the TD based on algorithm Fast is introduced. We use
the proposed TD to construct the TD group (see Fig. 10),
employing a moving-average algorithm to compensate for any
phase delay. The moving-average algorithm is determined as

V̂ (t) =

n∑
k=1

Ckn(−1)(k+1)Vk(t) (22)

We choose n = 3, leading to V̂ (t) = 3V1(t)−3V2(t) +V3(t).
The experimental data are acquired from the speed and

position detection system when the train is passing over a
track joint. In the experiments, the parameters are set by the
trial and error method as follows: for the algorithm Fast, the
sampling step is h = 0.005s, the quickness factor is r0 = 100,
and the filtering factor is c0 = 40, while for the algorithm
Fhan, the sampling step is h = 0.005s, the quickness factor
is r0 = 300, and the filtering factor is c0 = 45. Figure. 11
shows that, when the proposed TD group is used based on the
algorithm Fast, the aberrant magnetic pole phase from the
position sensor becomes smoother and the aberrant signal is
greatly improved. The phase delay is small enough to meet
the need of traction system. Furthermore, compared with the
TD based on the algorithm Fhan, we can find that the TD
based on Fast is superior to the Fhan in filtering and phase
compensation. Such findings verify the effectiveness of the TD
based on the Fast algorithm.
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V. CONCLUSION

In this brief, we proposed a novel second-order TD based
on discrete time optimal control. The boundary curves and the
control characteristic curve were obtained using the state back-
stepping method. Using the linearized criterion in control law
allows us to obtain a new TD with a simple structure. The
filtering mechanism was identified through structure analysis.
Numerical simulation results showed that the TD based on
the algorithm Fast is more effective and has better perfor-
mance in signal-tracking and differentiation acquisition than
the algorithm Fhan. Furthermore, the computation resources
needed in FPGA application is greatly reduced using the pro-
posed Fast algorithm. Experiments on the speed and position
detection system in a maglev train verified the effectiveness
of the TD based on the algorithm Fast in signal-processing.
Future investigations will include an analysis of the accuracy
of proposed TD and examining the stability and convergence
of the tracking differentiator.
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