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Abstract

This paper addresses the sweep coverage problem of multi-agent systems in the uncertain

environment. A novel formulation of distributed sweep coverage is proposed for multiple

agents to cooperatively complete the workload in the coverage region. To save the sweep

time, each agent takes part in partitioning the whole region using its partition bar while

sweeping its own subregion at a constant rate. The trajectories of partition bars form the

boundaries between adjacent subregions. Essentially, the partition operation is carried out by

means of workload memory in order to balance the workload in each subregion. In particular,

it is proved that the dynamics of multi-agent system is input-to-state stable. Theoretical

analysis is conducted to obtain the upper bound of the error between the actual sweep

time and the optimal sweep time. Moreover, a sufficient condition is provided to avoid the

collision of partition bars during the partition. Finally, numerical simulations demonstrate

the effectiveness of the proposed approach.
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1 Introduction

The great progress in communication technologies makes it easy and low-cost to share mutual

information and coordinate the joint actions among multiple agents. Thus, cooperative control of
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multi-agent systems has attracted much interest of researchers in various fields in the past decade.

The coordination of multiple agents contributes to improving the efficiency and robustness of

carrying out complicated tasks, such as leader tracking [1, 2, 3], flocking behavior [4, 5], boundary

patrolling [6], persistent monitoring [7, 8] and region coverage [9], to name just a few.

As a type of coordination tasks, cooperative coverage of multi-agent systems refers to the path

planning of a robot team to visit every point in the environment or the optimal deployment of

sensor networks according to certain performance indexes. The approach of divide-and-conquer

is widely applied in the region coverage of multi-agent systems [10, 11, 12]. Specifically, [11]

presents a gradient descent algorithm to optimize a class of utility functions in the coverage

region, where the centroidal Voronoi partition is adopted to allocate a subregion for each mobile

sensor. [12] extends the above work by proposing a distributed, adaptive coverage algorithm for

nonholonomic mobile sensors. In multi-robot coordination, the coverage problem falls into three

categories: blanket coverage, barrier coverage and sweep coverage [13]. Blanket coverage aims at

deploying multiple agents in the given coverage region to maximize the probability of identifying

the target [14]. Barrier coverage is used to protect the target in the given region and meanwhile

maximize the detection rate of invaders overpassing the barrier that is formed by the agents

[15]. As an important type of multi-robot coverage, sweep coverage can be used in many tasks,

such as maintenance inspection [13], border patrolling [16] and environmental monitoring [17].

It is largely unexplored to investigate multi-agent sweep coverage in the uncertain environment,

where the exact information on the coverage region is unknown in advance. Thus, the distributed

control algorithm is developed to deal with the uncertainty in multi-agent sweep coverage. Sweep

coverage can actually be regarded as a moving barrier, and it focuses on sweeping or monitoring

the given region by arriving at every point. For example, [16] investigates the sweep coverage of

mobile sensors in a corridor environment without taking into account the workload distribution.

To address this issue, [9] develops a sweep coverage algorithm by dividing the whole region into

a series of stripes and then cooperatively completing the workload in each stripe in sequence.

Nevertheless, it is not a fully distributed algorithm because agents have to shift stripes under

the centralized command. Moreover, the partition error of workload accumulates rapidly as the

number of stripes increases.

In this paper, we investigate the sweep coverage problem of multi-agent systems in the

uncertain environment, where the workload distribution is unknown in advance. The agents

cooperatively partition the whole region using the trajectories of their partition bars while

sweeping their respective subregions in a distributed manner. Compared with existing work, our
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approach achieves the fully distributed sweep coverage of multi-agent system in the uncertain

environment by capitalizing on the workload memory, and the sweeping task can be fulfilled

with guaranteed complete time in theory. Specifically, the main contributions of this work are

listed as follows.

1. A distributed sweep coverage formulation of multi-agent systems is developed with work-

load memory, and an upper bound for the error between the actual sweeping time and the

optimal time is estimated.

2. It is demonstrated that the multi-agent system is input-to-state stable with respect to the

vertical speed of partition bars.

3. A sufficient condition is derived to avoid the collision of partition bars in the process of

partitioning the coverage region.

The remainder of this paper is organized as follows. Section 2 formulates the problem of dis-

tributed sweep coverage and proposes the sweep coverage algorithm of multi-agent systems.

Sections 3 and 4 present theoretical results on the proposed sweep coverage algorithm, followed

by numerical simulations in Section 5. Finally, we draw the conclusion and discuss the future

direction in Section 6.

2 Problem Formulation

This section formulates the sweep coverage problem of multi-agent systems in the uncertain

environment, where the distribution of workload (e.g., dust in the room, crops in the farmland,

leaking oil in the sea, etc) is unknown to the agents in advance. First of all, we present the formal

description of multi-agent sweep coverage in the uncertain environment. Then the goal of multi-

agent sweep coverage is provided and the multi-agent dynamics is designed mathematically.

Finally, a distributed sweep coverage algorithm of multi-agent systems is proposed to fulfil the

sweeping task in the uncertain region by means of divide and conquer.

The problem of multi-agent sweep coverage in the uncertain environment is described as

follows: Consider the two dimensional coverage region Ω (see Fig. 1) enclosed by two parallel

horizontal lines with the distance l and two smooth boundaries described by x = ga(y) and

x = gb(y), respectively. The distribution density function of workload is given by ρ(x, y),

satisfying ρ(x, y) ∈ [ρ, ρ̄], where ρ and ρ̄ are the lower and upper bounds of ρ(x, y), respectively.

To be precise, the uncertain environment is defined as the 2-tuple (Ω, ρ(x, y)) with ρ(x, y) ∈ [ρ, ρ̄],
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Figure 1: Sweep coverage of the uncertain region Ω with smooth boundaries. The left and right

boundaries of coverage region are described by x = ga(y) and x = gb(y), respectively. The blue

line segments with the length ε denote the partition bars of agents, and their trajectories divide

the partition region into n subregions (i.e., Ωi(t), i ∈ In at time t). The uncompleted part of

the region Ω is marked in gray, while the completed part is marked in white.

∀(x, y) ∈ Ω. There are n mobile agents responsible for sweeping the workload in the region Ω.

Each agent can only detect the workload in its neighborhood and communicate with its neighbors

to share the workload information. In addition, each agent is assumed to complete the workload

on the coverage region at the constant sweeping rate of σ. In practice, σ depends on the

sweeping performance of agents (e.g., sweeping robots, robot vacuums), and it is determined

by the completed workload per unit time. In brief, the problem is how to design the multi-

agent dynamics and allocate the workload for each agent so that the workload in the coverage

region can be completed as soon as possible. This is a challenging problem because the global

information on the workload distribution is unknown to the agents, which makes it impossible

to equally divide the workload for each agent in advance. As a result, an online algorithm of

multi-agent systems has to be developed to achieve the workload allocation for each agent by

using the local workload information.

Suppose an online algorithm manages to divide the whole region Ω into n subregions (i.e.,

Ω =
⋃n
i=1 Ωi). Let T ∗ represent the optimal sweep time of multi-agent systems, and it can be

achieved if the whole region is divided into n subregions with equal workload. In this way, all

the agents can complete the workload in their own subregions simultaneously. Thus, the optimal
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sweep time T ∗ is given by T ∗ = m̄/σ, where

m̄ =
1

n

∫∫
Ω
ρ(x, y)dxdy =

1

n

n∑
i=1

∫∫
Ωi

ρ(x, y)dxdy =
1

n

n∑
i=1

mi

denotes the average workload in each subregion, and mi refers to the workload in the i-th

subregion Ωi. In fact, T ∗ is normally unavailable due to the local information on workload

distribution, and it is only regarded as the benchmark to assess the performance of a sweep cov-

erage algorithm. Considering that an online algorithm normally leads to the unequal allocation

of workload in subregions, the actual sweep time T mainly depends on the maximum workload

in subregions. And it can be computed as:

T =
1

σ
max
i∈In

∫∫
Ωi

ρ(x, y)dxdy =
1

σ
max
i∈In

mi, In = {1, 2, ..., n},

Therefore, the error between the actual sweep time and the optimal sweep time ∆T is given by:

∆T = T − T ∗ =
1

σ

(
max
i∈In

mi − m̄
)
.

The goal of this paper is to design a real-time sweep coverage algorithm of multi-agent systems

with local workload information to complete the workload in the region Ω and estimate the

upper bound of time error ∆T .

Next, we propose the partition dynamics of multi-agent systems and then present the dis-

tributed sweep coverage algorithm in real time. To achieve the real-time workload partition,

each agent is equipped with a partition bar with the length ε to allocate the workload in the

whole region (see Fig.1). Let (xi, yi), i ∈ In refer to the coordinate position (i.e., the lower

terminal point) of partition bar for agent i, then the dynamics of partition bars is designed as ẋi = κ
∑

j∈Ni (mj(t)−mi(t))

ẏi = v, i ∈ In
(1)

where κ refers to a positive constant, and Ni represents the set of neighbors of agent i. In

addition, v denotes the vertical speed of agents along the y-axis.

mi(t) =

∫∫
Ωi(t)

ρ(x, y)dxdy

represents the workload in the subregion Ωi(t) at time t. The idea behind the dynamics (1)

is that the partition bars move at the same speed v along the y-axis. Meanwhile, each agent

communicates with its neighbors nearby to share the workload information of their respective

subregions, so that their partition bars also move along the x-axis to equally partition the
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workload in the region Ω (For Agent n, we have ẋn = g
′
b(yn)ẏn = g

′
b(yn)v, since its partition

bar moves along the boundary x = gb(y) at the speed v along the y-axis). Eventually, the

trajectories of partition bars form the boundaries between adjacent subregions, and thus the

region Ω is divided into n subregions (i.e., Ωi, i ∈ In). To save the sweep time, each agent is

required to complete the workload in their respective subregions at the constant sweeping rate

σ, while partitioning the workload in the region with the dynamics (1).

Remark 2.1. At the beginning, all agents are located at the bottom of the region Ω (i.e., y = 0).

When it starts the sweeping process, the partition bars of agents move towards the top of the

region Ω (i.e., y = l) with the dynamics (1). In this way, the trajectories of partition bars succeed

in dividing the coverage region Ω into subregions.

For simplicity, the distributed sweep coverage algorithm (DSCA) of multi-agent systems is

summarized in Table 1. First of all, it is necessary to set the parameters v, σ and ε using constant

values and compute the complete time of region partition Tp = (l − ε)/v and the initial error

ei(0) = mi(0), i ∈ In. Then each agent (say, agent i) starts to sweep its own subregion at the

sweeping rate σ and meanwhile cooperates with its neighbors for the equal workload partition

using workload memory. After the region partition is completed at time t = Tp, each agent

focuses on sweeping the workload in its own subregion. Finally, the sweeping task is fulfilled

after all the agents have cleaned up the workload in their respective subregions.

Remark 2.2. The DSCA is expected to sweep the workload in the general connected and bounded

regions via coordinate transformation. Specifically, a homeomorphism f : X −→ Y with the

condition
∫
X ρ(x, y)dxdy =

∫
Y ρ̂(x, y)dxdy can be constructed from the original bounded region

X to the regular bounded region Y (e.g., a rectangular region). By implementing the DSCA in

the regular region Y , the trajectories of partition bars (i.e., the boundaries between subregions)

are mapped onto the original region X via the inverse function f−1 : Y −→ X, which allows to

achieve the sweep coverage of the original region X.

3 Key Lemmas

To quantify the partition performance of multi-agent system with the dynamics (1), we introduce

the mismatch vector at time t:

∆m(t) = m(t)− m̄(t) · 1n, (2)
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Table 1: Distributed Sweep Coverage Algorithm.

Input: xi(0), i ∈ In Output: mi(t), t ∈ [0, Tp]

1: Set parameters v, σ and ε

2: Compute Tp and ei(0) = mi(0), i ∈ In
3: while (ei(t) > 0)

4: if (t ≤ Tp)

5: Compute the workload mi(t) in Ωi(t)

6: Obtain the workload mj(t) in Ωj(t), j ∈ Ni
7: Partition the region Ω with the dynamics (1)

8: end if

9: Sweep the workload in Ωi(t) with the rate σ

10: Compute residual workload ei(t) = mi(t)− σt

11: end while

where m(t) = (m1(t),m2(t), ...,mn(t))T ∈ Rn and 1n = (1, 1, ..., 1)T ∈ Rn. m̄(t) denotes the

average workload on each subregion at time t, and it is computed as:

m̄(t) =
1

n

∫∫
Ω(t)

ρ(x, y)dxdy

with the partition region Ω(t) =
⋃n
i=1 Ωi(t) at time t. Clearly, the workload is equally divided

for each subregion when ‖∆m(t)‖ = 0 with the 2-norm ‖ ·‖. Next, three lemmas are provided to

facilitate the derivation of main theoretical results in this paper. The logical path is presented

as follows: Lemma 3.1 contributes to establishing the inequality in Lemma 3.3, which serves to

demonstrate the input-to-sate stability of Multi-agent dynamics (1) in Theorem 4.1. Lemma

3.2 and Lemma 3.3 are used to estimate the upper bound of time error ∆T in Theorem 4.2.

In addition, Lemma 3.3 helps to derive the sufficient condition of collision avoidance among

subregion boundaries in Theorem 4.3.

The first lemma uncovers the relationship between the partition error of workload in subre-

gions and the average workload in each subregion.

Lemma 3.1.

‖∆m(t)‖ ≤
√
n(n− 1) · m̄(t).
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Proof. See Appendix A.

Then we present the second lemma, which provides an estimation for the maximum partition

error of workload in subregions, compared to the total partition error.

Lemma 3.2.

‖∆m(t)‖∞ ≤
√

(n− 1)/n · ‖∆m(t)‖.

Proof. See Appendix B.

Remark 3.1. For ∆m(t) ∈ Rn, there exists the relationship between the infinity norm and the

Euclidean norm with the properties of norms as follows ‖∆m(t)‖∞ ≤ ‖∆m(t)‖. The relationship

in Lemma 3.2 is less conservative according to ‖∆m(t)‖∞ ≤
√

(n− 1)/n‖∆m(t)‖ ≤ ‖∆m(t)‖.

This is because the elements of ∆m(t) satisfy the constraint
∑n

i=1 ∆mi(t) = 0.

The partition error of workload in subregions evolves as the DSCA in Table 1 is implemented.

The third lemma aims to estimate the partition error of workload with respect to time t, speed

v, communication network and other parameters of the coverage region.

Lemma 3.3.

‖∆m(t)‖ ≤ ‖∆m(t0)‖e−
κλ2(t−t0)

2 +
1

2

∫ t

t0

e
κλ2(τ−t)

2 ζ(τ)dτ, (3)

where λ2 is the second smallest eigenvalue of a symmetric matrix and

ζ(τ) = 2vρ̄

[
ε
√
g′a(y)2 + g′b(y)2 + (gb(y)− ga(y))

√
(n− 1)/n

]
. (4)

Proof. See Appendix C.

Remark 3.2. λ2 is the second smallest eigenvalue of a symmetric matrix that depends on both

communication network of multi-agent systems and the workload distribution on the coverage

region. Mathematically, it can be expressed as

λ2 = inf
xi∈C

λ2

(
G(x)Ln−1 + LTn−1G(x)T

2

)

with x = (x1, x2, ..., xn−1), C = [inf0≤y≤l ga(y), sup0≤y≤l gb(y)] and G(x) = −JT−1,n · En−1 ·

Λ(ε, x). Here, J−1,n denotes the n-dimensional Jordan matrix with the diagonal elements being

−1, and En−1 is composed of the first (n-1) columns in the n-dimensional unit matrix. In

addition, Λ(ε, x) refers to the (n-1) dimensional diagonal matrix with the i-th diagonal element

being
∫ y
y−ε ρ(xi, y)dy, i ∈ In−1. Finally, Ln−1 ∈ R(n−1)×n is composed of the first (n-1) rows
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of Laplacian matrix that represents the communication network of multi-agent systems. To

guarantee the partition performance, the topology structure of community network has to be

predetermined such that λ2 > 0 holds.

4 Main Results

This section provides main theoretical results for the DSCA in Table 1 with the aid of lemmas in

Section 3. First of all, it is proved that multi-agent system (1) is input-to-state stable. Then the

upper bound of ∆T is estimated for completing the workload in the coverage region Ω, followed

by a sufficient condition to guarantee the collision avoidance of subregion boundaries. Finally,

some discussions are presented in the remarks.

By treating the speed v of partition bars along the y-axis as the external input, we demon-

strate the input-to-state stability of multi-agent system (1) as follows.

Theorem 4.1. Multi-agent system (1) is input-to-state stable.

Proof. By treating ∆m(t) as the state vector of multi-agent system (1), Inequality (3) in Lemma

3.3 can be rewritten as

‖∆m(t)‖ ≤ ‖∆m(t0)‖e−
κλ2(t−t0)

2 +
1

2

∫ t

t0

e
κλ2(τ−t)

2 ζ(τ)dτ

≤ ‖∆m(t0)‖e−
κλ2(t−t0)

2 +
ζ̄

κλ2
,

where ζ̄ = 2ρ̄‖v‖[t0,t] supy∈[0,l]

[
ε
√
g′a(y)2 + g′b(y)2 + (gb(y)− ga(y))

√
(n− 1)/n

]
and ‖v‖[t0,t] =

supτ∈[t0,t] ‖v(τ)‖. Clearly, ζ̄ is a continuous increasing function with respect to the speed v, and

it satisfies ζ̄ = 0 when v = 0. Therefore, it follows from the definition in [18] that multi-agent

system (1) is input-to-state stable when the speed v is regarded as the external input.

For the DSCA described in Table 1, we provide a quantitative estimation for the upper

bound of time error ∆T , which allows us to assess the sweep coverage performance of multi-

agent systems.

Theorem 4.2. With the DSCA in Table 1, the time error ∆T for sweeping the coverage region

Ω is bounded by

∆T ≤ 1

σ

√
(n− 1)/n

(
‖∆m(0)‖e−

κλ2Tp
2 +

1

2

∫ Tp

0
e
κλ2(τ−Tp)

2 ζ(τ)dτ

)
. (5)

where ζ(τ) is given by Equation (4).
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Proof. Since the sweeping rate σ is the same for all agents, ∆T depends on the subregion with

the maximum workload in subregions. Thus, it can be computed by

∆T =
1

σ

(
max
i∈In

mi(Tp)− m̄(Tp)

)
≤ 1

σ
max
i∈In
|mi(Tp)− m̄(Tp)| =

1

σ
‖∆m(Tp)‖∞.

From Lemma 3.2 and Lemma 3.3 with t0 = 0, we have

∆T ≤ 1

σ

√
(n− 1)/n · ‖∆m(Tp)‖

≤ 1

σ

√
(n− 1)/n

(
‖∆m(0)‖e−

κλ2Tp
2 +

1

2

∫ Tp

0
e
κλ2(τ−Tp)

2 ζ(τ)dτ

)
.

The proof is thus completed.

Remark 4.1. Compared with existing results in [9], the proposed sweep coverage algorithm in

this work can be implemented in a distributed manner to complete the workload without the

centralized control command. When the vertical speed v is relatively small and ε is less than the

stripe width d, Theorem 4.2 in this work can provide a tighter estimation on the upper bound of

time error ∆T , compared to Theorem 4.1 in [9].

Remark 4.2. A tighter upper bound for time error ∆T can be obtained when ε is sufficiently

small. This is due to limε→0 ‖∆m(0)‖ = 0, which leads to a tighter upper bound as follows

∆T ≤ ρ̄v(n− 1)

σn

∫ Tp

0
e
κλ2(τ−Tp)

2 [gb(vτ)− ga(vτ)] dτ,

according to Equation (5) in Theorem 4.2. Nevertheless, if the parameter ε is equal to 0, the

partition bar degrades into a point and fails to effectively balance the workload in subregions

during the sweeping process. Thus, ε should be positive and sufficiently small for a tight upper

bound of time error ∆T .

Remark 4.3. To facilitate the estimation of time error ∆T , the time interval [0, Tp] can be

divided into a series of consecutive subintervals ci = [(i− 1)Tp/q, iTp/q], 1 ≤ i ≤ q and q ∈ Z+.

Considering that e
κλ2(τ−Tp)

2 , 0 ≤ τ ≤ Tp is an increasing function with respect to τ , we have∫ Tp

0
e
κλ2(τ−Tp)

2n ζ(τ)dτ ≤
q∑
i=1

e
κλ2(ti−Tp)

2

∫ ti

ti−1

ζ(τ)dτ =

q∑
i=1

e
−κ(q−i)λ2Tp

2q

∫ iTp/q

(i−1)Tp/q
ζ(τ)dτ.

which leads to

∆T ≤ 1

σ

√
(n− 1)/n

(
‖∆m(0)‖e−

κλ2Tp
2 +

Tp
2q

q∑
i=1

e
−κ(q−i)λ2Tp

2q sup
τ∈ci

ζ(τ)

)
. (6)
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The upper bound of time error ∆T in Inequality (6) converges to that in Inequality (5) as the

parameter q goes to the positive infinity. This implies that a tighter upper bound of time error

∆T can be achieved when the parameter q is relatively large. In practice, the parameter q can

be increased gradually in order to obtain the desired estimation for the upper bound of ∆T .

While partitioning the coverage region Ω, the partition bars are not allowed to intersect with

each other for achieving the disjoint subregions. Thus a sufficient condition is provided to avoid

the collision of partition bars.

Theorem 4.3. Collision avoidance of partition bars is guaranteed if the following inequality

xi+1(0) > xi(0) + κ‖(ei+1 − ei)TL‖Tp

(
‖∆m(0)‖+

1

κλ2
sup

0≤s≤Tp
ζ(s)

)
, ∀i ∈ In−2

holds, where ζ(τ) is given by Equation (4) and ei denotes the i-th column vector in the n

dimensional unit matrix. In addition, L represents the Laplacian matrix of the multi-agent

communication network.

Proof. Let ∆xi(t) = xi+1(t)−xi(t), i ∈ In−2 denote the distance between two adjacent partition

bars at time t. Then we have d∆xi(t)
dt = ẋi+1(t) − ẋi(t) = κeTi Lm(t) − κeTi+1Lm(t) = κ(ei −

ei+1)TLm(t). It follows from Lm(t) = L∆m(t) that d∆xi(t)
dt = −κ(ei+1−ei)TL∆m(t). Therefore,

we have

∆xi(t) = ∆xi(0)− κ
∫ t

0
(ei+1 − ei)TL∆m(τ)dτ

= ∆xi(0)− κ(ei+1 − ei)TL
∫ t

0
∆m(τ)dτ

≥ ∆xi(0)− κ‖(ei+1 − ei)TL‖ ·
∥∥∥∥∫ t

0
∆m(τ)dτ

∥∥∥∥
which leads to

∆xi(t) ≥ ∆xi(0)− κ‖(ei+1 − ei)TL‖ ·
∫ t

0
‖∆m(τ)‖dτ

≥ ∆xi(0)− κ‖(ei+1 − ei)TL‖ ·
∫ t

0

(
‖∆m(0)‖e−

κλ2τ
2 +

1

2

∫ τ

0
e
κλ2(s−τ)

2 ζ(s)ds

)
dτ

≥ ∆xi(0)− κ‖(ei+1 − ei)TL‖ ·
∫ t

0

(
‖∆m(0)‖+

1

κλ2
sup

0≤s≤τ
ζ(s)

)
dτ

≥ ∆xi(0)− κ‖(ei+1 − ei)TL‖Tp

(
‖∆m(0)‖+

1

κλ2
sup

0≤s≤Tp
ζ(s)

)
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according to
∥∥∥∫ t0 ∆m(τ)dτ

∥∥∥ ≤ ∫ t0 ‖∆m(τ)‖dτ and Lemma 3.3. To avoid the collision of partition

bars, we need to ensure ∆xi(t) > 0, ∀t ∈ [0, Tp], i ∈ In−2, which can be achieved by the following

inequality

∆xi(0)− κ‖(ei+1 − ei)TL‖Tp

(
‖∆m(0)‖+

1

κλ2
sup

0≤s≤Tp
ζ(s)

)
> 0, ∀i ∈ In−2.

The proof is thus completed.

Remark 4.4. During the partition, the outmost two partition bars (i.e., x1 and xn−1) have

to avoid the collision against the boundaries ga(y) and gb(y), respectively. Then the sufficient

conditions for avoiding the boundary collision are given by

x1(0) > sup
0≤y≤l

ga(y) + κ‖eT1 L‖Tp

(
‖∆m(0)‖+

1

κλ2
sup

0≤s≤Tp
ζ(s)

)
and

inf
0≤y≤l

gb(y) > xn−1(0) + κ‖eTn−1L‖Tp

(
‖∆m(0)‖+

1

κλ2
sup

0≤s≤Tp
ζ(s)

)
,

respectively.

Remark 4.5. For the rectangular region of length lα and width lβ, when the length of partition

bars ε goes to zero, the upper bound of ∆T can be estimated by

∆T ≤
2lβ ρ̄v

κσλ2
· n− 1

n
·
(

1− e−κλ2Tp/2
)
≤

2lβ ρ̄v

κσλ2
· n− 1

n
, ε→ 0

Furthermore, if the speed v approaches zero as well, we have

0 ≤ ∆T ≤
2lβ ρ̄v

κσλ2
· n− 1

n
→ 0, v → 0

This implies that the actual sweeping time T approaches the optimal sweeping time T ∗ as both

the speed v and the length of partition bars ε go to zero.

Remark 4.6. During the sweeping process, it is assumed that the inequality σt ≤ mi(t) holds

for t ∈ [0, Tp], i ∈ In, which implies that the sweeping operation lags that of region partition, and

the agents do not complete the workload in their respective subregion before the region partition

comes to an end.

Remark 4.7. It is possible to extend the proposed sweep coverage approach to the surface in the

three dimensional Euclidean space. The dynamics of partition bars in the first two dimensions

(i.e., xy-plane) can be the same as Equation (1), and it determines the dynamics of partition
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bars in the third dimension (i.e., z-axis) due to the surface constraint. In addition, we can

estimate the time error between the actual sweep time and the optimal time for sweeping the

surface in the same way.

5 Numerical Simulations

This section provides numerical examples to validates the DSCA in Table 1 and theoretical

results on the time error ∆T . Specifically, 5 mobile agents are connected in a directed chain-like

communication network (from the 5-th agent to the 1st agent) to cooperatively sweep the region

Ω, which is enclosed by two curves:

x0 = ga(y) = 0.2 sin
π(y − 4)

3
+ 1, x5 = gb(y) = 0.2 sin

π(y − 4)

3
+ 6

and two straight lines: y = 0 and y = 10. In addition, the distribution density function of

workload is described by

ρ(x, y) =
3

2
+

1

2
sin

x2 + y2

5

with the upper bound ρ̄ = 2 and the lower bound ρ = 1. Other parameters are given as follows:

κ = 1, ε = 0.01, v = 8, σ = 6, q = 10 and λ2 = 0.0011. For simplicity, the Euler method is

employed to implement the partition dynamics (1) with a step size of 0.001. Figure 2 presents

the cooperative sweep process of 5 mobile agents in the coverage region, where the color bar

indicates the workload density ranging from light yellow to dark red. At the initial time t = 0,

all the partition bars are located at the bottom of the region. Then multi-agent system starts

partitioning the whole region and meanwhile the agents are sweeping their own subregions. At

t = 0.5, part of the region has been partitioned by the trajectories of partition pars, and each

agent completes the same workload σt = 3 in its own subregion. The completed parts are

marked in white. The task of region partition is finished at t = 1.25 when all the partition bars

arrive at the top of coverage region. Next, the mobile agents continue to sweep their respective

subregions. Finally, the sweeping process comes to an end at t = 2.72 after cleaning up the

workload in the whole region. Since the optimal sweeping time T ∗ is equal to 2.54, the time

error is ∆T = 0.18. According to Theorem 4.2 in this work, the upper bound of time error ∆T

is 0.88. In comparison, the upper bound of time error ∆T is 13.29 using Theorem 4.1 in [9].

This demonstrates that the theoretical results in this work can provide a tighter upper bound

of time error ∆T in comparison with existing results [9].
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Figure 2: Numerical example on distributed sweep coverage of 5 mobile agents.

6 Conclusions

In this paper, we developed a novel formulation for the sweep coverage of multi-agent systems

in the uncertain environment. It has been proved that the dynamics of multi-agent systems is

input-to-state stable. Moreover, we obtained the upper bound for the error between the actual

sweep time and the optimal sweep time. A sufficient condition was derived to avoid the collision

of partition bars in the process of workload partition. Numerical simulations demonstrated the

effectiveness of the proposed sweep approach. It is expected that the proposed sweep coverage

algorithm can complete the workload in the general region via the coordinate transformation.

Future work may include the sweep coverage of an uncertain region with obstacles and the

kinematics of multi-agent system with nonholonomic constraints.
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Appendix A: Proof of Lemma 3.1

It follows from

‖∆m(t)‖2 = ‖m(t)‖2 + nm̄(t)2 − 2m̄(t)
n∑
i=1

mi(t)

≤

(
n∑
i=1

mi(t)

)2

− nm̄(t)2 = n(n− 1)m̄(t)2

that ‖∆m(t)‖ ≤
√
n(n− 1) · m̄(t), which completes the proof.

Appendix B: Proof of Lemma 3.2

First of all, we split ‖∆m(t)‖2 into two terms as follows

‖∆m(t)‖2 = [∆mk(t)]
2 +

n∑
i=1,i 6=k

[∆mi(t)]
2 , ∀k ∈ In. (7)

For simplicity, define zi(t) = ∆mi(t), and we formulate the constrained optimization problem

min
n∑

i=1,i 6=k
zi(t)

2, (8)

which is subject to
∑n

i=1,i 6=k zi(t) = −zk(t), since we have
∑n

i=1 zi(t) = 0. To solve the opti-

mization problem (8), we introduce the Lagrange function

L(z1, z2, ..., zn, c) =

n∑
i=1,i 6=k

zi(t)
2 − c

n∑
i=1

zi(t).

By solving the system of equations

∂L
∂c

=

n∑
i=1

zi(t) = 0,
∂L
∂zi

= 0, i ∈ In, i 6= k,

we obtain zi(t) = − zk(t)
n−1 , i ∈ In, i 6= k and the minimum of optimization problem (8)

min
n+1∑

i=1,i 6=k
zi(t)

2 =
zk(t)

2

n− 1
,
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which implies
n∑

i=1,i 6=k
[∆mi(t)]

2 ≥ 1

n− 1
[∆mk(t)]

2 .

Then it follows from Equation (7) that

‖∆m(t)‖2 ≥ [∆mk(t)]
2 +

1

n− 1
[∆mk(t)]

2 =
n

n− 1
[∆mk(t)]

2 , ∀k ∈ In

which indicates

|∆mk(t)| ≤
(
n− 1

n
‖∆m(t)‖2

) 1
2

, ∀k ∈ In.

Therefore, we conclude

‖∆m(t)‖∞ = max
k∈In

|∆mk(t)| ≤
√

(n− 1)/n · ‖∆m(t)‖.

The proof is thus completed.

Appendix C: Proof of Lemma 3.3

The time derivative of ‖∆m(t)‖2 with respect to the trajectory of multi-agent dynamics (1) is

given by

d‖∆m(t)‖2

dt
= 2

n∑
i=1

∆mi(t)

(
ẋi

∫ y

y−ε
ρ(xi, y)dy − ẋi−1

∫ y

y−ε
ρ(xi−1, y)dy

)

+ 2v
n∑
i=1

∆mi(t)

(∫ xi(y)

xi−1(y)
ρ(x, y)dx− 1

n

∫ gb(y)

ga(y)
ρ(x, y)dx

)
.

(9)

The first term in Equation (9) can be further expressed as

n∑
i=1

∆mi(t)

(
ẋi

∫ y

y−ε
ρ(xi, y)dy − ẋi−1

∫ y

y−ε
ρ(xi−1, y)dy

)
= −κ∆m(t)TG(x)Ln−1m(t)− v∆m(t)TP (y)

where

P (y) =

(
g′a(y)

∫ y

y−ε
ρ(ga(y), y)dy, 0, ..., 0,−g′b(y)

∫ y

y−ε
ρ(gb(y), y)dy

)T
∈ Rn
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and Ln−1 ∈ R(n−1)×n is composed of the first (n− 1) rows of Laplacian matrix that represents

the communication network of multi-agent systems. In addition, G(x) ∈ Rn×(n−1) is given by

G(x) =



∫ y
y−ε ρ(x1, y)dy 0 . . .

−
∫ y
y−ε ρ(x1, y)dy

∫ y
y−ε ρ(x2, y)dy . . .

0 −
∫ y
y−ε ρ(x2, y)dy . . .

. . . . .

. . . −
∫ y
y−ε ρ(xn−2, y)dy

∫ y
y−ε ρ(xn−1, y)dy

. . . 0 −
∫ y
y−ε ρ(xn−1, y)dy


,

and it can be rewritten as G(x) = −JT−1,n ·En−1 ·Λ(ε, x), where J−1,n denotes the n-dimensional

Jordan matrix with the diagonal elements being −1, and En−1 is composed of the first (n− 1)

columns in the n-dimensional unit matrix. Note that Λ(ε, x) refers to the (n − 1) dimensional

diagonal matrix with the i-th diagonal element being
∫ y
y−ε ρ(xi, y)dy, i ∈ In−1.

Because ∆m(t)TG(x)Ln−1m(t) = ∆m(t)TG(x)Ln−1∆m(t), the first term in Equation (9)

can be estimated as

n∑
i=1

∆mi(t)

(
ẋi

∫ y

y−ε
ρ(xi, y)dy − ẋi−1

∫ y

y−ε
ρ(xi−1, y)dy

)
≤ −κ∆m(t)TG(x)Ln−1∆m(t)− v∆m(t)TP (y)

= −κλ2‖∆m(t)‖2 − v∆m(t)TP (y)

≤ −κλ2‖∆m(t)‖2 + v‖∆m(t)‖ · ‖P (y)‖

≤ −κλ2‖∆m(t)‖2 + vερ̄
√
g′a(y)2 + g′b(y)2 · ‖∆m(t)‖

where λ2 denotes the second smallest eigenvalue of the matrix
(
G(x)Ln−1 + LTn−1G(x)T

)
/2 with

x = (x1, x2, ..., xn−1) and xi ∈ [inf0≤y≤l ga(y), sup0≤y≤l gb(y)], i ∈ In−1. For the second term in

Equation (9), it follows from Cauchy-Schwarz inequality and Lemma 3.1 that

n∑
i=1

∆mi(t)

(∫ xi(y)

xi−1(y)
ρ(x, y)dx− 1

n

∫ gb(y)

ga(y)
ρ(x, y)dx

)

≤ ‖∆m(t)‖

 n∑
i=1

(∫ xi(y)

xi−1(y)
ρ(x, y)dx− 1

n

∫ gb(y)

ga(y)
ρ(x, y)dx

)2
 1

2

≤ ‖∆m(t)‖ ·
√

(n− 1)/n · ρ̄ [gb(y)− ga(y)] .
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Therefore, the time derivative of ‖∆m(t)‖2 can be estimated as follows

d‖∆m(t)‖2

dt
≤ −κλ2‖∆m(t)‖2 + 2vρ̄ε

√
g′a(y)2 + g′b(y)2 · ‖∆m(t)‖

+ 2vρ̄
√

(n− 1)/n · [gb(y)− ga(y)] · ‖∆m(t)‖

= −κλ2‖∆m(t)‖2 + ζ(t)‖∆m(t)‖.

(10)

with ζ(t) = 2vρ̄
[
ε
√
g′a(y)2 + g′b(y)2 + (gb(y)− ga(y))

√
(n− 1)/n

]
. Solving the above differen-

tial inequality yields

‖∆m(t)‖ ≤ ‖∆m(t0)‖e−
κλ2(t−t0)

2 +
1

2

∫ t

t0

e
κλ2(τ−t)

2 ζ(τ)dτ.

The proof is thus completed.
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