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System crash as dynamics of complex networks
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Complex systems, from animal herds to human nations, sometimes
crash drastically. While the growth and evolution of systems have
been extensively studied, our understanding of how systems crash is
still limited. It remains rather puzzling why some systems, appearing
to be doomed to fail, manage to survive for a long time; while some
other systems, which seem to be too big or too strong to fail, crash
rapidly. In this contribution, we propose a network-based system
dynamics model, where individual actions based on the local infor-
mation accessible in their respective system structures may lead to
the “peculiar” dynamics of system crash mentioned above. Exten-
sive simulations are carried out on synthetic and real-life networks,
which further reveal the interesting system evolution leading to the
final crash. Applications and possible extensions of the proposed
model are discussed.

complex systems | system crash | pseudo-steay state | cascade behavior
Systems emerge and grow up, and naturally, systems die.
While extensive studies have been carried out on the growth
and evolution of various complex systems, in many cases
adopting complex network-based approaches (e.g., [1, 2]),
hardly any similar studies exist on system crash. As a spe-
cial type of system evolution, system crash however defies
straightforward description by any of the existing models of
system evolution to the best of our knowledge. A few im-
portant observations of system crash remain puzzling and re-
quire careful study: (i) Some “inferior” or “outdated” systems,
though appearing to be doomed to fail, may survive for a very
long time. Examples include “living fossils” such as coela-
canths which have survived for more than 80 million years
[3], some depleted-but-not-eliminated species under competi-
tion or faced by seemingly unstoppable invasion [4], and social
systems such as the final Qing dynasty in China which went
through 70 years of disastrous defeats and rebellions with sur-
prising robustness until its sudden termination in 1911 [5], etc.
We term such systems as being in a pseudo-steady state before
their final crashes. (ii) Systems which appear to be too big
or too strong to fail sometimes crash rapidly. Well-known ex-
amples include the crashes of various ecological and biological
systems, which in some cases occur much faster than expected
[6, 7] or even for no obvious reason [8, 9]. Similar phenomena
exist in human society, e.g., the sudden crash of the Soviet
Union [10], and the crash of the once biggest online social net-
work (OSN), Friendster, in less than one year [11], etc. To
help understand the crashes of ecological [6, 7, 12], biologi-
cal [8, 9], neurological [13], physical and cyber-physical [14],
economic [15, 16], social [5, 10, 11] and many other complex
systems, new modeling approaches to describe the process and
dynamics of a system crash are needed.

Some relevant studies, though not focusing directly on sys-
tem crash, may help in understanding a few aspects of system
crash or system crash under some special cases, and are hence
worth mention. The largest class of relevant studies is prob-
ably those on herd behavior, which refer to system behavior
where individuals in a group act collectively without central-
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ized control [17, 18, 19, 20, 21, 22]. For example, conformity
theories [17], which focus on exploring the mechanism leading
to uniform behavior, may help to explain a sudden crash when
(and only when) most individuals are close to the borderline
between alternatives; informational cascade theories [18, 19]
point out that if individuals follow the behavior of the preced-
ing individuals without regarding their own information, a big
shift in the system may be caused by a small shock; and stud-
ies on lock-in effects and switching cost [20, 21], which evalu-
ate effects of the cost that individuals have to pay to change
a choice, may help explain the existence of a pseudo-steady
state. Such studies however have their respective limitations:
conformity theories in themselves cannot explain how individ-
uals get close to the borderline; informational cascade theo-
ries may not work well for system crashes where individuals
do not easily disregard their own information; and the critical
question of how individuals overcome the lock-in effects in the
system crash remains largely open.

While most of the above studies have largely ignored effects
of the underlying structures of connections [22], an impor-
tant trend in research on complex systems is to study them in
the content of various complex networks. The most notable
studies which combine system crash dynamics and network
analysis are probably those on k-core cascade theory [11, 23].
Specifically, the k-core of a network is defined as the maxi-
mum subset of the network where each node is connected to
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System crash, as an essential part of system evolution, some-
times happen in peculiar manners: weakened systems may sur-
vive for a surprisingly long time before suddenly meeting their
final ends, while seemingly unbeatable giants may drastically
crash to virtual nonexistence. We propose a model which de-
scribes system crash as a consequence of some relatively simple
local information-based individual behaviors: individuals leave
networks according to some most straightforward assessment of
current and future benefits/risks. Of note, such a simple rule
may enable a single push/mistake to cause multi-stage-style sys-
tem crash. Our study helps to make sense of the process where
complex systems go into unstoppable cascading declines and
provide a novel viewpoint of predicting the fate of some so-
cial/natural systems.
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at least k other nodes in the same subset. Assume that a net-
work node with fewer than k£ connections may have a chance
to leave the current system (e.g., an OSN user may need to
have a large enough number of connections to justify the effort
of staying on [11]). Measuring the k-core of a network there-
fore estimates how many nodes may stay on when the value
of k increases due to various reasons. This theory, however,
can only explain a sudden system crash when there exists a
big jump in the value k due to some special reasons. Other
interesting developments include (i) system crash model based
on node energy level and inter-nodal energy transfer [24]; and
(ii) network-based ranking of the extinction risks of different
species in food webs or mutualistic networks [12], etc.

Altogether, though various theories have been developed in
different areas of science to make sense of abrupt changes in
complex systems, what is still lacking is a system dynamics
model that could properly describe a system crash, includ-
ing the pseudo-steady state in some cases, as evolution of the
system dynamics in their respective system structures. Note
that the system crash discussed in this contribution is differ-
ent from the cascading failure of a complex system or multiple
interdependence systems discussed in the literature [25, 26],
where components of the system(s) are strongly coupled and
the sequence of a cascading failure is mainly decided by such
coupling effects, e.g., failure of a node A may lead to failure
of its strongly-coupled neighboring node B, but not another
weakly-coupled neighboring node C.

In this contribution, we propose a complex network-based
model for describing the process and dynamics of a system
crash, and the pseudo-steady state in some cases as well.
Specifically, the proposed model is as follows: given a com-
plex network, each network node may leave the network at a
certain probability either (i) when the node has fewer than
ks connections, in which case it may not have enough sup-
port or benefit to stay on; or (ii) when the node has lost more
than a certain proportion (denoted by ¢) of its neighbors, in
which case it may become a more attractive option to leave the
current system, either to lower/avoid the risk (e.g., to avoid
becoming a victim of a sudden system/herd crash) or to join
another system with a more promising future. As we see, in
this model, the first part reflects a value/risk assessment of
the present situation; while the second part measures the ef-
fects of a relatively simple counting-based “copying” action,
which may be a result of certain calculations and predictions
of the risk, benefit and/or future developments of the system.
We term this model the KQ-cascade model. Note that the
KQ-cascade model is substantially different from the k-core
based model in [11]; and it is also different from the threshold
model in [27, 28], which generally assumes that nodes leave
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Fig. 1. Schematic illustration of KQ-cascade with ks = 3
and g = 0.5. In a classic k-core cascade, the 4 nodes within the yellow square
forming up a 3-core would stay on while other nodes would leave. In the KQ-cascade,
however, since node 1 has lost more than 50% of its original neighbors, it will leave
in the next time step, which leaves each of the 3 nodes within the blue triangle with
fewer than 3 connections, leading to the final crash of the network.
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when they lose g proportion of neighbors, with a main focus
on analyzing the threshold value of ¢ in causing a global crash
after a trivial or random proportion of nodes are initially re-
moved. The KQ-cascade model includes the latter two models
as special cases (hereafter denoted the k-cascade and g-cascade
models respectively), but it leads to much more complex dy-
namics. For example, though it is difficult to provide a rigid
proof, in our extensive numerical simulations on various syn-
thetic and real-life networks, neither the k-cascade model nor
the g-cascade model has ever allowed the emergence of the
pseudo-steady state.

The proposed model is tested on various synthetic and real-
life networks. Considering the increasing importance of OSNs
and the relative easiness in getting the data of OSN structures,
the testing on real-life networks will mainly focus on OSNs,
though the proposed model certainly applies to many differ-
ent kinds of complex systems. For the well-known case of the
Friendster’s quick crash, where there exists relatively abun-
dant data on the whole process [11], we perform individual-
based simulations to mimic the actions of each individual. A
good match is achieved with some interesting insights.

Results

The KQ-cascade model. We start with an original network
G(V, E), where V is the set of vertices and E the set of edges.
To keep the KQ-cascade model simple, we introduce only two
key parameters: the critical degree ks and the loss-tolerance
coefficient g. In the i** time step, any node with a degree
k < ks or having lost more than ¢ proportion of its original
connections may leave the network with a probability f;(k).
An example of the KQ-cascade model is illustrated in Fig. 1.
Note that the classic k-core cascading can be viewed as a spe-
cial case of the KQ-cascade where f;(k) = 1 for k < ks and
fi(k) = 0 otherwise. As mentioned above, the value of ks
quantifies the minimum support or benefit an individual needs
to have to justify staying in the system: a less user-friendly
OSN, for example, may lead to a higher ks value. The value
of g, on the other hand, reveals the individuals’ risk toler-
ance level or the prospect on the future of the system they
are staying in: a lower value of ¢ reveals a lower risk tolerance
or a less positive prospect; for those cases with competition
between different systems, it may reveal a higher competition
pressure from the competitor(s) as well. In real life, the value
of the aggregated parameter ¢ may be affected by many fac-
tors, e.g., risk tolerance level, switching cost, absolute/relative
group size, and various environment factors, etc.
Theoretical analysis on network evolution. Under the
KQ-cascade, a network may demonstrate a phase transition
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Fig. 2. KQ-cascade in various networks. Comparison between an-

alytical (lines) and simulation (symbols) results for KQ-cascade in different networks
with size N' = 10%.
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of cascade size, measured by the fraction of network nodes fi-
nally remaining in the network, under different values of k,
and ¢: it may either crash into virtual nonexistence or have a
non-trivial proportion of nodes remaining in the steady state.
A theoretical analysis on the network evolution under the
KQ-cascade, which allows an accurate prediction of such a
phase transition in random networks by reproducing the whole
procedure of the cascade, has been developed. The main idea
of the analysis is presented in the Methods section, while fur-
ther details can be found in Supplementary Note 1. To il-
lustrate the accuracy of the analysis, we present analytical
solutions versus simulation results averaged over 100 indepen-
dent realizations (details for implementing these independent
realizations are given in the Methods section) for the following
paradigmatic random networks: an Erdds-Rényi (ER) network
[29] with an average nodal degree z = 20; an exponential (Exp)
network with an average degree z = 20 and a degree cut-off
of 100; and a scale-free (SF) network [30] with v = 2, a min-
imum degree of 3 and a degree cut-off of 100 [31]. All three
types of networks are generated using the configuration model
[31] with size of N = 10*. For simplification, we assume that
in each time step, individuals fulfilling the conditions to leave
may decide to do so with a constant probability f, which may
be viewed as a special case of the leaving probability f;(k).
As we observe in Fig. 2, the proposed theoretical analysis ac-
curately predicts the evolution of the network size in all these
cases. The accurate prediction of the network dynamics also
allows us to calculate the threshold value of ¢ leading to the
network crash, denoted as g:r, by adopting a simple trial-and-
error approach, as illustrated in Fig. 3. The thresholds of some
real-life networks, presented in Fig. S1, and related discussions
can be found in Supplementary Note 2. Further results of the
proposed analysis in predicting the cascade process are given
in Figs. S2-S7 in Supplementary Note 3. Simulation results
showing how the degree distribution affects the resilience and
cascade size (i.e., fraction of the remaining nodes) of random
networks are presented in Figs. S14-S20 in Supplementary
Note 4. Analytical and simulation results for the case where
decline of a system shakes the individuals’ confidence, leading
to an accelerated system crash [32] are reported in Supple-
mentary Note 5.
Pseudo-steady state and sudden crash. We find that the
proposed model enables the occurrence of the pseudo-steady
state and a sudden crash of the systems. A few such cases in
both random and real-life networks are illustrated in Fig. 4.
As we can see that, in the pseudo-steady state, the networks
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Fig. 3. Threshold of KQ-cascade. Comparison between analytical
(lines) and simulation (symbols) results of cascade thresholds in different networks
with size N = 10%. Both analytical and simulation results are obtained by adopting
a trial-and-error approach, where for each given ks the value of ¢ is increased by a
step length of 0.01 until the threshold value is obtained.
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appear to be rather stable with only a few nodes leaving in
each time step. After a long period of time, however, the sys-
tems suddenly crash, sometimes within only a few steps. In
some systems, e.g., LiveJournal, the pseudo-steady state may
even appear more than once (more details will be discussed
later). Note that when g gets close to g, the specific time
when the crash starts can be rather sensitive to small fluc-
tuations in the network structure. An example is given in
Fig. 4(a), where we show results in 10 random networks with
the same parameters but different seeds for random number
generation. Therefore, in this section, we shall only present
our results for a single simulation case.

We reveal that the pseudo-steady state and sudden crash of
the networks are caused by the emergence, growth and final
crash of a giant cluster composed of vulnerable nodes, where
a vulnerable node is defined as the node which will fulfill the
conditions of leaving the network if it loses one more neigh-
bor. It is known that the vulnerable clusters composed by
connected vulnerable nodes play an important role in a global
cascade [27] as the departure/loss of a single node in such a
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Fig. 4. Pseudo-steady state and sudden crash. (a) Com-
parisons between theoretical and simulation results of 10 independent realizations in
scale-free networks with the same parameters yet different seeds for random number
generation: ks = 4, ¢ = 0.29, f = 0.2. (b) Simulation results showing the
pseudo-steady state and sudden crash in different systems: Orkut (stars), Scale-free
(triangles), LiveJournal (diamonds), Exponential (circles) and ER random (squares).
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Fig. 5. Evolution of the vulnerable clusters. Evolution of (a)
network size; (b) overall size of vulnerable nodes; (c) the size of the largest vul-
nerable cluster; and (d) the average size of all the vulnerable clusters in the random
exponential network.
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cluster may trigger the cascading departure/loss of the whole
cluster, which may further result in the crash of the entire
system. It is, however, shown for the first time to the best
of our knowledge that a basic rule for leaving can lead to the
emergence of a giant vulnerable cluster in complex networks.

Figure 5 illustrates in more detail the growth and decline
of vulnerable clusters. The simulations are carried out on a
random exponential network as defined earlier. To make com-
parisons, we choose two sets of parameters: ks = 14, ¢ = 0.37,
f=0.1and ks =14, ¢ = 0.38, f = 0.1. While ¢ = 0.37 leads
to a network crash, ¢ = 0.38 allows the network to survive;
choosing such parameters thus enables us to closely observe
a phase transition of the system. We find that for the case
where the network finally crashes, the number of vulnerable
nodes slowly accumulates during the pseudo-steady state (see
Fig. 5(b)). The average relative size of all the vulnerable clus-
ters meanwhile remains between 10~% and 2 x 10™*, meaning
having only 1 or 2 nodes (see Fig. 5(d)). This shows that
most vulnerable clusters are tiny pieces scattered within the
network. The size of the largest vulnerable cluster also remains
rather small most of the time (see Fig. 5(c)). Shortly before
the sudden crash starts, however, there is a sharp increase in
the size of the largest vulnerable cluster (see Fig. 5(c)), when
vulnerable clusters quickly connect together (see Fig. 5(d)).
At the moment when a sudden crash starts, almost all the
vulnerable nodes merge into a single cluster. For example,
in the 69" time step, among 683 vulnerable nodes, 632 of
them merge into the largest vulnerable cluster. The sudden
emergence of the giant vulnerable cluster prepares a sufficient
condition for the sudden crash to be easily triggered.
Measuring the resilience of some real-life systems
against the KQ-cascade. It is interesting to evaluate the
resilience of a few real-life systems against the KQ-cascade. In
this section, we report numerical simulation results on three
different OSNs, namely, the Orkut, LiveJournal, and YouTube
networks, respectively [33]. A summary of the basic informa-
tion on these networks can be found in the Methods section.

Figure 6 shows the dynamics of the cascade size in these net-
works with different values of ks and ¢. It is interesting to ob-
serve that Orkut demonstrates the strongest resilience against
the KQ-cascade among the three networks, while YouTube
turns out to be the most fragile one. The conclusions, how-
ever, have to be taken with a pinch of salt since, as always,
the data we have only reflects a fraction of the corresponding
real-life networks and it is not known how the network sam-
pling was done at the first place. Some discussion of how much
evaluating the resilience of a random sampling of a complex
network may help to reveal the resilience of the whole system
is presented in Supplementary Note 6.

Another interesting observation is that in real-life networks,
there may be multi-stage phase transitions of the cascade size:
the cascade size may go through multiple pseudo-steady states
before the final crash. This, however, has never been observed
in our extensive simulations on uncorrelated random networks.
We believe that such phenomena are related to community
structures [34] and degree correlations [35] existing in real-life
networks. For example, the cascading departure/loss of a large
number of individuals may have barely any impact on certain
communities with dense intra-community connections. It may
be worth mentioning that such observations have been made
in many OSNs: Friendster’s popularity was not significantly
affected in Southeast Asia, especially the Philippines, through-
out its fast decline; Orkut was especially popular in Brazil; and
LiveJournal has 52 percent of customer visits from Russia [36].
A related result in [37] reports that in a loosely coupled two-
community network, system cascade may have two peaks in
the two communities respectively, separated in time. Our sim-
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ulation study shows that in networks with fixed nodal degrees,
multi-stage pseudo-steady state vanishes with the elimination
of the community structures and degree correlations. Details
are reported in Supplementary Note 7.
Cascade decline of Friendster: a possible explanation.
The crash of Friendster offers an interesting case with rela-
tively abundant data. In a recent study [11], it was found that
if we adopt the simple k-cascade model and let the threshold
value of k increase continuously from 3 in July 2009 to 67 in
June 2010 at a rate of about 6 per month, a good match be-
tween simulation results and historical records of Friendster’s
crash could be achieved. A puzzling question remains, how-
ever: while it is known that Friendster made a fatal mistake
in 2009 when it changed its website interface, making it more
difficult to use and hence increasing the threshold value ks,
it is not clear how this threshold value could have gone up
continuously when Friendster did not make a second mistake.
We apply the proposed cascade model to the Friendster net-
work which consists of 65,608,366 nodes and 1,806,067,135
connections [11]. As obtaining the exact number of Friendster
users over time is difficult, following the work in [11], we use
the Google search volume to approximate the popularity evo-
lution of Friendster. Specifically, the curve is still figured by
obtaining the search volume of “www.friendster.com”. Two
reference points are set, one in June 2009 when Friendster
began to decline as users were not happy with the changed
interface (probably also due to the fast growth of Facebook)
[11], and the other in July 2010 when Friendster was reported
to have only about 10 million active users left, less than 10
percent of its peak size. A trial-and-error approach shows
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Fig. 6. Cascade size of a few real-life networks. Cascade size
of: (&) Orkut online social network; (b) LiveJournal online social network; and (c)
YouTube network. The cascade size is shown in color scale.
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that, when we set ks = 20, ¢ = 0.2 and f = 0.15, simulation
results based on the proposed model match well with the real-
life data (see Fig. 7). Note that, as mentioned above, for those
cases where systems crash mainly due to strong competition,
a smaller value of ¢ may imply a higher competition pressure
from a stronger competitor. Though ¢ = 0.2 may appear to be
quite a low value, adopting such a value is not without basis:
even when Friendster was still at its peak user size in 2009, the
Google search volume of “Facebook” was already more than
20 times higher than that of “Friendster” [38], as illustrated
in Fig. 7(a). People thus may have had good reason to be-
lieve, back in 2009-2010, that though Friendster was larger,
Facebook would certainly boom (and such belief helped Face-
book actually to boom). Also note that, at that time, many
users may have registered their accounts in both Friendster
and Facebook; leaving Friendster at ¢ = 0.2 therefore did not
necessarily mean that they had to lose 80% of their online so-
cial connections; instead, it might only have meant getting rid
of some inconveniences once for all.

With only a snapshot showing the aggregated connections of
all the ever-existing users until the moment the snapshot was
taken, it is not a surprise that we have to adopt a trial-and-
error approach to estimate the ks and g values. Nevertheless,
it is encouraging to see that without making the assumption
that the ks value increases over time, a good match between
simulation results and real-life data can be achieved. When
detailed data showing network topology in different stages of
system decline is available, our model may allow a more accu-
rate estimation of parameter values and consequently, a more
accurate reflection/prediction of system dynamics.

Discussion

In this work, we have introduced a network-based system dy-
namics model for describing the crash of complex systems and
the pseudo-steady state in some cases. In the proposed model,
a network node may choose to leave either when the number
of connections it has becomes too low, or when it has lost
more than a certain proportion of its neighbors. We have de-
rived a theoretical analysis for the crash process on a random
graph with an arbitrary nodal degree distribution and an ar-
bitrary leaving probability. Based on the proposed model, a
pseudo-steady state and sudden crash phenomenon could be
steadily observed in certain ranges of parameters and be eas-
ily explained. Further, the resilience of some real-life networks
has been evaluated and a possible explanation for the sudden
crash of Friendster has been presented.

The proposed model may find wide applications in help-
ing understand and predict the declines of various complex
systems, especially complex social systems. Studies on such
applications would be of future research interest, in particular:

® Research areas may heat up and cool down. While “early
movers” may leave a research area when important work
has been done or low-hanging fruit has been collected, many
others may only make up their minds to leave when their
colleagues are leaving (similar to g-cascade) or when they
have lost their collaborators (similar to k-cascade). Dy-
namics of the decline of a research area needs to be studied.

® (ollective intelligence systems such as Wikipedia may have
an increasing coordination cost when growing in scope [39].
Whether and how participants of a collective intelligence
system may decide to leave due to increasing coordination
cost are surely worth careful studies.

® Decentralized adoptions of new technologies, such as vol-
untary installations of solar panels on house roofs, may be
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subject to certain constraints. For example, there may be
an upper bound to the penetration level of grid-tied pho-
tovoltaic power [40]. Certain policies therefore may have
to be installed to restrict the adoption of the technology.
Predicting whether adopting such policies might result in
decline or even crash of the technology adoption is of sig-
nificant importance.

It would also be of future research interest to figure out how
much a model of system crash dynamics might help to iden-
tify tipping points of a system [41, 42], and to model system
dynamics when individuals’ decisions to leave involve certain
kinds of more sophisticated Bayesian reasoning [43].

Methods

Theoretical analysis: main idea. The main idea of the
theoretical analysis is to model the degree transition in every
step as a Markov process: by taking each pair of original-
current nodal degrees as a state and calculating the state
transition in each time step, we can reproduce the evolution
process of the network. Specifically, we construct (i) a de-
gree transition matriz D' where the element D;  denotes the
probability that a node with an original degree j becomes a
degree-k node at the beginning of the i*" time step; and (ii) a
matrix U’ where the element U J’k denotes the probability that
a node with an original degree j has a degree k at the begin-
ning of the i*" time step and it does not leave the network in
this time step. We have

Ul = Dipp(k, j), (1]

where p(k, j) reflects the probability that a node with an orig-
inal degree j and a degree k at the beginning of the * time
step does not leave the system in this time step:

1 k> (1 —q)jandk > ks, [2]
1— fi(k) otherwise,

where, as mentioned in the Results section, f;(k) denotes the
probability that a node fulfilling the conditions to leave may
actually leave the network in the " time step. As some nodes
will lose a proportion of their neighbors in the leaving process,
their degrees need to be recalculated. Use the matrix T to
keep record of the transition within this time step, where T}/,
denotes the probability that a node with a degree k' at the
beginning of the i** time step ends up with a degree k at the
end of this step. The degree transition matrix D*™! hence can
be calculated as:

uWﬁ={

Dt =UiT, (3]

The whole KQ-cascade process can be reproduced by iterative
calculation of Egs. [1] and [3]. The detailed calculations of
these matrixes are discussed in Supplementary Note 1.

Table 1. Basic information of the networks evaluated
in this article.

Network name | User number | Link number source
Friendster 65,608,366 1,806,067,135 11
Orkut 3,072,441 117,185,083 33
LiveJournal 3,997,962 34,681,189 33
YouTube 1,134,890 2,987,624 33
Gowalla 196,591 950,327 44

These are network samples downloaded from the respective sources. ]
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This analysis can be easily extended to a more general case

where network nodes leave the network following an arbitrary
criterion ¢ as long as the new criterion can be reflected by
properly changing p(k, j) in Eq. [2] accordingly. Such exten-
sions would allow an easy coverage of a wide range of existing
work, e.g., the classic k-core problem.
Numerical simulations. For an easy reference, Table 1 sum-
marizes the real-life networks adopted in the numerical simu-
lations. Note that though the data of Friendster contains 117
million IDs, only 65 million of them have a connection record,
as reflected in Table 1; the other 52 million IDs are for private
users with confidential connection information.

In both the synthetic and real-life networks, numerical sim-
ulations are carried out in the following steps:

® Initialization: record the degree of each node as its orig-
inal degree. Set values of the parameters ks and q.

* First time step: for any node with its original degree
lower than ks, remove it at a constant probability f. Up-
date the record of each node’s degree as its current degree.

® Iterations in the following time steps: check all nodes’
current degrees as recorded at the beginning of the time
step. If a node has a current degree lower than ks or has
lost more than ¢ proportion of its original degree, it has
a probability f to leave the network. The records of the
nodes’ current degrees are only updated when all the nodes
have decided whether to stay on or to leave, at the end of
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down the network evolution process; they have no influence on
the crash threshold and the cascade size at the steady state.
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