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Abstract

Finding the solution for driving a complex network at the minimum energy cost with a given number
of controllers, known as the minimum-cost control problem, is critically important but remains
largely open. We propose a projected gradient method to tackle this problem, which works efficiently
in both synthetic and real-life networks. The study is then extended to the case where each controller
can only be connected to a single network node to have the lowest connection complexity. We obtain
the interesting insight that such connections basically avoid high-degree nodes of the network, which
is in resonance with recent observations on controllability of complex networks. Our results provide
the first technical path to enabling minimum-cost control of complex networks, and contribute new
insights to locating the key nodes from a minimum-cost control perspective.

1. Introduction

The control of network systems is an important problem with wide applications. Examples include stabilizing or
driving social systems [1, 2], management of socio-ecological systems [3, 4] and cyber-physical systems [5, 6],
coordination of multi-agent systems [7, 8] such as mobile sensor systems [9, 10] and robotic systems [11, 12],
prevention of cascading failures in interdependent systems such as smart grids and telecom systems [13, 14], etc.
Significant studies have mainly focused on networks with N-dimensional linear time-invariant (LTT) dynamics
[15-17]:

x(t) = Ax(t) + Bu(t), x(0) = xo, (1)
where x (t) = [x,(t)..., xn (t)]" is the state vector of N nodes at time t with the initial state being
X0, t(t) = [ty (t)..., tips (£)]" is the time dependent input vector of external signals with M (M < N)being the
number of controllers where the same u;() may drive multiple nodes. The N x N matrix A is the network’s
adjacency matrix; i.e., a;; = 1if there exists alink from node i to node j; otherwise a;; = 0. The N X M matrix B
is the input matrix, where B;,, is non-zero if controller 7 is connected to node 7 and zero otherwise. Without loss
of generality, it is assumed that B has a full column rank to avoid the redundant inputs.

Two central issues in controlling LTI systems are (i) finding the minimum number of driver nodes
connected to external controllers to ensure the system’s controllability and (ii) for a given number of controllers,
finding the solution of driving the system to any predefined state with the minimum cost. The former issue is
known as the network controllability problem, and the latter the minimum-cost control problem. While a
significant breakthrough has been made on the network controllability problem [16-20], and more recently on
the relationship between network controllability and control cost [21, 22], the minimum-cost control problem
largely remains as an open issue [23].

2. Minimum-cost control

The minimum-cost control problem can be modelled as driving the state vector to the origin in the time interval
[0, t] with the minimum energy cost [23]

© 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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&(x) = min 8| [ fucoipar @

under the constraint that the network (4, B) is controllable while B maintains a full rank subjectto a
normalization condition. The operator E[+] takes the expectation of the argument over all realizations of the
random initial state. Note that u(t) for ¢ from 0 to frand B are the decision variables to be determined by the
optimization process, and their optimal solutions give the optimal input signals and their optimal connections
with the network nodes.

Given an input matrix B such that (A, B) is controllable, existing results show that the minimum-cost control
is achieved when

u(t) = —BreA (=) wylxg, 3)

.
where W = f " eA'BBTeA"dt is the controllability Grammian matrix [24, 25],and x; = e x, is the final state

0
of the network in the absence of u(%). By fixing the quadratic sum of all elements of B and substituting (3) into (2),
the minimum-cost control problem can be rewritten as

min tr[ngXf]
(4)
st. tr(B'B) — M~ =0

where tr[+] denotes a matrix trace and X¢is a constant matrix given by Xy = £ [xfxfT ] = et X e,

E(B) £ tr[Wg'X;]is the defined energy cost function to be minimized. We also define a norm function

N (B) £ (tr(B'™B) — M)? to associate with the equality constraint expressing the normalization condition on B,
where € is a positive constant to ensure that N(B) is non-zero on the surface tr(B'B) = M + €. The optimization
has only the matrix B as its decision variable, but is hard to solve analytically or numerically because of the
complicated inverse operation in the cost function. This has kept the minimum-cost control of complex
networks, with its high practical and theoretical importance, an open problem.

Remark 1. There are different ways to normalize the matrix B, each corresponding to a set of distinctive
boundary conditions. In this paper, we adopt the constraint that tr(B'B) = M + ¢, which reflects the boundary
conditions of the energy profile of the input matrix B € R * ™ with physical implications. Specifically, it
ensures that the quadratic sum of all the elements of the input matrix B has a fixed value. As shown later in

OB OB
N(B) to be a non-zero vector on the surface tr(B'B) = M. This is the reason why a non-zero € is needed. Since €
can be a constant of arbitrary value, it can certainly be a sufficiently small positive number.

. . ¢ ( L. ¢ ¢ + . .
equation (14), we project — %B onto % using the operator (1 — { ONB) } { ON(B) } ), which requires

We propose an efficient projected gradient method (PGM) to solve the optimization problem defined above.
The main idea is to analytically derive the derivatives of the functions N(B) and E(B) with respect to B, and then
project the negative of the gradient of E(B) onto the sphere surface tr(B'B) = M + e. By doing so, Bcan be
searched via an iterative process until convergence. The gradients of functions N(B) and E(B) can be obtained as
(refer to lemmas 1-2)

ONB) _ 4[tr(BTB) - M] B (5)
OB
and
14
OE(B) _ _ f LAt X Wy leAtdr B )
OB 0
respectively. The two gradients point to the directions where N(B) and E(B) have the fastest increasing speed
respectively. We also show that % is always non-zero as long as (A, B) is controllable (theorem 1), which

explains the importance of imposing the normalization condition on B.
Let {-} denote a vector form of an argument matrix constructed by stacking its columns. We define a

projection operator onto the tangent space of { 6?2;3) }as
- (. [ ON®B ONB) "
Povon (v) = (I { B } { 5B () )

where v denotes a particular vector and  is the Moore—Penrose pseudo-inverse of a matrix. More detailed
information of the defined projection operator can be found in lemma 3.

Projected gradient method (PGM). Let I'(B) be an operator which normalizes B onto the sphere surface
tr(B'B) = M + e. Note that, to guarantee the controllability of a complex network, the minimum number of
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controllers is the number of driver nodes Np, which can be obtained by the maximum-matching algorithm
proposedin [17].

Step 1. Initiate B as arandom matrix By with a dimension N x M where M > Np.

OE (B) ON (B)
0B and OB

OE(B
Bk+1_F[Bk77'P“‘§g”({ 853)}]]

at B = By, where 7is a chosen step length.

Step2. Calculate the gradients of , respectively. Let

Step 3. Obtain the vector version of % and UZ;B) , denoted as { af;f) } and {% } respectively, and

calculate the angle ; between them at B = B.

Step4. Updatek = k + 1.If cos(fy) + 1 > &, goto Step 2; otherwise, stop. Note that £ refers to the
convergence criteria, which can be set as a sufficiently small positive value. In the next section, we will
prove that E(By) for all kis a non-increasing sequence which converges to a non-zero local minimum,
yielding a solution of B denoted by B°.

3. Convergence analysis

The main idea of the proposed PGM is to obtain the derivative of functions N(B) and E(B) with respect to matrix
Brespectively, and then project the descent gradient of E(B) onto the sphere surface tr(B'B) = M + ¢; the
process is repeated until the iteration converges to the solution. Some preliminaries and lemmas are

presented first.

3.1. Preliminaries and lemmas

Lemma 1. For a matrix X with no special structure (elements of X are independent), we have [28] the following.

OXlw _ ¢ . ¢
M — -

X _ o s
o), — Ok O

— Formatrices A, B, X such that[X]; = Zk[A],-k [Blyj (writtenas[X]; = [Alik - [Blxj), X = AB.

— Fora function g(U) where the matrix U is a function of another matrix X, i.e. U = f (X),

9% 98 OlWkn (s 9 _ _0g  OUlm
aIXl ka OlUlkm O1X]; Cwritten as Xy OlUkw  OIXJ; )
(X Xp]

XX XT; where [X];; denotes the ijth element of the matrix X and 6;; = 1iffi = j;
otherwise, 6;; = 0.

Lemma 2. The gradient of the function E(B) is

E(B :
OE(B) _ —2ffeAT‘W§1XfW§IeA'dtB.
OB 0

Proof. From lemma 1, we have

(’)tr[ngXf] B f)tr[WEle] G[WB]M
OB;; a o[ ws], OB;j

te .
a[f eA'BBTe4 fdt]
0 kl

c 0B;

= —[ws"Xew5"]
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[f [e*] - (Bl -[B7] - [emt]ddt]

0B;

a [WgTXf W’;T]kz ’ [f"‘ [eAt]km i+ b - [BT]nZ

— [Blun - 611] ' 621'] . [ ] dt]

_ [WETXf WET]kl I:j(‘)' [ At]k, [BT] [eA’l‘t]ZIdt:l (8)
- [WgTXf WgT]kl ' [J;f [eAt]km LBl - [eATt]izdt]

_2. j(‘)tr ;[em,]ik . [WETXfWET]kl . [eAt],Z . Bydt

t
-2 [ f AW T X Wi TeAdr B]
0

—[W TXfWB

i
where 1, j, k, I, m, n, zare indexes of elements in the matrix. Thus the lemma is proved. O

Lemma 3. /[ — SS¥/isa projection operator onto a space that is orthogonal to space span{S } 29, 30], where * is the
Moore—Penrose pseudo-inverse of a matrix and span{S } is spanned by the column vectors of S.

Proof. For an arbitrary vector x € span{S}, x can be represented by the column vectors of S, i.e., x = Sy. As
[1-sst]x=[1-8s"]sy =5y~ sy =0, ©9)

the lemma is proved. O

3.2. Convergence properties

)

Theorem 1. For a controllable (A, B), the gmdtent ( can never be a zero matrix.

Proof. Note that X; = eA"*eA" and let matrix C = eA"tWy teAlr, As (A, B) is controllable, matrices e and
W ! areinvertible. Hence we have

t t
f et X Wy et = f ‘c'cdr > 0
0 0

where a matrix P > 0 means that Pis positive definite. On the other hand, since (A, B) is controllable, we must

have B = 0. Thus, it is straightforward to prove that —— oF (B) -2 f CTC dt - B can never be a zero matrix as

f CTC dt is positive definite.
0

d
Theorem 2. Let 0 < 6 < 180° be the angle between { di(B) } and { aﬁ B) } Then
6 < 90° if tr(B'B) < M,
0 is indefinite if tr(BTB) =M, (10)
6 > 90° if tr( B'B) > M.
Proof. Letw = tr(B'B) — M, and define
L= fo " ety Wy leArde, an
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From the proof of theorem 1, we know that L is a positive definite matrix, i.e., L > 0. From lemma 2 and theorem
1, we have

OE(B)'ON(B) _ ¢

3B 8B w - B'LB (12)

and
(5 {7 = et
Therefore the sign of { OE(B) } { % } is dependent on the sign of w and this theorem holds. 0

Theorem 3. For the proposed PGM, we have that E(By,) is a non-increasing sequence which converges to a non-zero
local minimum point E* > 0.

( )

Proof. Based on figure 1, |p—p, is the gradient of N(B) at B = By, and it is a normal vector to the sphere

surface. The operator (I — { 61;;;13) } { 81;;;3) } ) projects a vector onto the tangent plane denoted as ‘)gl(f) “.B
projecting —LB) |p—p,> which is the gradient descent direction of E(B) at By, onto N ( )+ , we obtain
Go=1n- Iﬁ{@N(B)}{@N(B)} (78E(B)] (14)
OB OB OB
atthe point B = By, where 7is the iteration step length. Let
= By + di (15)
and apply the operator I'(.) to normalize ¢ onto the sphere tr(B"B) = M + e. We then have
Biy1 = F(Ek) = F(Bk + ﬁk) (16)

Let Ek = Byy1 — Brand 9" be the angle between { afﬂ(f) } and { Ek } When 77 — 0, it can be obtained that

0" — fFand 0 < 0% < 90° and hence 0 < cos(A¥) < 1. Thus we have

{2 e

o OEB)T
= —n-| 55

As E(By) is a non-decreasing sequence and E(By) > 0, it converges to a non-zero local minimum point E* > 0.
OE (B) ON (B) }
0B 0B J°

E(Bkﬂ) - E(Bk)
(17)

I 1Bkl - cos(6%) 15—, < 0.

The iterations end at || I;kH = 0, which implies a; = 0, i.e., { - } concurs with the direction of {

Finally we have that cos(6;), the cosine of the angle between { ? } and { ONGB) } converges to cos
(00 = —1. O

4. Results

We successfully apply the proposed PGM to find the minimum-cost control solutions for 1000-node Erdos—
Rényi (ER) [31, 32] and scale-free (SF) networks [33, 34] and a list of real-life networks. The algorithm can
handle networks at these and larsizes efficiently, though numerically solving the minimum-cost control
problem for extra-large networks with hundreds of thousands or millions of nodes remains as a challenge
(because of the need to take the inverses of huge matrices in the algorithm). Without loss of generality, we set
€ = 1inall the experiments. In our numerical experiments, we first give a random initial By on the normalized
sphere surface for afixed M > Np and then apply PGM to find the solution. Note that, to avoid the numerical
controllability transition [26], which means that, when a small number of key nodes is barely enough to ensure
controllability, failure of finding a numerical solution may not be overcome by merely increasing numerical
precision, in all our simulations we set the number of output controllers to be large enough.

The comparison results between the energy costs for the random initial By and the B® obtained by PGM for
the ER and SF networks (with an average nodal degree ;1 = 4) are summarized in table 1. It can be seen that (i)
the control cost decreases as the number (M) of inputs increases and PGM steadily lowers the control cost by

5
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OE(B) ON (B) d@ﬁ

i . .
(B) . OE(B) ON (B)
TR o denote the unit vectors of 95 B d

Figure 1. Optimization on a high dimensional sphere surface.
ON(B)L
OB

, respectively.

Table 1. Energy costs in the ER and SF networks. jt = 4.

N = 1000 M = 260 M =290 M =320 M = 350
ER (initial) 1.8 x 10° 3.2 x 107 7.1 x 10° 1.8 x 10°
PGM ;=1 7.4 x 10° 2.4 % 10° 7.1 x 10* 2.9 x 10*
PGM t;=2 3.2 x 10* 2.0 x 10* 7.9 x 10° 5.1 x 10°
SF (initial) 5.1 x 10® 8.4 x 107 1.6 x 107 3.5 x 10°
PGM ;=1 1.2 x 10° 42 x 10° 1.0 x 10° 43 x 10*
PGM t;=2 7.7 x 10* 7.5 x 10* 2.0 x 10* 1.0 x 10*

about two to three orders of magnitude compared to that of a randomly given B; (ii) the control cost decreases
significantly as trincreases—in other words, when alonger time is allowed to achieve the control objective, the
control cost can be significantly reduced; and (iii) having more controllers helps drastically lower the control
cost. It is, however, well known that installing more controllers may induce other costs. Being able to calculate
the minimum control costs with different numbers of controllers helps to find the most cost-effective solutions
for applications.

Note that for the non-convex optimization problem (4), the proposed PGM method, like any optimization
method with a reasonably low complexity, can only guarantee convergence to alocal minimum. An interesting
observation we made in our extensive implementations of PGM starting with different initial By matrices,
however, is that the solutions of different rounds of implementations typically lead to nearly the same control
cost. Whether this means that the solution found by a single round implementation of PGM is steadily close to
the global optimum requires further careful studies. Unless otherwise specified, hereafter we present the results
of an implementation of PGM with a randomly given B, matrix.

Table 2 demonstrates the satisfactory performance of PGM in some real-life networks, again by comparing
the control costs corresponding to B, and B’ respectively. We observe that, with a small value of tr= 1, PGM
lowers the control cost by up to three to five orders of magnitude in these networks compared to that of their
random counterparts.

Table 3 presents in more detail the impacts of trand M on the energy cost in real-life networks.

6
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Table 2. Energy costs in real-life networks. f,= 1.

Dataset Networks N Np M Initial PGM
Electronic circuit [35] Circuit-s838 512 119 150 8.5 x 10° 9.2 x 10°
Circuit-s420 252 59 70 1.3 x 10° 1.1 x 10°
Circuit-s208 122 29 35 6.5 x 10° 3.2 x 10°
Food web [36-38] Michigan 39 13 15 3.5 x 10° 990
Phode 25 8 9 9.3 x 10° 2.6 x 10°
Maspalomas 30 9 10 2.5 x 10° 1.0 x 10*
Social influence [39] Phys-discuss-rev 231 85 100 2.5 x 10° 1.2 x 10*
Social [40] cons-freq-rev 46 2 10 189.0 7.6
Phys-friend-rev 228 52 60 2.0 x 10" 7.9 x 10°

It can be seen that, as that in the ER and SF networks, increasing t; and M helps significantly lower the
control cost. Also, in most cases, PGM lowers the control cost by a few orders of magnitude compared to that of
the initial random connections.

Itis interesting to note that similar observations have been madein [21, 22] that increasing the number of
controllers helps significantly lower the control cost. Our results show that the conclusion holds in the
minimum-cost optimal solutions. As an example, figure 2 illustrates in detail the relation between the number of
control nodes and the corresponding minimum control cost in a real-life network.

Note that both B and B® require many nodes each to be connected to each of the M controllers, which may
not yield a practical solution for large-size networks. A practical and interesting problem therefore is to find the
minimum-cost control solution under the constraint that only a small set of nodes can be directly connected to
external controllers. We term this small node set a key node set and consider the case where each key node can be
connected to only a unique controller to achieve the lowest connection complexity.

For this case, we propose a very simple approach to derive the key node set from B®. Note that the absolute
value of link weight | B; | reflects the importance of the node i for the jth controller. Define an importance index

vector
[rl v T rN]
r= (18)
max(rl, ces Tiy ey rN)

where r; = ZJ, | Bl; |fori = 1,..., N. Clearly, we have max {r} = 1. Theimportance index of node i evaluates the
relative importance of this node in achieving the minimum-cost control objective. We form the key node set as
the first M nodes with the largest importance index values. The corresponding connection matrix, denoted as B,
can be easily constructed: ifa node i is the kth node of the key node set, we set B}, = 1; otherwise, B, = 0. We
term this simple approach the PGM extension (PGME).

Table 4 shows that, while reducing the number of connections between network nodes and external
controllers from a typical value of M x N ofa calculated B° to only M of its corresponding B*, the control cost is
only marginally increased. Note that, while B’ lowers the control cost typically by two to three orders of
magnitude compared to that of a random B, B drastically lowers the control cost even more compared to that
of the random one-to-one connections between controllers and network nodes. Specifically, in order to generate
arandom solution that ensures network controllability, we first apply the maximum matching method [17] to
find one set of driver nodes, which could be any one among the multiple maximum matching solutions for the
network. Then we randomly choose M — Np, additional nodes in the network to construct the control node set.
We term this simple method the random allocation method (RAM).

Example cases of PGME results versus the average of 100-times implementations of RAM are plotted in
figure 3. It is observed that PGME, compared to RAM, lowers the control cost by up to eight to nine orders of
magnitude in both synthetic and real-life networks. Such a conclusion basically holds in all the other networks
we have tested. In the extreme case where M = N, every node becomes a key node and consequently PGME and
RAM become equivalent.

A closer examination of what kinds of node are selected as key nodes helps reveal some useful insights. To
start, we consider two elementary topologies which widely exist in various complex networks: a stem and a
circle. Examples of these two elementary topologies, each of which contain six nodes, are illustrated in figure 4.
We see that the key nodes tend to divide the elementary stem and circle equally. A few other simple topologies
have been tested and the conclusion always holds. This observation may be of importance, as it may lead to
heuristic algorithm design for the minimum-cost control of extra-large complex networks.
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Table 3. The effects of tr and M on energy cost in real-life networks.

GLietal

Number of control nodes (M)

Figure 2. Number of control nodes versus the energy consumptions in a real-life (frequency-rev [40]) network.

Networks t N M, Initial PGM M, Initial PGM
Electronic circuit Circuit-s838 1 512 150 8.5 x 10° 9.2 x 10° 190 7.9 x 10° 5.0 x 10*
2 512 150 8.3 x 10° 2.2 x 10* 190 3.2 x 105 3.2 x 10°
Circuit-s420 1 252 70 1.3 x 10° 1.1 x 10° 92 5.0 x 10° 2.6 x 10*
2 252 70 1.8 x 107 1.8 x 10* 92 1.8 x 10° 1.6 x 10°
Circuit-s208 1 122 35 6.5 x 10° 3.2 x 10° 45 2.7 x 10° 9.6 x 10°
2 122 35 3.0 x 10° 5.4 x 10° 45 7.2 x 10* 6.0 x 10?
Michigan 1 39 15 3.5 x 10° 1.0 x 10° 17 3.3 x 10° 7.3 x 10?
2 39 15 1.4 x 10* 1.4 x 10? 17 1.3 x 10* 91.5
Rhode 1 25 9 9.3 x 10° 2.6 x 10° 10 23 x 10° 8.6 x 10°
2 25 9 3.8 x 10° 1.8 x 102 10 9.6 x 10* 86.6
Maspalomas 1 30 10 2.5 x 10° 1.0 x 10* 12 1.1 x 10° 9.6 x 10
2 30 10 7.1 x 10* 4.3 x 10* 12 42 x 10* 91.7
Phys-discuss-rev 1 231 100 2.5 x 10° 1.2 x 10* 107 1.0 x 107 5.8 x 10°
2 231 100 2.8 x 10° 1.1 x 10° 107 3.3 x 10° 7.3 x 10°
cons-freq-rev 1 46 10 369.0 7.6 16 185.80 4.90
2 46 10 3.91 2.38 16 2.46 1.54
Phys-friend-rev 1 228 60 2.0 x 10" 7.9 x 10° 81 7.9 x 107 7.2 x 10*
2 228 60 9.7 x 107 9.0 x 10* 81 2.0 x 10° 3.3 x 10°
11 T T T T T T T T
10 =]nitial| -
L
s o <=PGM | |
W
2 |
=
S
k= J
4
=)
k=) i
£
&
t=
L -
=}
4]
1 1 1 1 1 1 1 1
%0 80 100 120 140 160 180 200 220 240

Table 4. E(B*) and E(B") in the ER/SF/real-life networks.

Networks N M E(B°) E(B")
ER(u = 4) 1000 260 1.821 x 10® 1.822 x 10®
290 7.146 x 10° 7.150 x 10°
SE(u = 4) 1000 260 5.173 x 10° 5.173 x 10°
290 1.625 x 107 1.625 x 107
Elementary stem 100 20 5.85 x 10° 6.47 x 10°
25 2.82 x 10° 3.11 x 10°
Elementary circle 100 20 5.85 x 10° 6.47 x 10°
25 2.82 x 10° 3.11 x 10°
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Energy (N,=1) Energy (N,=30)
1061 1061
10™L ——RAM 10"t ——RAM
1012] —— PGME 1012] —— PGME
100k 100}
108 | 108 |
10° | 10° |
10* 10*
102 102

O m 20 40 60 8 100 25 | 45 65 85 105 125

Number of control nodes Number of control nodes
a b

Figure 3. Comparisons between PGME and RAM in synthetic and real-life networks. The shaded part denotes the ‘numerical
controllability transition’ areaand M = Np, + m,. Comparison results in (a) a synthetic network: an elementary stem with N = 100;
and (b) a real-life electronic network (circuit-s208) with N = 128 [27].

Another even more important observation is that the key node set basically avoids high-degree nodes in both
synthetic and real-life networks, as shown in table 5. For the ER/SF networks, since the mean degrees of both

in + out

networks are around 4, the sum of the mean input and output degrees, denoted by , will be around 8.

Surprisingly, the sums of the mean input and output degrees of the key nodes identified by PGME, denoted as

,u}(“e}f °U are only around 5.52 and 4.70 in the two networks respectively. For the real-life networks, the same

conclusion holds: the u{(“e),+ °““values identified by PGME are much lower than the average degree of the top 5%
of highest-degree nodes; basically no hub node is selected as the key node. This suggests that the key node set is
unlikely to be the hubs in the networks. In [17], it was pointed out that the driver node set which minimizes the
number of nodes directly connected to controllers avoids the hub nodes. It is interesting to see that the key node
set which minimizes the overall control cost also avoids hub nodes. It is the low-degree nodes at the correct
locations that determine the cost for driving a complex network to any state. Such an observation may have very
important implications, as it may change our basic understanding and approaches of complex system control.

Last, it is worth mentioning that, starting from any feasible initial (4, By), solution of the PGM method
guarantees network controllability as the network control cost remains strictly non-increasing in each iteration
of the algorithm. It is however difficult to prove that the same conclusion holds for PGME. Observing in our
extensive simulation experiences that PGME always generates a feasible solution with comparable performance
to that of PGM, we have good reasons to expect that solution of PGME would almost always guarantee the
controllability of the system, especially when we need in any case a large enough number of control nodes to
avoid the numerical controllability transition area.

5. Conclusion

There are three main contributions/observations reported in this paper: (1) the proposed PGM method for the
first time provides a solution to the important open problem of realizing the minimum-cost control of complex
networks; (2) it is revealed that the complexity of the connections between the external controllers and network
nodes can be minimized without a significant increase in control cost; and (3) it is found that the key nodes
leading to the minimum control cost are basically low-degree nodes. It is exciting to know that a set of properly
selected low-degree nodes, with the simplest one-to-one connections with the external controllers, can achieve a
suboptimal solution in minimizing the cost for controlling complex networks; and we have a first algorithm that
can efficiently find such a set of nodes. The proposed algorithm and the achieved insights will be of significant
importance for various applications. In this direction, many further studies can be carried out, e.g. to develop
simpler heuristic algorithms for finding the key node set in extra-large networks, or to investigate the
identification of the key node set without accurate global network topology information, etc.
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Figure 4. Key nodes in two elementary topologies. (a) An elementary stem where N = 6 and M = 1,2, 3. (b) An elementary circle
where N = 6and M = 1,2,3.

Table5. ;7" in ER/SF/real-life networks.

Networks M uim“;(‘““ uit‘;gz,/‘;‘ in ;r out
ER 260 26 18.2 5.52
290 26 18.2 5.64
320 26 18.2 5.72
350 26 18.2 6.02
SF 260 124 68.3 4.70
290 124 68.3 4.78
320 124 68.3 4.87
350 124 68.3 5.02
Circuit-s208 35 10 7.5 5.52
Circuit-s420 70 14 7.62 5.64
Circuit-s838 35 22 7.65 5.72
Rhode 9 18 15 6.02
Michigan 15 43 36 4.70
Maspalomas 10 21 19.5 4.78
discuss-rev 100 21 11.75 4.87
friend-rev 10 13 10.42 5.02
frequency-rev 46 65 64 39
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