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Robustness of scale-free networks under re-wiring operations
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Abstract. - Scale-free networks have strong tolerance against random failures yet are fragile under
intentional attacks. Existing results show that the network robustness can also be affected by its
correlation profile. Specifically, scale-free networks with larger assortativity coefficients generally
tend to be more robust against intentional attack. In this letter, we reveal some interesting different
observations. By proposing a simple rewiring method which does not change any nodal degree,
we show that network robustness can be steadily enhanced at a slightly decreased assortativity
coefficient. The tolerance against random failures meanwhile remains largely unaffected. Such
observations demonstrate the more complicated relationship between network robustness and its
assortativity level, as well as some new possibilities of network enhancement and protection.

Introduction. – Many real-life networks display a
power-law degree distribution with heavy-tailed statistics,
which are called scale-free networks [1, 2]. Extensive re-
search efforts have been made to study the robustness of
such networks [3–6]. One of the most important results is
that while scale-free networks are strongly tolerant against
random failures, they are fragile under intentional attack
which crashes down networks nodes in a decreasing order
of their nodal degrees [3].

The fragileness of the scale-free networks under the in-
tentional attack comes from their heavy-tailed property,
causing loss of a large number of links when a hub node is
crashed. The heavy loss of network links quickly makes the
network to be sparsely connected and then fragmented. A
random failure, on the other hand, usually removes a low-
degree node. The network connectivity therefore would
not be severely impaired.

It has been found that the robustness of the scale-free
networks under intentional attack can be affected by sev-
eral different factors:

Exponent γ. It is proven that the fragileness only ex-
ists in scale-free networks with exponents smaller than
3 [5]. However, most of the real-life scale-free networks
have their exponents within this range;

Density of connections (measured by the average nodal

degree) [7]. Networks having the same exponent may have
different densities of connections. Those with higher den-
sities have stronger robustness (and usually higher costs
as well);

Assortative mixing [8], which measures the probabil-
ity that a hub node is connected to another hub node. It
is known that most social networks are assortative mixed
where hub nodes tend to connect to hub nodes; whereas
most communication and biological networks are disas-
sortative where hub nodes tend to connect to low-degree
nodes. The most important exception is probably the
assortative-mixed model of the Internet on router level
[9]. In [8], the assortative coefficient was introduced as
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where M is the total number of edges, and ji and ki are
the degrees of the nodes at each end of the i-th edge. A
positive coefficient value reflects an assortative mixed net-
work model, while a negative value reflects a disassortative
one. It is shown that for a given nodal-degree distribution,
assortative-mixed networks generally speaking are more
robust than disassortative ones [8, 10]. Exceptions how-
ever do exist. By conducting random link rewiring in a
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few real-life networks, it is shown in [10] that with cer-
tain values of clustering coefficient, occasionally stronger
robustness can be achieved at a lower assortativity level.

In this letter, we focus on revealing the more compli-
cated relationship between network robustness and assor-
tativity. Specifically, we show that by proper link rewiring
which does not change any nodal degree, in random uncor-
related networks or random correlated networks (defined
in the following section) satisfying some simple conditions
stronger network robustness can be steadily achieved at a
slightly lower assortativity level. The observations also
suggest some new possibilities of network enhancement
and protection.

Random networks and their robustness. – A few
different random network models have been proposed in
literature. The most commonly studied one is the well-
known Erdős-Rényi model [11]. Another model which
also has been extensively studied is the generalized ran-
dom graph [12, 13], which are random in every respect ex-
cept for the nodal degree distribution. In other words, to
define such a network, it only needs to be given the dis-
tribution P (k), which denotes the probability that a node
has a degree k.

The generalized random graph has been further ex-
tended to introduce degree correlation [14]. Specifically,
in a directed network, let ejk denote the probability that
a directed edge goes from a node with an out-degree j
to a node with an in-degree k. Such definition can be
extended to an undirected network by simply replacing
each undirected edge by two directed ones leading in op-
posite directions [15]. Note that in some studies, ejk de-
notes the probability that the excess degrees of the two
end nodes of a randomly chosen link are j and k, respec-
tively (e.g., [8, 15, 16]). In this letter, we adopt the former
definition.

To differentiate network models generated by general-
ized random graph and its extended version, we term them
as random uncorrelated and random correlated networks
respectively.

It is well known that in random uncorrelated networks
where loops of connected nodes can be neglected, they lose
their global connectivities when [4]
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where 〈k〉 denotes the average of nodal degrees and
〈

k2
〉

the average of the squares of nodal degrees. This equation
actually also applies to random correlated networks where
loops can be neglected. In fact, the derivation of Eq. (2)
in [4] does not depends on any non-correlation assumption.
As an alternative approach, below we derive Eq. (2) by
explicitly including ejk into equations.

In random correlated networks where loops can be ig-
nored, a giant component starts to emerge when a node
i connected to a node j in a spanning cluster is also con-

nected to at least one other node. Hence [4]

〈ki|i ↔ j〉 =
∑

ki

kiP (ki|i ↔ j) = 2, (3)

where ki denotes the degree of node i and P (ki|i ↔ j) the
conditional probability that node i has a degree ki given
that it is connected to node j. Same as that in [4], we
have

P (ki|i ↔ j) = P (i ↔ j|ki)P (ki)/P (i ↔ j), (4)

where P (i ↔ j) denotes the probability that two randomly
chosen nodes i and j are connected to each other.

Define P (i ↔ j|ki, kj) as the conditional probability
that two nodes i and j are connected given that their
nodal degrees are ki and kj, respectively. We have
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Here N denotes the number of nodes in the network, and
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Note that
ekikj
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denotes the conditional probability that

an edge is connected to a degree-kj node given that it is

connected to a degree-ki node.
ki·ekikj

qki
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the expected number of degree-kj nodes connected to a
degree-ki node. Based on (5), we have
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Finally,
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From Eqs. (3), (4), (6) and (7), we shall then have
Eq. (2) holds in random correlated networks.

Rewiring method. – Under intentional attack, net-
work nodes with highest degrees in the original network
are removed one after another. When there are multiple
nodes with the same degree in the original network, one
of them is randomly removed. The procedure is repeated
until the network is crashed, or in other words, until

κ ≡
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〈k〉T
< 2, (8)
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Fig. 1: An illustration of the rewiring operation.

where T denotes the degree of the last removed node in the
original degree, 〈k〉T is the average of nodal degrees once
the network has been crashed, and

〈

k2
〉

T
the average of

the squares of nodal degrees at that time [18]. Hereafter
we term such a network just crashed by the intentional
attack as a post-attack network.

The proposed rewiring method repetitively applies the
rewiring operation in the original network as follows:

Divide the nodes with degrees strictly lower than T into
two non-overlapping parts, with degrees {1, 2, · · ·, T1} and
degrees {T1 + 1, T1 + 2, · · · , T − 1} respectively.

Denote the degree of a certain node i as ki. Randomly
choose two links A-B and C-D which satisfy the condition
that

kA > T > kB > T1 ≥ max(kC, kD). (9)

If there are no links A-C and B-D, the rewiring operation
replaces links A-B and C-D with links A-C and B-D as
long as such does not generate a loop. An example of the
rewiring operation is illustrated in Fig. 1.

The rewiring operation obviously does not change any
nodal degree. It changes a random network into another
one with the same P (k) but different probability distri-
butions {ejk}. Consider its effects on the average nearest
neighbor degree, defined as the average degree of all the
neighbors of the nodes with a certain degree k [17]. For
nodes with degrees higher than T1 in the original network,
the average nearest neighbor degree is decreased, while for
the other nodes, it is increased. In the example case in
Fig. 1, it can be observed that the average nearest neigh-
bor degree is decreased for nodes A and B, and increased
for nodes C and D.

In this letter, we evaluate the simple case in which nodes
A to D are randomly selected as long as their degrees sat-
isfy Eq. (9) and the rewiring does not generate a loop. The
optimal rewiring method which achieves the best network
robustness without changing any nodal degree remains as
an open problem which is out of scope of this letter.

Analysis. – For each node i with a certain degree ki

in the original network, the ki links attached to it can

be categorized into two groups, those connecting to nodes
which have been removed when network is crashed, and
those connecting to nodes remaining in the post-attack
network. Denoting the number of links belonging to these
two groups as k+

i and k−
i respectively, we have

ki = k+
i + k−

i . (10)

Now we analyze the influence of the rewiring operations.
As we can see in Fig. 1, since node A will be removed dur-
ing attack, the rewiring operations actually replace link
C-D with link B-D in the post-attack network. We calcu-
late how the value of

〈

k2
〉

/ 〈k〉 changes in the post-attack
network. The value of 〈k〉 apparently does not change in
the post-attack network. As to the value of

〈

k2
〉

, it is
changed by

(k−
B+1)2+(k−
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C )2 = 2(k−
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C )+2. (11)

In random uncorrelated networks, since kB > kC , we have
that

E(k−
B) > E(k−

C ), (12)

where E(·) denotes the expected value of all the nodes in-
volved. In random correlated networks with positive cor-
relation between ki and k−

i where ki < T , or in other
words,

E(k−
i ) > E(k−

j ), where T > ki > kj, (13)

we shall still have

E(k−
B) > E(k−

C ).

In both cases, we have that the expected value of
〈

k2
〉

/ 〈k〉
is increased. With a large enough number of rewiring op-
erations,

〈

k2
〉

/ 〈k〉 may be pushed up to be higher than 2,
allowing the emergence of a giant component. Therefore
statistically the rewiring operations enhance the network
robustness.

We then show that the proposed rewiring method
slightly decreases network assortativity coefficient. Ac-
cording to Eq. (1), each rewiring operation changes the
value of the network assortativity coefficient by

1
K

(kA × kC + kB × kD − (kA × kB + kC × kD))
= 1

K
(kC − kB)(kA − kD).

(14)

where K is a positive constant number. From Eq. (9),
kA−kD > 0, kC−kB < 0. Therefore, the value of Eq. (14)
is negative. The overall network assortativity coefficient is
decreased. Such effects can also be observed from the fact
that the rewiring operations decrease the average nearest
neighbor degrees of high-degree nodes, and increase them
for low-degree nodes, as we have pointed out earlier in the
section of “Rewiring method”.

To summarize, we showed that the proposed rewiring
method enhances network robustness in random uncor-
related networks as well as random correlated networks
satisfying Eq. (13) while decreasing their assortativity.
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Fig. 2: Simulation results of intentional attack on the random
scale-free network where exponent equals to 2.5.

Simulation results and discussions. – As that in
most existing studies [3–7,18–23], we evaluate the robust-
ness of a network by measuring its (i) largest cluster size,
defined as the number of nodes in the biggest connected
component versus the number of nodes in the original net-
work; and (ii) cluster diameter, i.e., the average length of
the shortest paths between all the node pairs in the largest
cluster.

We present the simulation results on two random scale-
free networks generated by adopting the algorithm pro-
posed in [17], with exponent values of 2.5 and 3, respec-
tively. In both networks, there are 10,000 nodes. The min-
imum nodal degree is 2 and the cutoff nodal degree is 400.
Calculations show that the two networks have assortativ-
ity coefficient values of −0.0146 and −0.0062, respectively.
This means that both networks are slightly disassortive,
which matches what has been discussed in [17]. To carry
out rewiring operations, in the former network, T = 6 and
we set T1 = 3, while in the latter one, T = 5 and T1 = 3.
We test network robustness when the maximum numbers
of 2920 and 1084 rewiring operations have been carried
out in the two networks respectively.

The simulation results for the case under intentional at-
tack are reported in Fig. 2 and Fig. 3, in which we show the
biggest cluster size and the cluster diameter in the two net-
works before and after rewiring operations, respectively.
For each network, 100 independent realizations have been
carried out. The figures show the average values of all the
realizations and the error bars. If we regard a network
as being crashed once

〈

k2
〉

/ 〈k〉 < 2, the percentage of
the network nodes that have to be removed to crash the
network (hereafter termed as threshold of crash (TOC)) is
increased from 15% to 26% in the first network and from
13% to 16% in the second one. Also, we see that most of
time during the attack until the network is crashed, the
cluster diameter is smaller after rewiring. Note that when
networks are attacked to be highly sparsely connected,
there is a large range of standard error in network diam-

Fig. 3: Simulation results of intentional attack on the random
scale-free network where exponent equals to 3.

eter. This is not a surprise: different connection patterns
of a small number of relatively high-degree (e.g., degree-4)
nodes and a large number of low-degree (mostly degree-1
and degree-2) nodes can make big differences to network
diameter.

Fig. 2 and Fig. 3 evidently show that the rewiring
method enhances network robustness in scale-free net-
works with different exponent values. And the enhance-
ments are more significant when more link pairs are
rewired.

We then evaluate whether the rewiring operations affect
the network tolerance against random failures. Figs. 4-5
show that most of time no major changes are made, except
that the cluster diameter may be slightly different.

For the interest of potential applications, we also test a
real-life router-level Internet model which contains 192,244
nodes and 609,066 links [24]. Our calculations show that
it is indeed an assortative-mixing network with an assorta-
tivity coefficient value of 0.02498. In this network, T = 6
and we set T1 = 3. A total of 26,017 link pairs can be
rewired. Since it is prohibitively time-consuming to carry
out 100 realizations on such a large network, only 10 real-
izations have been conducted and the average results are
shown in Fig. 6. It can be seen that though the router-level
Internet is not strictly a random network, the rewiring
operations nevertheless significantly enhance the network
robustness: the TOC value is increased from 27% to 34%.

It is known that recalculated intentional attack which
removes the largest-degree node in the remaining network
is more efficient in crashing down scale-free networks than
the one based on nodal degrees in the original network [25].
We carry out numerical simulations for testing the effects
of rewiring under such attack. Due to limited space, only
the results for the random scale-free network with expo-
nent value of 2.5 are presented in Fig. 7, while the conclu-
sions hold in all the other networks we have simulated. It
can be observed that the rewiring method can still signifi-
cantly enhance network robustness though the TOC values
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Fig. 4: Simulation results of random failure on the random
scale-free network where exponent equals to 2.5.

Fig. 5: Simulation results of random failure on the random
scale-free network where exponent equals to 3.

Fig. 6: Simulation results of intentional attack on the router-
level Internet model.

Fig. 7: Simulation results of recalculated intentional attack on
the random scale-free network where exponent equals to 2.5.

with or without rewiring both become lower than those un-
der original degree-based intentional attack. Specifically,
the TOC value is increased from 13% to 21%. Theoretical
analysis on the case of recalculated intentional attack will
be carried out in our future research.

Finally, note that assortativity level is indeed decreased
by the rewiring operations. According to our calculations,
after the rewiring, the assortativity coefficient is slightly
decreased from -0.0146 to -0.0268 in the first model, and
from -0.0062 to -0.0114 in the second one. In the router-
level network model, the coefficient value is decreased from
0.02498 to 0.02406.

Conclusion. – In this letter, we proposed a simple
rewiring method which enhances network robustness with-
out changing any nodal degree. Interesting observation is
that it slightly decreases network assortativity coefficient.
The rewiring method meanwhile does not significantly af-
fect network tolerance against random failure. Such obser-
vations reveal the more complicated relationship between
network robustness and assortativity level, and some new
possibilities of enhancing network robustness by properly
interconnecting the low-degree nodes.

The best rewiring method remains as an open problem,
which will be of our future research interest.
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