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The dynamic nature of system gives rise to dynamical features of epidemic spreading, such as oscillation

and bistability. In this paper, by studying the epidemic spreading in growing networks, in which susceptible

nodes may adaptively break the connections with infected ones yet avoid getting isolated, we reveal a new

phenomenon - epidemic reemergence, where the number of infected nodes is incubated at a low level for a

long time and then bursts up for a short time. The process may repeat several times before the infection finally

vanishes. Simulation results show that all the three factors, namely the network growth, the connection breaking

and the isolation avoidance, are necessary for epidemic reemergence to happen. We present a simple theoretical

analysis to explain the process of reemergence in detail. Our study may offer some useful insights helping

explain the phenomenon of repeated epidemic explosions.

PACS numbers: 89.75.Hc, 87.19.X-, 89.75.Fb

I. INTRODUCTION

Infectious diseases have caused tremendous losses in hu-

man health and lives and they remain as a serious threat to

mankind today. To resist infectious disease, theoretical inves-

tigations have been engaged to study the epidemic behaviors

[1–5] and immunization strategies were suggested to prevent

epidemic spreading when vaccine resources are limited [6–9].

Recently, large-scale agent-based simulations have been ap-

plied to get more detailed descriptions of disease outbreaks

[10–12]. A prominent development among these studies was

to abstract the complex social relations into networks, where

nodes represent individuals and links represent the contacts

among them. It is found that the basic reproductive number

R0, a key factor determining whether a disease can spread out

or not, depends strongly on the variance of the distribution of

the contacts [2, 3, 13]. Extensive results show that the social

contacts typically have a fat-tail degree distribution where a

small number of people have very large number of contacts

[14, 15]. This property typically leads to a much higher R0

than that in a network with the same average degree but ho-

mogeneous degree distribution [2].

The non-trivial features of social networks such as small-

world property and fat-tail degree distribution, and the com-

plexity of the dynamics of infectious diseases, lead to some

interesting properties of epidemic spreading. For example,

it is found that for a linearly growing network, the evolu-

tion of the number of the infected nodes has oscillatory be-

haviors when the susceptible-infected-recovered (SIR) model

is adopted [16]. An adaptive mechanism is studied in [17],

where a susceptible individual may avoid the contacts with

his infected neighbors and rewire these contacts to other sus-

ceptible individuals. An important observation is that the in-

terplay of the epidemic dynamics and the network topology

may cause a bi-stable phenomenon. That is, the disease is

hard to persist when the infection density is low, yet may en-

ter endemic state when the infection density is high. Network

growth is a fundamental property for any healthy systems [18]

and adaptive changes widely exist in most systems when in

face of infection. Adaptations to avoid an undesirable out-

come can sometimes postpone the onset of the undesirable

outcome, at the same time making it more severe [19, 20].

Hence it is necessary to study the influences of both network

growth and adaptive dynamics to the dynamics of epidemic

spreading.

In this paper, we study the epidemic spreading in linearly

growing networks assuming that the susceptible nodes may

break the contacts with the infected nodes. Considering the

fact that in general an individual cannot survive when s/he is

fully isolated in a modern society, the contact breaking pro-

cess takes place only when both of the two end nodes of a

contact still have other neighbors. Interestingly, we observe

an epidemic reemergence phenomenon, where the number of

infected nodes may stay at a low level for a long time and

then bursts up to a high level. The process may repeat for a

long time before the disease finally dies out. In Sec. II we

present the epidemic model. Simulation results are presented

in Sec. III. In Sec. IV we give some theoretical analysis to

explain our observations. Sec. V presents some further dis-

cussion and concludes the paper.

II. MODEL

Consider a Barabasi-Albert (BA) model [14] with N nodes

as the initial network, where the average nodal degree 〈k〉 =
2m and m is the number of links attached by each newly

added node. We use the SIS model to describe the epidemio-
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FIG. 1: (Color online) The fraction of infected nodes after transient

time as a function of parameter p for different growing rates α =
0.02, 0.05, 0.1 and 0.2, where r = 0.04 and m = 2.

logical process, which is widely adopted to describe infectious

diseases [1, 19, 21, 22]. In this model agents can be in two dis-

tinct states: susceptible or infected. A susceptible agent may

get infected if he has infected neighbor(s). Suppose a suscep-

tible node has neighbors, of which kinf are infected, and the

probability of having contagion with each infected neighbor

is p. Then the susceptible node may get infected with prob-

ability 1 − (1 − p)kinf which is approximately pkinf when p
is small. At the same time, each infected agent will become

susceptible at a rate of r. In this paper, we set r = 0.04 unless

otherwise specified.

III. SIMULATION RESULTS

We first consider the case in which the network is continu-

ally growing during epidemic spreading. Assume on average

there are α susceptible nodes joining the networks at each time

step and each new node brings m links connected to the exist-

ing nodes in a preferential attachment manner. We assume that

the newly added nodes know the infectious states of the exist-

ing nodes. Thus they only connect to susceptible ones. The

probability that a susceptible node e is connected to a newly

added node is mkS
e /
∑

e′ kS
e′, where kS

e denotes the degree of

the susceptible node e. Such a network growth model has also

been adopted in [23]. Figure 1 shows the relation between

the fraction of infected nodes i after transient process and the

disease transmission probability p for different values of α.

In this figure, all the curves overlap completely. Therefore,

the fraction of infected nodes will not be influenced when we

change the network growing rate.

Now we consider the case that susceptible nodes may re-

move their links connected to infected nodes when the net-

work is not growing. Specifically, in each time step each

susceptible node may break the link connected to an infected

neighbor at a probability ω. Considering that an individual

FIG. 2: (Color online) The evolution of the number of infected nodes

in the BA model without network growth. We set p = 0.09 and all

the other parameters are the same as those in figure 1. The red hollow

circles (black hollow squares) represent the results when the isolation

avoidance is (is not) considered.

seldom can go isolation in a modern society, we set the con-

straint that a link removal can happen only when both of the

two end nodes of the link have other neighbors. We term such

a constraint as isolation avoidance. Obviously, without isola-

tion avoidance, the link removal process can finally lead the

network to a disease-free status, since it is equivalent to re-

ducing the effective infection rate [17], in the extreme case

to zero when all the links to the infected nodes are removed.

With the isolation avoidance, however, the link removal pro-

cess cannot guarantee the clearance of the disease, since the

mechanism lets each node retain at least one connection and

a disease may spread out in the condition of p > r as the re-

productive number R0 > 1. Figure 2 shows the evolution of

the number of infected nodes for the cases with and without

isolation avoidance, respectively. The infectious disease dis-

appears after a transient process when the isolation avoidance

mechanism is not considered. However, when the isolation

avoidance is adopted, the number of infected nodes may re-

main at a low level rather than disappear.

Next we consider the case in a growing network where sus-

ceptible nodes may remove their links connected to infected

nodes without isolation avoidance. Figure 3 shows the evolu-

tion of the number of infected nodes, I, with different param-

eters. It shows that network growing rate α does not have sig-

nificant influence to epidemic dynamics; and in all the cases,

the infection will finally either go extinction or stay at a low

level.

Finally we study the case in which network growth, link re-

moval process and the mechanism of isolation avoidance are

all involved. Interestingly, we observe the phenomenon of epi-

demic reemergence. As shown in figure 4 where α = 0.2,

ω = 0.03, p = 0.09 and m = 2, the number of infected nodes

stays at a low level for a long time, then suddenly bursts up to

a high level before decays to a low level again. This process
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FIG. 3: (Color online) Evolution of the number of infected nodes in

network with growth and link removal but without isolation avoid-

ance. (a) Results when α = 0.2, 0.1, 0.05 and 0.02 for m = 2,

ω = 0.03, p = 0.09. (b) Results when ω = 0.03, 0.06, 0.09 and

0.12 for m = 2, p = 0.09, α = 0.2. (c) Results when p = 0.03,

0.06, 0.09 and 0.12 for m = 2, α = 0.2, ω = 0.03. (d) Results

when m = 2, 3, 4 and 6 for α = 0.2, ω = 0.03, p = 0.09.

FIG. 4: The evolution of the number of infected nodes when the

network growth, the link removal process and isolation avoidance

are all considered, α = 0.2, ω = 0.03, p = 0.09 and m = 2.

may repeat a certain times before the infection finally dies out.

This observation can be explained as follows: on one hand,

the link removal process can suppress the epidemic spreading,

while the isolation avoidance lets each node have at least one

neighbor. The interplay between these two processes makes

the number of infected nodes remain at a low level. On the

other hand, the newly added nodes connect to susceptible

nodes when they join the network. Due to the small num-

ber of infected nodes and the isolation avoidance, the infec-

tion cannot easily reach these newly added nodes. Therefore,

the newly added nodes can cumulate, connecting susceptible

nodes into a large component. Once the infection invades into

FIG. 5: Evolution of the number of infected nodes in the giant com-

ponent, IG, the size of giant component, SG , and the number of

components, NC . Parameters are the same as those in figure 4.

this component, however, the infection size can quickly burst

up.

To reveal the mechanism of the epidemic reemergence in

more detail, we illustrate the evolution of the number of in-

fected nodes in the giant component, IG, the size of giant

component, SG, and the number of components, NC , respec-

tively, in figure 5. Refer to figure 4, we can see that when

the number of the infected nodes I is very small, the size of

the giant component increases linearly along time and IG is

about zero. This means that the giant component is basically

in the disease-free status. Meanwhile, NC decreases along

time, meaning that the newly added nodes continually merge

the existing components into larger ones. However, once the

disease invades into the giant component, the infection may

quickly spread over the whole component, leading to a high

value of IG. Then the component quickly breaks into small

pieces due to the link removals, evidenced by an increasing

number of NC .

The growth of a large giant component plays an important

role in inducing the reemergence phenomenon. For a com-

ponent that is totally composed of susceptible nodes, referred

as S-component, the size of it may keep grow during the net-

work growing process. However, if a newly added node con-

nects the S-component to a component containing infected

nodes, referred as I-component, the infection may reach the S-

component by going through the newly added node. If the size

of the S-component is small, it may not make a large impact

when it is infected. When a large S-component is infected,

however, the disease may quickly spread over it, causing a

sharp increase in the number of infected nodes.

It is interesting to have a closer look at how the small I-

components survive the long inter-epidemic periods and how

the infection finally invades a large S-component (in most

cases, the giant component). We take the second explo-
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sion which happens at around t = 5000 as an example. At

t = 5034, there are totally 46 infected nodes left in the net-

work and they belong to 5 I-components. One of these I-

components is an 18-node star network which is composed

of 11 infected nodes including the hub of the star and 7 sus-

ceptible nodes. This explains how the infection remains en-

demic: the links in the I-component cannot be removed due to

isolation avoidance. At t = 5035, the 18-node I-component

is connected to the giant component through one of its sus-

ceptible nodes. A few time steps later the infection invades

the giant component, leading to an epidemic. In fact, similar

observations apply to all the other epidemics: the long-lived I-

components seeding the epidemics almost always have star or

star-like topologies. The isolation avoidance mechanism pre-

vents such I-components from being further fragmented. The

infection therefore has a chance to survive over a long time.

Finally, by chance the I-component may be connected to the

giant/big S-component, which may lead to an explosion.

Figure 6 illustrates snapshots of network structures right

before and after an epidemic explosion. Specifically, when

t = 5000 which is just before the epidemic explosion, as we

can see in Figure 6(a), there is a giant component containing

most of the network nodes and all the nodes in this compo-

nent are susceptible. Meanwhile, a small number of infected

nodes exist in several small components. This observation is

accordant with our previous discussion that due to the net-

work growth and isolation avoidance, the network can form a

giant component which is basically disease free, while a small

number of infected nodes may remain in small clusters. Fig-

ure 6(b) shows the network structure when t = 5400 which

is right after the epidemic explosion. We see that the network

breaks into many small pieces, most of which with no more

than 5 nodes. In this stage, on one hand, the network still has

many infected nodes, thus some I-components may be further

decomposed to suppress the infection spreading; on the other

hand, the network has several S-components with relatively

large size, which indicates that a new giant component starts

to form.

Note that a reconnection between an I-component and the

giant/big S-component does not always lead to an explosion.

In fact, in most cases, the giant/big component is finally dis-

connected from any infected nodes again without any notice-

able increase in the number of infected nodes in between. An

explosion typically only happens when the infection manages

to reach a high-degree hub in the giant component. In the next

section, we will show in more detail the strong randomness in

the reconnection process.

IV. THEORETICAL ANALYSIS

Now we do some theoretical analysis to explain the obser-

vations in the simulation. We start with the status that the

network has just suffered from a large-scale infection and the

susceptible nodes have cut off a large number of connections

to protect themselves. Consequently, the network is broken

���������

���������

FIG. 6: Snapshots of the network topology when (a) t = 5000 and

(b) t = 5400. The yellow (red) circles denote the susceptible (in-

fected) nodes.

into pieces. In such situation, though most nodes have recov-

ered to susceptible status, due to the isolation avoidance, there

are still a small number of infected nodes remaining in the net-

work. Because the number of infected nodes and the number

of the corresponding I-components are very small, the proba-

bility that a newly added node connects to a susceptible node

belonging to an I-component is low. Hence, to study the grow-

ing speed of the giant component, we can ignore the effects of

the infected nodes and the corresponding I-components. Upon

obtaining the growing behavior of the giant component, we
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can then calculate the expected time that the giant component

is connected to an I-component.

We assume that there are N0 nodes and M0/2 links remain-

ing in a network just suffered from a large-scale infection.

Therefore on average each node has a degree M0/N0. Denote

the average component size as 〈g〉. We have 〈g〉 =
∑

j gj/NG

where gj denotes the size of component j and NG the num-

ber of the components. Since the probability that a new node

connects to a component is proportional to the number of links

remaining in the component and most nodes in the small com-

ponents are of very low and similar nodal degrees, approx-

imately the probability that a new node connects to a com-

ponent is proportional to the size of this component. There-

fore the average size of the components, other than the giant

one, that are chosen by a new node is h = 〈g2〉/〈g〉, where

〈g2〉 =
∑

j g2
j /NG. Ideally, if a new node connects to only

a single node in the giant component and connects to other

m − 1 nodes from other different components, the size of the

giant component may be increased by (m − 1)h + 1. How-

ever, with the growing of the giant component, the probability

of having the new node making multiple connections to the

giant component increases. Thus the giant component size

may be increased at a speed of (hl + 1)α, where l denotes

the number of components connected to the new node other

than the giant one, l ∈ [0, m− 1]. We assume that each new

node connects the giant component by at least one link when

he joins the network. This assumption is reasonable: on one

hand, when all components are of small sizes, a new node

may not connect to the largest component at that time. How-

ever, since the new node connects a few small components

into a larger one, the newly formed component stands a bet-

ter chance to be connected to more new nodes arriving later

and become even bigger. With the growing of the network,

the newly formed component has a high chance to be finally

included into the largest component. Once this happens, the

new node eventually contributes to increasing the size of the

giant component. On the other hand, when the giant compo-

nent is large, the probability that it is connected to a new node

is high. Based on the above consideration, the evolution of

the giant component size, denoted as SG , can be expressed as

follows:

dSG

dt′
= α

m−1
∑

l=0

C l
m−1

(

1 −
MG(t′)

M(t′)

)l (
MG(t′)

M(t′)

)m−l−1

(h·l+1) ,

(1)

where t′ is the elapsed time after the network breaks into

pieces, M(t′) = M0 + 2mαt′ is the sum of the degrees of

all the nodes at time t′, and MG(t′) = (SG − αt′)M0/N0 +
2mαt′ is the sum of the degrees of all the nodes in the giant

component at time t′. Note that SG − αt′ equals the number

of nodes when t′ = 0. The term in the first (second) bracket in

the summation of Eq. (1) indicates the probability that a link

sourced from a new node does not (does) choose the giant

component, in which the preferential attachment is adopted

and the effects of I-components are ignored. For the case of

FIG. 7: (Color online) A detailed plot of figure 5(b) for t ∈

[500, 5000]. The circles show the simulation results and the red solid

curve shows the theoretical results obtained from Eq. (3). In the the-

oretical analysis, we adopt the calculation results that at time t = 500
(i.e., t′ = 0), N0 = 1100, M0 = 1648, h = 4.15. Other parameter

values include α = 0.2 and m = 2.

m = 2, Eq. (1) goes to

dSG

dt′
=









1 −
(SG − αt′)

M0

N0
+ 4αt′

M0 + 4αt′









(h + 1)α

+
(SG − αt′)

M0

N0
+ 4αt′

M0 + 4αt′
α . (2)

Solving Eq. (2), we have

SG = (N0+αt′)+(M0+4αt′)
−

hM0

4N0

(

hM
hM0

4N0

0 − N0M
hM0

4N0

0

)

,

(3)

where we set SG(0) = h.

Figure 7 shows the results of figure 5(b) in the range of

t ∈ [500, 5000]. When t is around 500, the network breaks

up to a large number of small pieces. After that the network

grows continually until a giant component forms up. In this

figure, the circles show the simulation results and the red solid

curve shows the theoretical results obtained from Eq. (3). We

can see they match fairly well.

Following we analyze the average duration when the giant

component can keep growing without getting connected to an

I-component. Denote P (T ) as the probability that the giant

component connects to I-component for the first time at time

T . We have

P (T ) =

(

T−1
∏

t′=0

Θ(t′)α

)

(1 − Θ(T )α) , (4)
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where

Θ(t′) =

(

M(t′) − MI

M(t′)

)m

+

(

M(t′) − MG(t′)

M(t′)

)m

−

(

M(t′) − MI − MG(t′)

M(t′)

)m

. (5)

In Eq. (5), MI is the number of susceptible nodes in the I-

components which does not change a lot during the network

growing process until the infection invades the giant compo-

nent, and hence is treated as a constant value here. The first

(second) term on the right-hand side indicates the probability

that none of the m links of the new node connects to the I-

components (giant component), while the third term indicates

the probability that none of the m links connects to either

the I-components or the giant component. Therefore, Θ(t′)
presents the probability that a node newly added at time t′

does not connect any I-component to the giant component.

As α is the growing rate of the new nodes, Θ(t′)α represents

the probability that all the newly added nodes do not connect

any I-component to the giant component at time t′. Hence,

the expected value of the time that the giant component gets

connected to an I-component for the first time is

E(T ) =
∞
∑

T=1

T · P (T )

=

∞
∑

T=1

T ·

(

T−1
∏

t′=0

Θ(t′)α

)

(1 − Θ(T )α) , (6)

which can be simplified to

E(T ) =

∞
∑

T=0

(

T
∏

t′=0

Θ(t′)α

)

. (7)

Setting MI = 20, which is obtained from the simulation,

and all the other parameters the same as those in figure 7, we

substitute Eq. (3) into Eq. (7) and then solve it numerically.

The result is E(T ) ' 723. Using similar method, we can

calculate the standard deviation as 522. The very large stan-

dard deviation shows that there exist strong fluctuations in the

time intervals between reconnections of I-component and the

giant component. To demonstrate such strong fluctuations,

we plot in figure 8 the evolution of the overall size of all the

I-components represented by the thin red curve. It is easy

to understand that the overall infection size would jump up

when a small I-component is connected to the giant compo-

nent (which makes the giant component itself an I-component,

evidenced by the heights of the jumps closing to the size of the

giant component). As we can see, after the transient process,

several jumps take place at around time 1970, 2590, 3405 and

5035 and the time intervals in between are 620, 815 and 1630,

respectively. Such results are accordant with our theoretical

estimation on the expected value of time interval and its devi-

ation. The observation on the large deviation value has its sig-

nificance: the strong fluctuations of the reconnection process

FIG. 8: (Color online) The evolution of the overall size of all the I-

components indicated by the thin red curve, the number of infected

nodes indicated by the thick black curve, and the size of the giant

component indicated by the blue circles. All parameters are the same

as those in figure 7.

make it difficult to predict when the next reconnection of an I-

component and the giant component would happen though we

could estimate the long-term average of the intervals. Further

consider the fact that a reconnection (reflected as a peak of the

thin red curve in figure 8) does not always lead to an explosion

(a peak of thick black curve in figure 8), it would be very dif-

ficult, if not impossible, to predict when a reemergence would

happen.

Once the infection does invade the giant component, the

disease may spread over the whole component very quickly

and further transmit to other smaller components. In fact,

in the beginning stage of the outbreak, the fraction of in-

fected nodes grows exponentially fast [4]. Specifically, with

mean-field approximation the evolution of i and 〈k〉 can be

expressed as



















di

dt
= p〈k〉(1 − i)i − ri

d〈k〉

dt
= −2ω〈k〉(1 − i)i

. (8)

Here we ignore the network growing process since we mainly

focus on the drastic change of the infection size in which the

time span is short and the number of newly added nodes is

very limited. Since i is very small in the beginning stage of

epidemic explosion, we neglect the high-order terms of i. Be-

sides, because of the small time interval during this process,

we regard 〈k〉 as a constant. Thus, the first equation in Eq. (8)

can be simplified as [4]

di

dt
= p〈k〉i − ri . (9)

Solving Eq. (9), we have

i(t) = i(0)e(p〈k〉−r)t . (10)
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FIG. 9: The evolutions of the number of infected nodes after the first

and second infection peak. Parameters are the same as those in figure

7.

We see that i(t) grows exponentially, which proves that the

number of infected can increase very quickly in a short time.

Figure 4 illustrates that after each infection peak, the num-

ber of infected nodes decreases gradually and this decreasing

process sustains much longer than the increasing process. To

study the behaviors of the decreasing process, we first con-

sider the dynamics of i(t) during a short period of time where

〈k〉 can be approximately regarded as a constant. Solving the

first equation in Eq. (8) by assuming 〈k〉 as a constant, we

have

i(t) = (p〈k〉 − r)

(

1 −
1

1 + Cp〈k〉e(p〈k〉−r)t

)

, (11)

where C =
i(0)

p〈k〉(1 − i(0)) − r
.

The exponential function in Eq. (11) reveals that the value

of p〈k〉 − r determines the typical time it takes for i(t) to go

to the stable state for a constant value 〈k〉. A larger p〈k〉 − r
corresponds to a shorter time. For the specific case as shown

in figures 4 and 8 where m = 2, p = 0.09, r = 0.04 and

ω = 0.03, when i(t) starts to decrease, 〈k〉 ≈ 3 and (p〈k〉 −
r)/ω ≈ 8. This shows that the spreading process is much

faster than link removal process. Such observation allows us

to simplify our analysis by considering the decreasing process

as composed of a series of quasi-static processes. That is, we

divide the decreasing process into a series of very short time

intervals and regard each short interval as composed of two

different parts: first some links are removed; then i(t) quickly

converges to a temporally stable state where di/dt = p〈k〉(1−
i)i − ri = 0 for the updated value of 〈k〉. Hence, suppose 〈k〉
has a small change in each time interval as 〈k〉 → 〈k〉 − ε,

where ε is a small positive quantity. We have

di

dt
= p(〈k〉 − ε)(1 − i)i − ri = −εp(1 − i)i . (12)

FIG. 10: Gray plot of parameter F on the m − α plane. Results are

obtained from 100 realizations. Other parameters are the same as

those in figure 4.

By solving Eq. (12), the evolution of i(t) can be expressed as

i(t) = 1/(C ′eεpt + 1), where C ′ is a constant depending on

the initial condition. As ε is of a very small positive value,

i(t) can be further approximated as

i(t) =
1

1 + C ′εpt + C ′
∼

1

t
. (13)

Therefore, we have that approximately i(t) evolves inverse-

proportionally with time t after the infection peak. The log-

log plot in figure 9 shows the simulation results of the evo-

lution of the number of infected nodes I after the first and

second infection peaks for the case in figure 8, where the first

(second) peak happens around the time t = 100 (t = 5270).

As expected, I evolves approximately inverse proportionally

with time when it decays from the peak.

When the number of infected nodes decreases to a small

value, it will become stable. In this stage, the network breaks

to an extent that the sizes of I-components are small enough

so that the breaking process almost ceases due to the isolation

avoidance. Consequently a small number of infected nodes

may be preserved in the I-components for a long time until

the next epidemic explosion happens.

It has been observed that epidemic reemergence may hap-

pen for a wide range of α and m. To manifest the influences

of α and m, we introduce a parameter F to measure the bursti-

ness of the epidemic reemergence, which is defined as

F =

T

(

I >
Imax

2

)

T (I > 0)
, (14)

where Imax is the maximum value of I in the whole disease

spreading process. A smaller value of F corresponds to a

more abrupt burst in the number of infected nodes. Figure

10 shows the results of parameter F on the m − α plane. It

can be seen that generally speaking slower network growing
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speed α and smaller m lead to smaller F value. This phe-

nomenon can be understood as follows. Having a higher net-

work growing speed and more links added to the network by

each newly added node makes the S-components connect to

I-components in a larger probability; consequently the sus-

ceptible nodes may get infected more easily. If a significant

number of S-components are invaded by infection before they

form into a large component, the reemergence shall become

less bursty. Note that in all our simulations, the infection fi-

nally dies out: small fluctuations at a very low infection size

sooner or later will push the infection into extinction. Reemer-

gence cannot be repeated forever unless it has a stable pool

outside the system we have been considering.

V. DISCUSSION AND CONCLUSION

Based on a simple model which captures basic character-

istics of epidemic spreading, we revealed the mechanism of

a new phenomenon - epidemic reemergence. Specifically,

we considered the epidemic spreading in a growing network

where a susceptible node may remove the link connecting

to an infected neighbor. Such link-removal process, how-

ever, is subject to the isolation avoidance constraint. It is ob-

served that epidemic reemergence may happen in such a sim-

ple model: the number of infected nodes may be suppressed

to a low level for a long time and then suddenly bursts into

a high level. Our findings indicate that an infectious disease

may break out repeatedly, and between two explosions the dis-

ease may be incubated for a long time by a small number of

carriers who are not connected to the main body of the society

but are confined in a small area. The small number of disease

carriers however stands a high chance to induce a large-scale

epidemic explosion even when most people are intentionally

avoiding the disease.

In the current model, SI links are simply removed unless the

removal will cause isolation. In real life, however, people may

tend to enhance existing SS links or even build up new ones

to make compensations to the social connections they have

lost. For example, they may tend to spend more time with

their family members while reducing social gatherings. How

such ”rewiring” operations and connection enhancements will

affect the epidemic spreading and reemergence is of our future

research interest.
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(2010).


