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Abstract
Finding the solution for driving a complex network at theminimumenergy cost with a given number
of controllers, known as theminimum-cost control problem, is critically important but remains
largely open.We propose a projected gradientmethod to tackle this problem, whichworks efficiently
in both synthetic and real-life networks. The study is then extended to the casewhere each controller
can only be connected to a single network node to have the lowest connection complexity.We obtain
the interesting insight that such connections basically avoid high-degree nodes of the network, which
is in resonance with recent observations on controllability of complex networks. Our results provide
thefirst technical path to enablingminimum-cost control of complex networks, and contribute new
insights to locating the key nodes from aminimum-cost control perspective.

1. Introduction

The control of network systems is an important problemwithwide applications. Examples include stabilizing or
driving social systems [1, 2], management of socio-ecological systems [3, 4] and cyber-physical systems [5, 6],
coordination ofmulti-agent systems [7, 8] such asmobile sensor systems [9, 10] and robotic systems [11, 12],
prevention of cascading failures in interdependent systems such as smart grids and telecom systems [13, 14], etc.
Significant studies havemainly focused on networkswithN-dimensional linear time-invariant (LTI) dynamics
[15–17]:

x t Ax t Bu t x x, 0 , 10˙ ( ) ( ) ( ) ( ) ( )

where x t x t x t,..., N1
T( ) [ ( ) ( )] is the state vector ofN nodes at time twith the initial state being

x u t u t u t, ,..., M0 1
T( ) [ ( ) ( )] is the time dependent input vector of external signals with M M N( ) being the

number of controllers where the same ui(t)may drivemultiple nodes. TheN×NmatrixA is the network’s
adjacencymatrix; i.e., aij=1 if there exists a link fromnode i to node j; otherwise aij=0. TheN×MmatrixB
is the inputmatrix, whereBim is non-zero if controllerm is connected to node i and zero otherwise.Without loss
of generality, it is assumed thatB has a full column rank to avoid the redundant inputs.

Two central issues in controlling LTI systems are (i)finding theminimumnumber of driver nodes
connected to external controllers to ensure the system’s controllability and (ii) for a given number of controllers,
finding the solution of driving the system to any predefined state with theminimumcost. The former issue is
known as the network controllability problem, and the latter theminimum-cost control problem.While a
significant breakthrough has beenmade on the network controllability problem [16–20], andmore recently on
the relationship between network controllability and control cost [21, 22], theminimum-cost control problem
largely remains as an open issue [23].

2.Minimum-cost control

Theminimum-cost control problem can bemodelled as driving the state vector to the origin in the time interval
[0, tf]with theminimumenergy cost [23]
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under the constraint that the network (A,B) is controllable whileBmaintains a full rank subject to a
normalization condition. The operator •[ ] takes the expectation of the argument over all realizations of the
random initial state. Note that u(t) for t from0 to tf andB are the decision variables to be determined by the
optimization process, and their optimal solutions give the optimal input signals and their optimal connections
with the network nodes.

Given an inputmatrixB such that (A,B) is controllable, existing results show that theminimum-cost control
is achievedwhen

u t B W xe , 3A t t
B

T 1
f

T
f( )( ) ( )

whereW BB te e dB

t
At A t

0

T
f T

is the controllability Grammianmatrix [24, 25], and x xeAt
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of the network in the absence of u(t). By fixing the quadratic sumof all elements ofB and substituting (3) into (2),
theminimum-cost control problem can be rewritten as
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where tr •[ ]denotes amatrix trace andXf is a constantmatrix given by X x x Xe eAt A t
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T
0

f
T

f[ ] ,
E B W Xtr B

1
f( ) [ ] is the defined energy cost function to beminimized.We also define a norm function

N B B B Mtr T 2( ) ( ( ) ) to associate with the equality constraint expressing the normalization condition onB,
where ò is a positive constant to ensure thatN(B) is non-zero on the surface tr(BTB)=M+ò. The optimization
has only thematrixB as its decision variable, but is hard to solve analytically or numerically because of the
complicated inverse operation in the cost function. This has kept theminimum-cost control of complex
networks, with its high practical and theoretical importance, an open problem.

Remark 1.There are different ways to normalize thematrixB, each corresponding to a set of distinctive
boundary conditions. In this paper, we adopt the constraint that tr(BTB)=M+ò, which reflects the boundary
conditions of the energy profile of the inputmatrixBäRN×Mwith physical implications. Specifically, it
ensures that the quadratic sumof all the elements of the inputmatrixB has afixed value. As shown later in

equation (14), we project BE B

B

( ) onto N B

B

( ) using the operator I N B

B

N B

B( ){ }{ }( ) ( ) , which requires

N(B) to be a non-zero vector on the surface tr(BTB)=M. This is the reasonwhy a non-zero ò is needed. Since ò
can be a constant of arbitrary value, it can certainly be a sufficiently small positive number.

We propose an efficient projected gradientmethod (PGM) to solve the optimization problemdefined above.
Themain idea is to analytically derive the derivatives of the functionsN(B) andE(B)with respect toB, and then
project the negative of the gradient ofE(B) onto the sphere surface tr(BTB)=M+ò. By doing so,B can be
searched via an iterative process until convergence. The gradients of functionsN(B) andE(B) can be obtained as
(refer to lemmas 1–2)

N B

B
B B M B4 tr 5T( )( ) · ( )⎡⎣ ⎤⎦

and

E B

B
W X W t Be e d 6

t
A t

B B
At

0

1
f

1f T( ) ( )

respectively. The two gradients point to the directions whereN(B) andE(B) have the fastest increasing speed
respectively.We also show that E B

B

( ) is always non-zero as long as (A,B) is controllable (theorem1), which
explains the importance of imposing the normalization condition onB.

Let {·} denote a vector formof an argumentmatrix constructed by stacking its columns.We define a
projection operator onto the tangent space of N B

B
{ }( ) as

P v I
N B

B
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B
v 7N B

B { }{ }( ) ( ) ( ) ( ) ( )( )
⎛
⎝⎜

⎞
⎠⎟

where v denotes a particular vector and is theMoore–Penrose pseudo-inverse of amatrix.More detailed
information of the defined projection operator can be found in lemma 3.

Projected gradientmethod (PGM). LetΓ(B) be an operator which normalizesB onto the sphere surface
tr(BTB)=M+ò. Note that, to guarantee the controllability of a complex network, theminimumnumber of
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controllers is the number of driver nodesND,which can be obtained by themaximum-matching algorithm
proposed in [17].

Step 1. InitiateB as a randommatrixB0 with a dimensionN×Mwhere M ND.

Step 2. Calculate the gradients of E B

B

( ) and N B

B

( ) , respectively. Let

B B P
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B
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atB=Bk, where η is a chosen step length.

Step 3. Obtain the vector version of E B

B

( ) and N B

B

( ) , denoted as E B

B{ }( ) and N B

B{ }( ) respectively, and

calculate the angle θk between them atB=Bk.

Step 4. Update k=k+1. If cos 1k( ) , go to Step 2; otherwise, stop.Note that ξ refers to the
convergence criteria, which can be set as a sufficiently small positive value. In the next section, wewill
prove that E(Bk) for all k is a non-increasing sequence which converges to a non-zero localminimum,
yielding a solution ofB denoted byBs.

3. Convergence analysis

Themain idea of the proposed PGM is to obtain the derivative of functionsN(B) andE(B)with respect tomatrix
B respectively, and then project the descent gradient ofE(B) onto the sphere surface tr(BTB)=M+ò; the
process is repeated until the iteration converges to the solution. Some preliminaries and lemmas are
presented first.

3.1. Preliminaries and lemmas

Lemma1. For amatrix Xwith no special structure (elements of X are independent), we have [28] the following.
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– Formatrices A, B, X such that X A Bij k ik kj[ ] [ ] [ ] (written as X A k B jij i k[ ] [ ] · [ ] ), X=AB.

– For a function g(U)where thematrixU is a function of anothermatrix X, i.e.U f X( ),
g
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f[ ( )] ; where [X]ij denotes the ijth element of thematrix X and δij=1 iff i=j;
otherwise, δij=0.

Lemma2.The gradient of the function E(B) is
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Proof. From lemma 1, we have
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where i, j, k, l,m, n, z are indexes of elements in thematrix. Thus the lemma is proved. ,

Lemma3. [I−SS+] is a projection operator onto a space that is orthogonal to space span{S} [29, 30], where + is the
Moore–Penrose pseudo-inverse of amatrix and span{S} is spanned by the column vectors of S.

Proof. For an arbitrary vector xä span{S}, x can be represented by the column vectors of S, i.e., x= Sy. As

I SS x I SS Sy Sy Sy 0, 9( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
the lemma is proved. ,

3.2. Convergence properties

Theorem1. For a controllable (A, B), the gradient E B

B

( ) can never be a zeromatrix.

Proof.Note that X e eA t At
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T
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where amatrix P>0means thatP is positive definite. On the other hand, since (A,B) is controllable, wemust
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From the proof of theorem1,we know that L is a positive definitematrix, i.e., L>0. From lemma 2 and theorem
1,we have
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and
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T
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Therefore the sign of E B

B

N B

B

T{ } { }( ) ( ) is dependent on the sign ofω and this theoremholds.
,

Theorem3. For the proposed PGM,we have that E(Bk) is a non-increasing sequence which converges to a non-zero
localminimumpoint E*>0.

Proof.Based onfigure 1, N B

B B Bk
∣( ) is the gradient ofN(B) atB=Bk, and it is a normal vector to the sphere
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at the pointB=Bk, where η is the iteration step length. Let

c B a 15k k k ( )
and apply the operatorΓ(.) to normalize ck onto the sphere tr(B
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AsE(Bk) is a non-decreasing sequence and E(Bk)>0, it converges to a non-zero localminimumpointE*>0.

The iterations end at b 0k , which implies a 0k , i.e., E B

B{ }( ) concurs with the direction of N B

B{ }( ) .

Finally we have that cos k( ), the cosine of the angle between E B

B{ }( ) and N B

B{ }( ) , converges to cos

(θk)=−1. ,

4. Results

We successfully apply the proposed PGM tofind theminimum-cost control solutions for 1000-node Erdös–
Rényi (ER) [31, 32] and scale-free (SF)networks [33, 34] and a list of real-life networks. The algorithm can
handle networks at these and larsizes efficiently, though numerically solving theminimum-cost control
problem for extra-large networkswith hundreds of thousands ormillions of nodes remains as a challenge
(because of the need to take the inverses of hugematrices in the algorithm).Without loss of generality, we set
ò=1 in all the experiments. In our numerical experiments, wefirst give a random initialB0 on the normalized
sphere surface for afixed M ND and then apply PGM tofind the solution.Note that, to avoid the numerical
controllability transition [26], whichmeans that, when a small number of key nodes is barely enough to ensure
controllability, failure offinding a numerical solutionmay not be overcome bymerely increasing numerical
precision, in all our simulationswe set the number of output controllers to be large enough.

The comparison results between the energy costs for the random initialB0 and theB
s obtained by PGM for

the ER and SF networks (with an average nodal degreeμ=4) are summarized in table 1. It can be seen that (i)
the control cost decreases as the number (M) of inputs increases and PGMsteadily lowers the control cost by
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about two to three orders ofmagnitude compared to that of a randomly givenB0; (ii) the control cost decreases
significantly as tf increases—in other words, when a longer time is allowed to achieve the control objective, the
control cost can be significantly reduced; and (iii) havingmore controllers helps drastically lower the control
cost. It is, however, well known that installingmore controllersmay induce other costs. Being able to calculate
theminimumcontrol costs with different numbers of controllers helps tofind themost cost-effective solutions
for applications.

Note that for the non-convex optimization problem (4), the proposed PGMmethod, like any optimization
methodwith a reasonably low complexity, can only guarantee convergence to a localminimum. An interesting
observationwemade in our extensive implementations of PGMstarting with different initialB0matrices,
however, is that the solutions of different rounds of implementations typically lead to nearly the same control
cost.Whether thismeans that the solution found by a single round implementation of PGM is steadily close to
the global optimum requires further careful studies. Unless otherwise specified, hereafter we present the results
of an implementation of PGMwith a randomly givenB0matrix.

Table 2 demonstrates the satisfactory performance of PGM in some real-life networks, again by comparing
the control costs corresponding toB0 andB

s respectively.We observe that, with a small value of tf= 1, PGM
lowers the control cost by up to three tofive orders ofmagnitude in these networks compared to that of their
random counterparts.

Table 3 presents inmore detail the impacts of tf andM on the energy cost in real-life networks.

Figure 1.Optimization on a high dimensional sphere surface. E B

B

( ) , N B

B

( ) and
N B

B

( )
denote the unit vectors of

E B

B

( )
,

N B

B

( )
and

N B

B

( ) , respectively.

Table 1.Energy costs in the ER and SF networks.μ=4.

N=1000 M=260 M=290 M=320 M=350

ER (initial) 1.8×108 3.2×107 7.1×106 1.8×106

PGM tf= 1 7.4×105 2.4×105 7.1×104 2.9×104

PGM tf= 2 3.2×104 2.0×104 7.9×103 5.1×103

SF (initial) 5.1×108 8.4×107 1.6×107 3.5×106

PGM tf= 1 1.2×106 4.2×105 1.0×105 4.3×104

PGM tf= 2 7.7×104 7.5×104 2.0×104 1.0×104
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It can be seen that, as that in the ER and SF networks, increasing tf andM helps significantly lower the
control cost. Also, inmost cases, PGM lowers the control cost by a few orders ofmagnitude compared to that of
the initial random connections.

It is interesting to note that similar observations have beenmade in [21, 22] that increasing the number of
controllers helps significantly lower the control cost. Our results show that the conclusion holds in the
minimum-cost optimal solutions. As an example, figure 2 illustrates in detail the relation between the number of
control nodes and the correspondingminimumcontrol cost in a real-life network.

Note that bothB0 andB
s requiremany nodes each to be connected to each of theM controllers, whichmay

not yield a practical solution for large-size networks. A practical and interesting problem therefore is tofind the
minimum-cost control solution under the constraint that only a small set of nodes can be directly connected to
external controllers.We term this small node set a key node set and consider the case where each key node can be
connected to only a unique controller to achieve the lowest connection complexity.

For this case, we propose a very simple approach to derive the key node set fromBs. Note that the absolute
value of linkweight Bij

s∣ ∣ reflects the importance of the node i for the jth controller. Define an importance index
vector

r
r r r

r r r

... ...

max , , , ,
18

i N

i N

1

1( ) ( )
⎡⎣ ⎤⎦

where r Bi j ij
s∣ ∣ for i=1, ... ,N. Clearly, we have rmax 1{ } . The importance index of node i evaluates the

relative importance of this node in achieving theminimum-cost control objective.We form the key node set as
the firstMnodeswith the largest importance index values. The corresponding connectionmatrix, denoted asB*,
can be easily constructed: if a node i is the kth node of the key node set, we set B 1i k,* ; otherwise, B 0i k,* .We
term this simple approach the PGMextension (PGME).

Table 4 shows that, while reducing the number of connections between network nodes and external
controllers from a typical value ofM×N of a calculatedBs to onlyM of its correspondingB*, the control cost is
onlymarginally increased. Note that, whileBs lowers the control cost typically by two to three orders of
magnitude compared to that of a randomB0,B

* drastically lowers the control cost evenmore compared to that
of the randomone-to-one connections between controllers and network nodes. Specifically, in order to generate
a random solution that ensures network controllability, wefirst apply themaximummatchingmethod [17] to
find one set of driver nodes, which could be any one among themultiplemaximummatching solutions for the
network. Thenwe randomly chooseM−ND additional nodes in the network to construct the control node set.
We term this simplemethod the random allocationmethod (RAM).

Example cases of PGME results versus the average of 100-times implementations of RAMare plotted in
figure 3. It is observed that PGME, compared to RAM, lowers the control cost by up to eight to nine orders of
magnitude in both synthetic and real-life networks. Such a conclusion basically holds in all the other networks
we have tested. In the extreme casewhereM=N, every node becomes a key node and consequently PGMEand
RAMbecome equivalent.

A closer examination of what kinds of node are selected as key nodes helps reveal someuseful insights. To
start, we consider two elementary topologies whichwidely exist in various complex networks: a stem and a
circle. Examples of these two elementary topologies, each of which contain six nodes, are illustrated infigure 4.
We see that the key nodes tend to divide the elementary stem and circle equally. A few other simple topologies
have been tested and the conclusion always holds. This observationmay be of importance, as itmay lead to
heuristic algorithmdesign for theminimum-cost control of extra-large complex networks.

Table 2.Energy costs in real-life networks. tf= 1.

Dataset Networks N ND M Initial PGM

Electronic circuit [35] Circuit-s838 512 119 150 8.5×108 9.2×105

Circuit-s420 252 59 70 1.3×109 1.1×106

Circuit-s208 122 29 35 6.5×108 3.2×105

Foodweb [36–38] Michigan 39 13 15 3.5×105 990

Phode 25 8 9 9.3×105 2.6×103

Maspalomas 30 9 10 2.5×109 1.0×104

Social influence [39] Phys-discuss-rev 231 85 100 2.5×108 1.2×104

Social [40] cons-freq-rev 46 2 10 189.0 7.6

Phys-friend-rev 228 52 60 2.0×1010 7.9×106
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Table 3.The effects of tf andM on energy cost in real-life networks.

Dataset Networks tf N M1 Initial PGM M2 Initial PGM

Electronic circuit Circuit-s838 1 512 150 8.5×108 9.2×105 190 7.9×106 5.0×104

2 512 150 8.3×106 2.2×104 190 3.2×105 3.2×103

Circuit-s420 1 252 70 1.3×109 1.1×106 92 5.0×106 2.6×104

2 252 70 1.8×107 1.8×104 92 1.8×105 1.6×103

Circuit-s208 1 122 35 6.5×108 3.2×105 45 2.7×106 9.6×103

2 122 35 3.0×106 5.4×103 45 7.2×104 6.0×102

Foodweb Michigan 1 39 15 3.5×105 1.0×103 17 3.3×105 7.3×102

2 39 15 1.4×104 1.4×102 17 1.3×104 91.5

Rhode 1 25 9 9.3×105 2.6×103 10 2.3×105 8.6×102

2 25 9 3.8×105 1.8×102 10 9.6×104 86.6

Maspalomas 1 30 10 2.5×109 1.0×104 12 1.1×106 9.6×102

2 30 10 7.1×104 4.3×102 12 4.2×104 91.7

Social influence Phys-discuss-rev 1 231 100 2.5×108 1.2×104 107 1.0×107 5.8×103

2 231 100 2.8×106 1.1×103 107 3.3×105 7.3×102

Social cons-freq-rev 1 46 10 369.0 7.6 16 185.80 4.90

2 46 10 3.91 2.38 16 2.46 1.54

Phys-friend-rev 1 228 60 2.0×1010 7.9×106 81 7.9×107 7.2×104

2 228 60 9.7×107 9.0×104 81 2.0×106 3.3×103

Figure 2.Number of control nodes versus the energy consumptions in a real-life (frequency-rev [40])network.

Table 4.E(B s) andE(B*) in the ER/SF/real-life networks.

Networks N M E(Bs) E(B*)

ER (μ=4) 1000 260 1.821×108 1.822×108

290 7.146×106 7.150×106

SF (μ=4) 1000 260 5.173×108 5.173×108

290 1.625×107 1.625×107

Elementary stem 100 20 5.85×108 6.47×108

25 2.82×106 3.11×106

Elementary circle 100 20 5.85×108 6.47×108

25 2.82×106 3.11×106
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Another evenmore important observation is that the key node set basically avoids high-degree nodes in both
synthetic and real-life networks, as shown in table 5. For the ER/SF networks, since themean degrees of both
networks are around 4, the sumof themean input and output degrees, denoted byμin+out, will be around 8.
Surprisingly, the sums of themean input and output degrees of the key nodes identified by PGME, denoted as
μin+out
key , are only around 5.52 and 4.70 in the two networks respectively. For the real-life networks, the same
conclusion holds: theμin+out

key values identified by PGMEaremuch lower than the average degree of the top 5%
of highest-degree nodes; basically no hubnode is selected as the key node. This suggests that the key node set is
unlikely to be the hubs in the networks. In [17], it was pointed out that the driver node set whichminimizes the
number of nodes directly connected to controllers avoids the hub nodes. It is interesting to see that the key node
set whichminimizes the overall control cost also avoids hub nodes. It is the low-degree nodes at the correct
locations that determine the cost for driving a complex network to any state. Such an observationmay have very
important implications, as itmay change our basic understanding and approaches of complex system control.

Last, it is worthmentioning that, starting from any feasible initial (A,B0), solution of the PGMmethod
guarantees network controllability as the network control cost remains strictly non-increasing in each iteration
of the algorithm. It is however difficult to prove that the same conclusion holds for PGME.Observing in our
extensive simulation experiences that PGMEalways generates a feasible solutionwith comparable performance
to that of PGM,we have good reasons to expect that solution of PGMEwould almost always guarantee the
controllability of the system, especially whenwe need in any case a large enough number of control nodes to
avoid the numerical controllability transition area.

5. Conclusion

There are threemain contributions/observations reported in this paper: (1) the proposed PGMmethod for the
first time provides a solution to the important open problemof realizing theminimum-cost control of complex
networks; (2) it is revealed that the complexity of the connections between the external controllers and network
nodes can beminimizedwithout a significant increase in control cost; and (3) it is found that the key nodes
leading to theminimumcontrol cost are basically low-degree nodes. It is exciting to know that a set of properly
selected low-degree nodes, with the simplest one-to-one connections with the external controllers, can achieve a
suboptimal solution inminimizing the cost for controlling complex networks; andwe have afirst algorithm that
can efficientlyfind such a set of nodes. The proposed algorithm and the achieved insights will be of significant
importance for various applications. Inthis direction,many further studies can be carried out, e.g. to develop
simpler heuristic algorithms forfinding the key node set in extra-large networks, or to investigate the
identification of the key node set without accurate global network topology information, etc.

Figure 3.Comparisons between PGMEandRAM in synthetic and real-life networks. The shaded part denotes the ‘numerical
controllability transition’ area andM=ND+m0. Comparison results in (a) a synthetic network: an elementary stemwithN=100;
and (b) a real-life electronic network (circuit-s208)withN=128 [27].
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Figure 4.Key nodes in two elementary topologies. (a)An elementary stemwhereN=6 andM=1, 2, 3. (b)An elementary circle
whereN=6 andM=1, 2, 3.

Table 5. key
in out in ER/SF/real-life networks.

Networks M max
in out top5%

in out key
in out

ER 260  26 18.2 5.52 
290  26 18.2 5.64 
320  26 18.2 5.72 
350  26 18.2 6.02 

SF 260  124 68.3 4.70 
290  124 68.3 4.78 
320  124 68.3 4.87 
350  124 68.3 5.02 

Circuit-s208 35  10 7.5 5.52 
Circuit-s420 70  14 7.62 5.64 

Circuit-s838 35  22 7.65 5.72 
Rhode 9  18 15 6.02 
Michigan 15  43 36 4.70 
Maspalomas 10  21 19.5 4.78 
discuss-rev 100  21 11.75 4.87 
friend-rev 10  13 10.42 5.02 

frequency-rev 46  65 64 39 
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